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Abstract

Background: With the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection
has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture
species of economic importance. With markers covering the entire genome, genetic merit of genotyped individuals can be
predicted directly within the framework of mixed model equations, by using a matrix of relationships among individuals
that is derived from the markers. Here we extend that approach by deriving a marker-based relationship matrix specifically
for the trait of interest.

Methodology/Principal Findings: In the framework of mixed model equations, a new best linear unbiased prediction
(BLUP) method including a trait-specific relationship matrix (TA) was presented and termed TABLUP. The TA matrix was
constructed on the basis of marker genotypes and their weights in relation to the trait of interest. A simulation study with
1,000 individuals as the training population and five successive generations as candidate population was carried out to
validate the proposed method. The proposed TABLUP method outperformed the ridge regression BLUP (RRBLUP) and BLUP
with realized relationship matrix (GBLUP). It performed slightly worse than BayesB with an accuracy of 0.79 in the standard
scenario.

Conclusions/Significance: The proposed TABLUP method is an improvement of the RRBLUP and GBLUP method. It might
be equivalent to the BayesB method but it has additional benefits like the calculation of accuracies for individual breeding
values. The results also showed that the TA-matrix performs better in predicting ability than the classical numerator
relationship matrix and the realized relationship matrix which are derived solely from pedigree or markers without regard to
the trait. This is because the TA-matrix not only accounts for the Mendelian sampling term, but also puts the greater
emphasis on those markers that explain more of the genetic variance in the trait.
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Introduction

With the advances in molecular biotechnology, genome-wide

high-density single nucleotide polymorphisms (SNP) marker data

is becoming available for many farm animal and plant species.

These data combined with phenotypic data can be used to

estimate genetic merit [1] or predict phenotypic values [2] for the

trait of interest. This method was termed genomic selection by

Meuwissen et al. [1]. In the usual implementation of genomic

selection, effects of whole-genome high-density markers are first

estimated using a training population in which all individuals are

both phenotyped and genotyped. Then, selection candidates that

are only genotyped get their genomic estimated breeding values

(GEBVs) by adding up all the marker effects estimated from the

training population. The greatest advantage of this approach is the

predicting ability with potential high accuracy and the possibility

to shorten the generation interval by estimating accurate breeding

values early in life, even before birth [1,3,4]. As a result, genomic

selection could save up to 92% of costs for dairy cattle breeding

companies [5]. This has led to a rapid development of research

and application of genomic selection in animal [5–7], plant [8,9]

and aquaculture breeding [10,11].

In the framework of genomic selection, many statistical methods

have been proposed to estimate the marker effects in the training

population. Based on the assumptions about the statistical

distribution of the marker effects, these methods can be classified

into two groups. The first group assumes that all markers have

some effect on the trait of interest and that the variance of each
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marker effect is equal. A typical method using this assumption is

ridge regression best linear unbiased prediction (RRBLUP) [1,12].

The second group allows marker effects to come from different

statistical distributions. These methods, sometimes coined ‘variable

selection methods’ include BayesA, BayesB [1], Bayesian shrink-

age [13] and several others [14–18]. The performance of both

groups of methods has been compared extensively [1,3,19–21].

An alternative to estimating GEBVs by summing up all the

marker effects, is to estimate GEBVs directly within the framework

of mixed model equations (MME). Conventional ‘animal model’

BLUP has been routinely applied in animal, tree and plant breeding

for many decades. The predicting ability for individuals without

phenotypic records of this method depends on the structure of the

random effect variance-covariance matrix. In the classical MME, a

numerator relationship matrix (NRM) based on the pedigree [22] is

used to describe the additive variance-covariance relationship

between all individual pairs in a population. The elements in

NRM are twice the expected probabilities that two alleles randomly

sampled from the same locus in two individuals are identical by

descent (IBD). In recent years, with the availability of more and

more genetic markers covering the whole genome, the NRM could

be replaced by a realized relationship matrix (RRM) or marker-

derived relationship matrix [23,24].

