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Protein tyrosine phosphatases (PTPs) are regulated through re-
versible oxidation of the active-site cysteine. Previous studies have
implied soluble reactiveoxygen species (ROS), likeH2O2, as themedi-
ators of PTP oxidation. The potential role(s) of peroxidized lipids in
PTP oxidation have not been described. This study demonstrates
that increases in cellular lipid peroxides, induced by disruption of
glutathione peroxidase 4, induce cellular PTP oxidation and reduce
the activity of PDGF receptor targeting PTPs. These effects were
accompanied by site-selective increased PDGF β-receptor phosphor-
ylation, sensitive to 12/15-lipoxygenase (12/15-LOX) inhibitors, and
increased PDGF-induced cytoskeletal rearrangements. Importantly,
the 12/15-LOX–derived 15-OOH-eicosatetraenoic acid lipid peroxide
was much more effective than H2O2 in induction of in vitro PTP
oxidation. Our study thus establishes that lipid peroxides are pre-
viously unrecognized inducers of oxidation of PTPs. This identifies
a pathway for control of receptor tyrosine kinase signaling, which
might also be involved in the etiology of diseases associated with
increased lipid peroxidation.
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Signaling through receptor tyrosine kinases (RTKs), such as the
PDGF β-receptor, is subjected to negative control by protein

tyrosine phosphatases (PTPs) (1–3). Consequently, alterations in
expression levels or the specific activity of PTPs will affect the
cellular response to ligands of RTKs. With regard to the PDGF
β-receptor, a series of PTPs, including T cell protein tyrosine
phosphatase (TC-PTP), density enhanced phosphatase-1 (DEP-
1), SHP-2, and PTP-1B, have been found to modulate receptor
signaling (4–7). Detailed analyses of the consequences of deletion
of individual PTPs have shown that individual PDGF receptor-
antagonizing PTPs preferentially dephosphorylate particular
phospho-tyrosine residues of the receptor and thereby are able to
modulate the signaling output (4, 8–10).
Inhibitory and reversible oxidation of the active-site cysteine has

emerged as a general mechanism for PTP regulation (11, 12). As
a consequence of the microenvironment of the conserved active
site of PTPs, the catalytic cysteine of PTPs usually exists as thiolate
anion, which is highly susceptible to oxidation. Studies in cellular
models, as well as in vitro studies, indicate that PTPs display in-
trinsic differences in oxidation susceptibility (13–15). PTP oxida-
tion has been shown after activation of reactive oxygen species
(ROS)-inducing cell-surface receptors, such as RTKs, G protein-
coupled receptors (GPCRs), integrins, B cell receptors, and T cell
receptors (6, 16–20). Manipulation of the expression levels of re-
ducing enzymes such as peroxiredoxin II, cytosolic glutaredoxin,
and glutathione peroxidase 1 has also been shown to affect RTK
signaling and PTP oxidation in vitro and in vivo (21–23). Inmost of
these cases, the PTP oxidation could be reverted by addition of the

soluble antioxidant N-acetyl-cysteine (NAC) or DTT, and soluble
ROS, such as H2O2, have been implied as the mediator of PTP
oxidation. The importance of spatial control of ROS production
was recently emphasized by demonstration of the site-restricted
inactivation of peroxiredoxins after RTK activation (24).
Glutathione peroxidases (GPxs) play key functions in the

control of cyclooxygenase and lipoxygenase (LOX) activities (25).
GPxs, a family of eight enzymes, are required for the scavenging of
H2O2 and (phospho-)lipid hydroperoxides. Glutathione peroxi-
dase 4 (Gpx4; also named phospholipid hydroperoxide glutathi-
one peroxidase) was initially discovered as an enzyme efficiently
protecting liposomes and biomembranes from peroxidative deg-
radation, preferentially acting at the membrane, where it reduces
complex phospholipid hydroperoxides and oxidized cholestery-
lester in lipoproteins (26). Unlike other glutathione peroxidases,
Gpx4 is not restricted to glutathione (GSH) as electron source but
is also able to use protein thiols as reducing substrates when GSH
becomes limiting. Under these conditions Gpx4 converts into
a protein thiol peroxidase (27–29). To date, Gpx4 has been shown
to be the sole Gpx being essential for early embryonic deve-
lopment (30). Using mice and cells with inducible disruption of
Gpx4 (31), it was recently shown that Gpx4 along with GSH is
a sensor of oxidative stress and a specific regulator of a 12/15-
LOX–dependent and apoptosis-inducing factor–mediated cell
death pathway (31, 32).
In this study we took advantage of the recently described in-

ducible Gpx4 disruption system (31) to investigate the effects of
peroxidized lipids on PTP oxidation.