Current implementations of the RRM are based on the

‘infinitesimal model’ [25,26], which assumes that a very large

number of genes that are evenly distributed across the genome

contribute equally to the trait of interest. This assumption is also

implicit when using RRBLUP to estimate GEBV. In the framework

of genomic selection, the method to estimate GEBVs using the RRM

is termed GBLUP, which was shown to be theoretically equivalent to

RRBLUP [20,26–29]. Because current NRM and RRM are based

on expected or realized average genome-wide information only, they

are identical for all traits in a population. However, in animal or

plant breeding programs, investigators are interested in the

improvement of one or several specific traits. The true genetic

architecture for any trait deviates from the infinitesimal model to a

certain degree, and different traits are controlled by different sets of

genes. Quantitative trait loci (QTL) mapping studies have shown

that most quantitative traits are affected significantly by a finite

number of genes [30], which are neither evenly distributed nor

equally contributing to the trait of interest. When the genetic control

of these traits deviates from the assumptions of the infinitesimal

model, neither NRM nor RRM including averaged information

optimally describes the variance-covariance structure between

individuals for the trait of interest. Therefore, it is more realistic to

accommodate the departure from the infinitesimal model while

constructing the variance-covariance matrix. The genome-wide

SNP information provides a tool to assess the genetic architecture of

the traits of interest and improve upon NRM and RRM. This

possibility has not yet been explored in the framework of MME.

Here we introduce a two-step BLUP method, named ‘best linear

unbiased prediction with trait-specific marker derived relationship

matrix’ (TABLUP), to estimate GEBVs utilizing trait-specific

marker information. A simulation study was performed to

investigate the benefit of the presented method for the accuracy of

estimated breeding values. The rules to construct the TA matrix

were derived. Genomic selection using TABLUP was compared

with RRBLUP, BayesB and GBLUP in a range of scenarios. Factors

affecting the TABLUP method and its features were discussed.

Materials and Methods

Our method involves two steps. First, the SNP effects in the

training population, in which all individuals have their genotypic

and phenotypic data available, are estimated using one of the

methods mentioned above. Then, a trait-specific relationship

matrix (TA) was derived from all the marker genotypes and their

weights obtained from the first step. Finally, GEBVs of genotyped

individuals, including all phenotyped individuals and other young

non-phenotyped individuals, was estimated using MME with the

TA-matrix.

Estimation of the marker effects
Any method that has been proposed in the framework of

genomic selection can be used to estimate marker effects in the

training population. In our study, RRBLUP and BayesB were

used with the following statistical model:

Y~Xbz
XN

i~1

Zigize ð1Þ

where b is a vector of fixed effects (including an overall mean), gi is

the ith marker effect, N is the total number of markers, X and Z are

design matrices corresponding to b and g, and e is a vector of

residual errors. In design matrix Z, for SNP markers with alleles 1

and 2, genotypes were represented as 0, 1 and 21 to denote the

heterozygous (12) and the two homozygous genotypes (22 and 11),

respectively. We assume that the residuals are independent and

follow a normal distribution, e,N(0, Ise
2). All marker effects gi are

also assumed to be normally distributed, gi,N(0, sgi
2), where sgi

2

is the variance of effect of marker i, The sgi
2 is assumed to be equal

for all markers in RRBLUP and variable in BayesB for which a

marker may have a variance of zero with a probability of p or a

variance following a scaled inverse chi-square distribution with 1

degree of freedom with a probability of 12p [31].

In the RRBLUP method, the simulated variance components

were used as the true variance in the analyses. The ith marker

variance was calculated from sgi
2 =sa

2/N, wheresa
2 is the total

additive genetic variance, as proposed by Meuwissen et al. [1].

In the BayesB method, the exact ratio of the number of

simulated QTL to the total number of markers was used as the

prior value of 12p. The Monte Carlo Markov chain (MCMC)

algorithm of BayesB is a mixture of Gibbs sampling and

Metropolis-Hastings sampling as described by Meuwissen et al.

[1]. In our research, the MCMC chain was run for 10,000 cycles

with 100 cycles of Metropolis-Hastings sampling in each Gibbs

sampling, and the first 2,000 cycles were discarded as burn-in. All

the samples of marker effects from later cycles were averaged to

obtain the estimates of marker effects.