Results
Gpx4 Deletion Leads to an Increase in Cellular PTP Oxidation. As pre-
viously reported, Gpx4 disruption, involving 4-hydroxytamoxifen
(Tam)-inducibledisruptionofGpx4 inmouseembryonicfibroblasts,
caused an NAC-insensitive substantial lipid peroxidation 30 h after
Tam treatment (Fig. S1A andB). Tam treatment ofMERCreMER;
Gpx4+/fl control cells did not induce lipid peroxidation (Fig. S1C).
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The effects of increased lipid peroxidation on PTP oxidation
were analyzed inGpx4-deleted cells. The lysates from theGpx4−/−

cells displayed a much lower PTP activity, as compared with
control lysates, when assays were performed in the absence of
DTT (Fig. 1A). In contrast, both lysates displayed equal activity
when DTT was included in the in vitro dephosphorylation ex-
periment. The “reverse in-gel assay” for PTP oxidation (6) was
also used to monitor the effects of Gpx4 deletion on PTP oxida-
tion. As shown in Fig. 1B, Gpx4−/− cells were characterized by an
increase in PTP oxidation, as revealed by an increased PTP
activity in lane 4 as compared with lane 2. Immunoprecipitated
TC-PTP (lane 5) comigrated with the most prominent oxidized
PTP in Gpx4−/− cells (lane 4), suggesting that this phosphatase
might be one of the PTPs affected in Gpx4−/− cells.
An increase in SHP-2 oxidation was also detected (Fig. 1C)

using the oxPTP antibody-based method for PTP oxidation (14).
Independent evidence for increased PTP oxidation in Gpx4−/−

cells was also provided by analyses of LAR oxidation (Fig. S2) using
an alternative assay for PTP oxidation, which relies on differences in
alkylation-sensitivity of reduced and oxidized PTPs (33).
Together these analyses thus demonstrate that increased lipid

peroxidation in Gpx4 null cells is associated with an increase in
PTP oxidation.

Purified Peroxidized Lipids Induce PTP Oxidation in Vitro. To sub-
stantiate the findings from the Gpx4-deleted cells, in vitro experi-
ments were performed to analyze whether peroxidized lipids were
able to induce PTP oxidation.
For this purpose an antibody-based PTP oxidation assay, pre-

viously used to monitor PTP oxidation in vitro, was applied
(13). Fig. 1D shows 15-hydroperoxy-eicosatetraenoic acid (15-
HPETE)–induced prominent oxidation of GST-tagged SHP-1,
PTP-H1, and TC-PTP in a dose-dependent manner. Most in-
terestingly, these 15-HPETE–mediated effects occurred at con-
centrations in the nanomolar range, whereas micromolar
concentrations of H2O2 were required to obtain similar oxidizing

effects. Importantly, the 15-HPETE effects could be reverted
almost to background levels when Trolox, a water-soluble vitamin
E derivative, was included in the 15-HPETE–treated samples
(Fig. S3).
This experiment thus demonstrates a previously unrecognized

ability of peroxidized arachidonic acid-derived lipids to induce
oxidation of PTPs.

Gpx4−/− Cells Display Augmented PDGF β-Receptor Phosphorylation
and Reduced PDGF Receptor Dephosphorylating Activity. PDGF
β-receptor phosphorylation and signaling is strongly influenced
by multiple PTPs, including TC-PTP, PTP-1B, and DEP-1
(4, 34–36). We therefore investigated whether the increase in
PTP oxidation in the Gpx4−/− cells was associated with changes
in PDGF β-receptor phosphorylation.
Tam-induced Gpx4 depletion in MERCreMER;Gpx4fl/fl cells

resulted in an increased PDGF β-receptor phosphorylation after
stimulation with 10 ng/mL PDGF-BB (lane 4, Fig. 2A), as com-
pared with cells not treated with Tam (lane 3, Fig. 2A). When
normalized for the amount of receptor protein, the ligand-
stimulated Gpx4−/− cells displayed an ≈10-fold higher phosphor-
ylation/receptor level, as compared with Gpx4-expressing cells.
Gpx4 depletion was also associated with a reduction in the

steady-state levels of PDGF β-receptor (lanes 1 and 3 vs. lanes 2
and 4, Fig. 2A). By contrast, none of these changes could be ob-
served in Tam-treated MERCreMER;Gpx4+/fl control cells (Fig.
S4A) or in Gpx4−/− cells in which Gpx4 expression was recon-
stituted (Fig. S4B).
PDGF receptor phosphorylation leads to internalization and

degradation. It was therefore hypothesized that the reduced ex-
pression levels of PDGF receptors after Gpx4 deletion in un-
stimulated cells was caused by increased ligand-independent
receptor phosphorylation, internalization, and degradation. To
test this, cells were treated with the PDGF β-receptor inhibitor
AG1296 (37), and the effects on the levels of receptor expression
were analyzed. As shown in Fig. 2B, treatment with AG1296 led to
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Fig. 1. Peroxidized lipids induce inhibitory oxidation of PTP activity. (A) Measurement of total PTP activity in the absence of exogenous reducing agent
revealed that Gpx4 knockout cells (+ Tam, 60 h) had significantly less PTP activity compared with control cells (- Tam). No significant difference in PTP activity
was observed when assays were performed in the presence of 10 mM DTT. (B) “Reverse in-gel assay” of PTP oxidation revealed increased PTP oxidation in
Gpx4−/− cells (lane 4) compared with wild-type cells (lane 2). Immunoprecipitated TC-PTP from nonalkylated lystates of control cells (lanes 5 and 6) comigrates
with the major oxidized PTP in the Gpx4−/− cells. (C) Analyses of SHP-2 oxidation using the oxPTP antibody demonstrated increased oxidation of SHP-2 in
Gpx4−/− cells. (D) In vitro treatment of purified GST-tagged PTPs (SHP-1, PTP-H1, TC-PTP) induced PTP oxidation in a dose-dependent manner. 15-HPETE–
induced PTP oxidation was compared with H2O2 treatment. Concentrations are given in micromolars [NC (negative control) represents samples that have not
been treated with pervanadate, whereas PC (positive control) indicates samples that have been pervanadate treated in the absence of alkylation].

Conrad et al. PNAS | September 7, 2010 | vol. 107 | no. 36 | 15775

CE
LL

BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007909107/-/DCSupplemental/pnas.201007909SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007909107/-/DCSupplemental/pnas.201007909SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007909107/-/DCSupplemental/pnas.201007909SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007909107/-/DCSupplemental/pnas.201007909SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1007909107/-/DCSupplemental/pnas.201007909SI.pdf?targetid=nameddest=SF4


a clear increase in the levels of receptor protein in Tam-treated
cells, whereas the inhibitor had only minor effects on receptor
levels in noninduced cells.
Treatment with Trolox has previously been shown to reduce

lipid peroxidation, caused by Gpx4 deletion, to background
levels (31). As shown in Fig. 2C, Trolox fully blocked the effects
on PDGF β-receptor phosphorylation caused by Gpx4 deletion.
Furthermore, NAC treatment, which did not change the levels
of peroxidized lipids (Fig. S1B), failed to revert the Gpx4-
dependent alterations in PDGF β-receptor expression and
phosphorylation (Fig. S5A).
To further demonstrate that the increased PDGF β-receptor

phosphorylation in Gpx4-deleted cells was caused by reduced
activity of PDGF β-receptor–targeting PTPs, we analyzed the
rate of in vivo receptor dephosphorylation by monitoring PDGF
receptor phosphorylation at different time points after addition
of the PDGF receptor inhibitor AG1296. As depicted in Fig. 2D,
p-Tyr of the PDGF β-receptor remained high for a longer time
in Gpx4-deleted cells, in accordance with decreased PDGF-
receptor–targeting PTP activity.
We thus conclude from these experiments that the lipid per-

oxidation caused by Gpx4 deletion leads to a reduction in the
activity of PDGF β-receptor–targeting PTPs and an increased
PDGF β-receptor phosphorylation.