Construction of trait specific marker derived relationship
matrix (TA)

A relationship matrix constructed using all markers without

trait-specific weighting is equivalent to the G matrix in GBLUP,

the so-called realized relationship matrix, and is identical for all

traits. The trait-specific relationship matrix, in contrast, should

specify the genetic covariance between two individuals for the trait

of interest. The contribution of each locus to this covariance

consists of two components: the IBD between both individuals,

which is reflected by their marker genotypes, and the contribution

of the locus to the genetic variance in the trait. Thus elements of

the TA-matrix were obtained as

TAij~
X

k

2PIBD,ijk s2
g,k,

where PIBD,ijk is the IBD-probability at locus k between individual

Genomic Selection Using TABLUP
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i and j, s2
g,k is the contribution of locus k to the genetic variance in

the trait, and the sum is taken over all loci. This expression ignores

covariances of genetic effects at different loci, which may originate

e.g. from linkage disequilibrium.

To simplify the arithmetic, we first obtained the full identity by

state (IBS) at each locus. Subsequently we calculated the weighted

average IBS over all loci, and finally corrected for the population

average IBS to obtain a mean relatedness equal to zero. The full

IBS at locus k between individual i and j is calculated as [23,32]

Sijk~
X2

m~1

X2

n~1
Imn

.
4: ð2Þ

where Imn is 1 if allele m in the first individual is identical to allele n

in the second individual or 0 otherwise. All four possible

combinations are taken into consideration in formula (2).

Therefore, the genotype data does not need to be phased. Next,

the weighted average IBS for individuals i and e, taking all markers

into account, was obtained as

Sij~
XN

k~1
Sijkwk

.XN

k~1
wk,

where N is the total number of loci and wk is the weight for the kth

marker. In the present study, we compared two different weights,

weights were either equal to the posterior variances of marker

effects estimated from BayesB (denoted TAB), or weights were

equal to the expected variances of marker effects derived from

RRBLUP (denoted TAP). For RRBLUP, the expected variance

for the kth marker was calculated as 2pk(1{pk)ĝg2
k, where the pk is

the frequency of one allele on that locus and ĝgk is the estimated

marker effect. Then we corrected for the mean IBS, using an

adjustment based on Wright’s F-statistics

S
0
ij~ Sij{2�SS
� �

= 1{�SS
� �

,

where �SS is the population average of Sij. Finally, science

relatedness equals twice the IBD, we obtained elements of the

marker-based relationship matrix as

TAij~2S
0
ij :

An overview of different methods to construct the TA matrix is

shown in Table 1.

Estimation of genomic breeding values
For TABLUP, the GEBVs of all genotyped individuals are

predicted by solving the MME, which included the TA matrix.

The statistical model was

Y~XbzZuze ð3Þ

where u is the random polygenic effect, which is the EBV in

conventional BLUP and GEBV in GBLUP or TABLUP. The

solution for u is equal to (Z0R{{1ZzG{{1){{1Z0R{{1(y{Xb̂),
where G is the TA matrix for the TABLUP method that was

inverted numerically. The simulated variance components were

provided to the MME, which were solved by Gauss-Seidel

iteration.

For RRBLUP and BayesB, the GEBV of a genotyped individual

was calculated as the sum of all estimated marker effects according

to its marker genotypes [1].

Data simulation
The simulation started with a base population of 100

individuals, followed by 1,000 non-overlapping generations with

the same population size, denoted as generation 2999 to

generation 0 to indicate historical generations. In the base

population and each historical generation, 50 males were

randomly mated with 50 females and each mating produced two

offspring (one male and one female). After the 1,000 historical

generations, six additional generations, numbered 1 to 6, were

simulated. In generation 1, the population size was expanded from

100 to 1,000 by randomly mating 50 males with 50 females from

generation 0, where each female produced 20 progeny (10 males

and 10 females). From generation 1 to 5, 50 males were randomly

selected from the 500 male individuals to be the sires of the next

generation, and all 500 females were used as dams without

selection. The population size of 1,000 for generation 2 to 6 was

obtained by randomly mating each male with 10 females and each

female produced two offspring. This resulted in a half sib family

structure as depicted in Figure 1.

The simulated genome consisted of five chromosomes with a

total length of 5 Morgan (1 Morgan per chromosome). On each

chromosome, 1,000 marker loci were randomly located and each

segment between two markers was considered to harbor a

potential QTL, giving 5,000 markers and 4,995 potential QTL

in total. Based on the distance between two adjacent loci,

Haldane’s mapping function was used to calculate the probability

of having a recombination between adjacent loci on the same

chromosome.

The mutation-drift equilibrium model was used to create

polymorphic markers and QTL. In the base population, all markers

and QTL had both alleles coded as 1. Mutations were allowed in all

Table 1. Overview of different methods to construct the trait-
specific relationship matrix.

Acronym Estimationa Weighted

TAP RRBLUP Yes

TAB BayesB Yes

GBLUP – No

aThe method used to estimate the marker effects.
doi:10.1371/journal.pone.0012648.t001

Figure 1. Overview of the simulated population structure.
doi:10.1371/journal.pone.0012648.g001
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historical generations for all loci with a mutation rate of 1.2561023

per locus, per generation, and per animal. Under the mutation-drift

equilibrium model, the expected heterozygosity when the popula-

tion reaches equilibrium is He~4Neu=(1z4Neu)M, where Ne is

the effective population size and u is the mutation rate [33].

Therefore, the proposed mutation rate gave an expected heterozy-

gosity of 0.5. For each new mutation on the same locus, a unique

allele was created and coded with a new number sequentially

starting from 2. In generation 0, recoding of alleles was

implemented to obtain bi-allelic SNP markers. For each locus, the

allele that had a frequency closest to 0.5 was recoded as 1, while all

other alleles were recoded as 2 following Solberg et al. [34] while

differing from the rule used by Meuwissen et al. [1], in which only

part of the putative loci were polymorphic and available for data

analysis. The distribution of minor allele frequencies of our

simulated data can be seen in Figure 2.

For each individual from generation 1 to 6, a true breeding

value (TBV) was simulated by summing up all true QTL genotypic

values, i.e.,
Pm

i~1Ziai, where ai is the allele substitution effect of

the ith QTL, and Zi is 0, 1, or 21 corresponding to genotypes 12,

22 and 11, respectively. In our standard scenario, 50 QTL were

randomly selected from the 4,995 putative QTL. For each true

QTL, the allele substitution effect ai was drawn from a gamma

distribution with the shape parameter b~0:4 and scale parameter

a~1:66. The allele substitution effect ai sampled from a gamma

distribution may be positive or negative with equal probability,

following Meuwissen et al. [1].

The total genetic variance was computed as the sum of

variances across all QTL with the assumption of no correlation

between QTL. The simulated additive genetic variance of each

Figure 2. The typical distribution of minor allele frequency of
the simulated genotypic data.
doi:10.1371/journal.pone.0012648.g002

Figure 3. True and estimated QTL effects from a randomly selected replicate. Panel A shows the absolute values of the simulated true QTL
effects throughout the simulated genome. Panel B shows the absolute estimates of the marker effects throughout the genome use the BayesB
approach. Panel C shows the absolute estimates of the marker effects throughout the genome use the RRBLUP approach. There were 50 true QTL
and 5,000 markers. Beware of the scale difference in panel C.
doi:10.1371/journal.pone.0012648.g003
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QTL was calculated as s2
gi
~2pi(1{pi)ai

2 [35], where pi is the

allele frequency at the i th QTL in generation 1, and ai is the allele

substitution effect of the i th QTL. The allele substitution effects

were re-scaled to have a total additive genetic variance (sA
2) of 1.

Only the 1,000 individuals in generation 1 were assigned a

phenotypic record. The phenotypic value Pi of the ith individual

was obtained by Pi~TBVizei, where ei is randomly sampled

from a normal distribution N(0, se
2). The environmental variance,

se
2, equaled 1{h2

� �
s2

A

�
h2. In our standard scenario, heritability

was set to be 0.5, so that environmental variance was 1. Breeding

values of individuals without phenotypic records were predicted

using Equation 3. The accuracy of predicted breeding values was

evaluated by calculating the correlation between the true and

predicted breeding values for individuals without phenotypic

records.

To investigate the effect of number of QTL and heritability on

the accuracy of GEBVs, two groups of alternative scenarios were

simulated in addition to the standard scenario described above. In

the first group, four different levels of heritability were simulated:

0.05, 0.1, 0.3 and 0.9. In the second group, different numbers of

QTL were simulated: 100, 200, 500 and 1,000. For all these

alternatives, only the intended parameter was altered from the

standard scenario. For all scenarios, 10 replicates were simulated.

Results

Estimates of QTL effects
The simulated (true) QTL effects and the marker effects

estimated from RRBLUP and BayesB from one random replicate

of the standard scenario are shown in Figure 3. While the

simulated absolute QTL effects ranged from 0 to 0.6 (Figure 3A),

the estimated absolute marker effects ranged from 0 to 0.5 for

BayesB (Figure 3B) and 0 to 0.025 for RRBLUP (Figure 3C;

beware of the difference in scale between Figures 3A, B and C).

Most segments containing big QTL were mapped by both

methods. However the resolution of BayesB was higher than that

of RRBLUP.

Pearson correlation, rank correlation and regression
coefficient

Table 2 shows the Pearson correlations and rank correlations

between the predicted breeding values (GEBVs) and the simulated

true breeding values (TBVs) as well as the regression of TBVs on

GEBVs in generation 2. In terms of accuracy, which is defined as

the Pearson correlation between GEBVs and TBVs, both TABLUP

methods (TAB and TAP) performed better than RRBLUP and

GBLUP. TAB performed better than TAP but a little worse than

BayesB. However, the difference between TAP and TAB (0.042)

was much smaller than that between RRBLUP and BayesB (0.085).

In other words, the TABLUP appears to be less sensitive to the

genetic architecture than either RRBLUP or BayesB.

In breeding practice, rank correlation is more important than

Pearson correlation, especially in truncation selection. On average,

the rank correlation is 0.013 lower than the Pearson correlation.

The ranking of the methods and the trend of both correlations

were the same (Table 2).

The regression coefficient of TBVs on GEBVs was used to

measure the biases of GEBVs from different methods (Table 2).

RRBLUP and BayesB gave almost unbiased estimates of GEBVs,

while both TABLUP methods slightly underestimated GEBVs.

It is notable that GBLUP and RRBLUP performed equally in

terms of correlations, which confirms the theoretical equivalence

of the two methods. However, the regression coefficient was

slightly different between these two methods (Table 2).

Decline of accuracy over generations
The decline of accuracy of GEBVs over generations can be a

measure of the persistency of the predicting ability for different

methods. As shown in Figure 4, the average decreases in accuracy

per generation from generation 2 to 6 were 0.021 and 0.026 for

TAB and TAP, and 0.020 and 0.036 for BayesB and RRBLUP,

respectively. Due to the high persistency of TAP, the advantage of

TAP over RRBLUP in accuracy increased from 0.016 in

generation 2 to 0.065 in generation 6. Again, GBLUP showed

the same decline pattern as RRBLUP.

Effect of number of simulated QTL
With the increase of the number of simulated QTL from 50 to

1,000, the accuracy of GEBVs in generation 2 decreased

consistently for BayesB, increased consistently for RRBLUP and

Table 2. Correlation and rank correlation between estimated
and true breeding values as well as regression of true
breeding values on estimated breeding values in generation 2
(Nqtl = 50, h2 = 0.5).

Method Correlation Rank correlation Regression

BayesB 0.80960.009 0.79860.010 0.99860.014

RRBLUP 0.72460.011 0.71060.011 1.06460.015

TAP 0.74860.010 0.73660.010 0.94960.015

TAB 0.79060.008 0.77860.009 0.89960.016

GBLUP 0.72660.012 0.71260.011 0.99760.015

doi:10.1371/journal.pone.0012648.t002

Figure 4. Accuracy of genomic breeding values (GEBVs) using 5
different approaches. The graph shows the correlation between
estimated and true breeding values in generations 2–6 using GEBVs
derived by a variable selection approach (BayesB), an approach using
infinitesimal model (RRBLUP), BLUP methods with the trait-specific
matrix using BayesB weights (TAB), the trait-specific matrix using
infinitesimal model weights (TAP) and the average genomic relationship
matrix using the infinitesimal model (GBLUP).
doi:10.1371/journal.pone.0012648.g004
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GBLUP (except for the case of 200 QTL), and decreased first

(from 50 to 200 QTL) and then increased (from 200 to 1000 QTL)

for both TABLUP methods, as shown in Table 3. A general

tendency is that the differences between different methods reduced

along with the increase of the number of QTL. It seems that

BayesB is more sensitive to the number of QTL than the other

methods, in particular when the number of QTL increased from

50 to 200. Therefore, the advantage of BayesB over the other

methods decreased with the increase of number of QTL.

Effect of heritability
Table 4 shows the accuracies of GEBVs for different methods

while varying the heritability. By decreasing the heritability from

0.9 to 0.05, the accuracies of all methods decreased as expected.

Again, TAB performed slightly worse than BayesB but better than

all other BLUP-type methods in all cases, although its advantage

declined with the decrease of heritability.

Discussion

The main aim of this study was to present the two-step

TABLUP method, which utilizes a trait-specific relationship

matrix (TA) in the mixed model equations (MME), for estimating

genomic breeding values in the framework of genomic selection.

Rules to construct the TA matrix were derived and implemented.

The performance of the TABLUP method was shown via

simulation to compare with several other popular approaches

under different scenarios.

The trait-specific relationship matrix TA is related to the trait of

interest by including the information of both marker genotypes

and the marker effect variances. In terms of predicting ability, the

proposed TA matrix is an improvement upon the classical

numerator relationship matrix (NRM) and the realized relation-

ship matrix (RRM). In the framework of MME, the conventional

BLUP, GBLUP and TABLUP use NRM, RRM and TA matrix as

variance-covariance matrix for random genetic effects, respective-

ly. The advantage of RRM over NRM has been investigated

previously [24–27]. This advantage results from the fact that

RRM captures the Mendelian sampling deviations, which

accounts for half the additive genetic variance among individuals

[20,25,28,36]. We infer that the advantage of using the TA matrix

over RRM and NRM is because it not only accounts for the

Mendelian sampling term, but also puts greater weight on loci

explaining more of the genetic variance in the trait.

The comparable performance of TABLUP and BayesB,

especially between TAB and BayesB, suggests that TABLUP

might be an equivalent model of BayesB. The equivalence

between GBLUP and RRBLUP has been proven under the

assumption that all markers contribute equally to the trait of

interest [20,26–29]. Whether the same equivalence exists between

TABLUP and BayesB is an interesting hypothesis, but outside the

scope of this manuscript. However, as the TA matrix can take the

trait-specific genetic architecture into consideration, the perfor-

mance of TABLUP should be more robust with respect to the

genetic architecture of the trait of interest. The effect of genetic

architecture on genomic selection methods has been investigated

in detail by Daetwyler et. al [31].

TABLUP and GBLUP have some features that other genomic

selection methods based on model (1) lack. The most important

feature is that the reliability of an individual’s GEBV can be

calculated. The reliabilities of GEBVs for single individuals are

important for breeders to make selection decisions. The calcula-

tion of reliabilities using TABLUP is identical to that outlined for

GBLUP by VanRaden [28] and Strandén et al. [37]. In real data

analysis for dairy cattle, this reliability agreed well with the realized

reliability [38]. The second feature is that the model for TABLUP

could be extended to include non-genotyped individuals. In

practice, not all individuals with phenotypic record(s) or reliable

EBV(s) can be genotyped. To estimate GEBVs using BayesB or

RRBLUP, it is required that all individuals are genotyped.

However, this might not be the case for TABLUP and GBLUP.

This extension was introduced by Legarra et al. [39], who

proposed a rule to construct a joint pedigree-genomic relationship

matrix. A simulation study demonstrated that this extension can

Table 3. Accuracy of GEBVs for different simulated QTL numbers in generation 2 (h2 = 0.5).

Number of QTL BayesB RRBLUP GBLUP TAB TAP

50 0.80960.009 0.72460.011 0.72660.012 0.79060.008 0.74860.010

100 0.78660.012 0.74060.017 0.73960.017 0.77060.013 0.74460.015

200 0.76360.011 0.73460.012 0.73560.011 0.74960.010 0.72460.010

500 0.76360.009 0.74560.009 0.74860.010 0.75660.010 0.73260.009

1000 0.76060.010 0.75660.012 0.75660.012 0.75560.012 0.73660.012

doi:10.1371/journal.pone.0012648.t003

Table 4. Accuracy of GEBVs for different heritability in generation 2 (Nqtl = 50).

Heritability BayesB RRBLUP GBLUP TAB TAP

0.05 0.40760.020 0.37660.021 0.37460.020 0.39460.018 0.35460.019

0.1 0.54260.023 0.47260.017 0.47260.018 0.51860.015 0.46460.017

0.3 0.73560.015 0.63860.014 0.64160.014 0.70860.011 0.65660.013

0.5 0.80960.009 0.72460.011 0.72660.012 0.79060.008 0.74860.010

0.9 0.90860.004 0.86160.006 0.86260.006 0.91060.004 0.88660.005

doi:10.1371/journal.pone.0012648.t004
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increase the accuracy due to a larger size of training population

[40]. Such an extension can also be applied to TABLUP based on

model (3) by replacing the TA matrix with a pedigree-TA matrix,

so that the non-genotyped individuals can be included in the

model and their GEBVs can be estimated. These favorable

features should make TABLUP more competitive.

Choosing the right genomic selection method to apply in

practical breeding is a challenge for breeders. In simulation

studies, BayesB is nearly always better than RRBLUP [1]. In

practice, its performance was reported to be nearly equal to or

even worse than RRBLUP or GBLUP for some traits

[19,38,41,42]. This suggested that the underlying genetic archi-

tectures of some traits are closer to the infinitesimal model than

expected. However, the data analysis on fat percentage in dairy

cattle shows there are single genes like DGAT1 that may favor the

BayesB type approaches [38,41]. The genetic architectures vary

between different traits and for some traits the deviation from the

infinitesimal model may be greater than for others. The present

study shows that BayesB is more sensitive to the number of QTL

underlining a trait than TABLUP and RRBLUP, while the

performances of TAB and BayesB are very comparable.

Therefore, TABLUP might hold an advantage when applied to

real data where the genetic architectures underlining the traits of

interest are unknown. However, the performance of TABLUP in

practical applications is yet to be evaluated.

In our study, the IBS scoring rule proposed by Eding and

Meuwissen [23] was used as a measure of relatedness between

individual pairs. It was reported that a singularity problem could

arise with some other rules if only a limited number of markers

were included into the genomic relationship matrix [28]. For the

scenarios presented here, the TA matrix could always be inverted

directly without the singularity problems. Moreover, different

scoring rules might cause the difference in predicting ability of

GBLUP/TABLUP. By setting the diagonal elements of TA matrix

as 1 with the assumption of no inbreeding and not removing the

IBS for the Sij, the TA matrix showed a higher predicting ability

than that of the current IBS scoring rule (Table 5). Therefore, the

effect of different IBS scoring rules to GBLUP/TABLUP still

needs to be investigated.

The weighting rule used to construct the TA matrix was based

on the expected covariance between individuals on the basis of the

estimated marker effects. Because this follows the theoretical basis

of the relationship matrix this type of weighting should in theory

be optimal. However, we cannot exclude that for certain scenarios,

other ad-hoc approaches may give a higher accuracy. For

example, in Table 5, we show the performance of the weights

presented in this manuscript in comparison to using ad-hoc weights,

which are the absolute estimated SNP effect for BayesB and

RRBLUP. We could not find an explanation why these ad-hoc

weights performed slightly better for the scenarios presented in this

study. In this paper, the weights were derived from the marker

effect estimation step which increases the computational burden.

However, the marker effect estimation step might be not necessary

as marker weights could be provided by existing genome-wide

association studies (GWAS) or known candidate-gene effects. In

such a scenario, SNPs in LD with known mutations could be given

weights according to their known effects or variances, while equal

weights could be assigned for the remainder of the genome.

Likewise, SNPs in known QTL regions could be assigned more

informative weights. Also, by setting the weights for non-

informative markers to 0, a subset of informative markers could

be tested in TABLUP for the purpose of selecting low density

markers to reduce the cost of genotyping in selection candidates.

In conclusion, this article introduced the TABLUP approach as

a flexible alternative between BayesB and GBLUP. For the

scenarios studied, the proposed TABLUP method showed an

advantage over GBLUP and RRBLUP, and performed nearly

equally to BayesB in terms of accuracy of GEBVs. The TA matrix

models both the Mendelian sampling term as well as the genetic

architecture underlying the trait of interest. Therefore the

application of TABLUP in genomic selection merits further

exploration.
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