Increased PDGF Receptor-Dependent Lamellipodia Formation in
Gpx4−/− Cells. We next asked whether the augmented PDGF
β-receptor phosphorylation in Gpx4-deleted cells also increased
cellular responses induced by PDGF β-receptor activation. For
this purpose we analyzed the formation of lamellipodia, which
are formed after PDGF β-receptor activation (38). As expected
from previous studies, control cells showed a PDGF-dependent
increase in lamellipodia (Fig. 3). In contrast, Gpx4-deleted cells
displayed high constitutive levels of lamellipodia. Pretreatment
with the PDGF receptor inhibitor blocked the lamellipodia for-
mation induced by Gpx4 deletion, as well as the PDGF-induced
response (Fig. 3). The prominent effect of AG1296 on lamelli-
podia formation in unstimulated cells is compatible with an en-
hanced ligand-independent PDGF receptor activation suggested
by earlier experiments (Fig. 2).

Site-Specific Alterations in PDGF β-Receptor Phosphorylation Pattern,
and Selective Activation of PLC-γ1, After Gpx4 Deletion. The PTPs
involved in PDGF β-receptor dephosphorylation exert their ac-
tivity in a site-specificmanner (4, 8, 10). TC-PTP depletion leads to
a preferential increase in phosphorylation ofY1021, whereasY579
is particularly increased after PTP-1B deletion (4). As shown in
Fig. S6, the effects of Tam-induced Gpx4 deletion varied between
the different autophosphorylation sites, such that the increase in
phosphorylation of Y1009 and Y1021 was much more prominent
than the increase in phosphorylation of Y751 and Y771.
Consistent with the site-specific changes in phosphorylation

pattern, differential effects on downstream effector molecules
were also observed (Fig. 4 A–C). Phospholipase Cγ-1 (PLCγ-1)
activation, dependent on phosphorylation of Y1021, was clearly
augmented inGpx4−/− cells asmeasured by ligand-induced inositol
1,4,5-trisphosphate (IP3) formation (Fig. 4A) and PLCγ-1 phos-
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phorylation (Fig. 4B). In contrast, ERK phosphorylation was not
affected by Gpx4 depletion (Fig. 4C).
We thus conclude that the lipid peroxidation caused by Gpx4

deletion affects different site-specific PTPs to a variable extent.

12/15-LOX Dependence of Lipid Peroxidation and PDGF β-Receptor
Phosphorylation in Gpx4−/− Cells. A final set of experiments was
performed to describe in more detail the pathways and compo-
nents that contributed to the increased lipid peroxidation after
Gpx4 inactivation. These efforts focused on the regulators of
arachidonic acid pathway, because Gpx4 has been identified as
an antagonizer of arachidonic acid-oxygenating enzymes. In-
terestingly, addition of the 12/15-LOX inhibitor AA861 reduced
the levels of lipid peroxidation in Tam-treated MERCreMER;
Gpx4fl/fl cells to background levels (Fig. S7A). In agreement with
a stimulatory effect of lipid peroxidation on PDGF β-receptor
phosphorylation, AA861 also reverted the increased PDGF
β-receptor phosphorylation in Gpx4-deleted cells (Fig. 5A).
In contrast, the cyclooxygenase inhibitor indomethacin and the
5-LOX activating protein inhibitor MK886 had no major effects
on PDGF β-receptor phosphorylation (Fig. S7B).
These experiments thus identify 12/15-LOX as the major

oxygenase responsible for the accumulation of peroxidized lipids
in cells lacking Gpx4. This was further supported by the finding
that treatment with the NADPH oxidase inhibitor diphenylio-
donium had no effect on PDGF receptor expression or phos-
phorylation levels (Fig. S5B).

Discussion
Together, the findings of the present study have uncovered
a previously unrecognized pathway controlling RTK activity (Fig.
5B). The key components of this pathway include 12/15-LOX-
and Gpx4-regulated formation of peroxidized lipids, which in-
hibit PTPs and thereby increase RTK signaling.
The results from analyses of effects of Gpx4 inactivation on

the phosphorylation pattern of PDGF β-receptor and on the
activation of different downstream signaling pathways are most
consistent with inactivation of a subset of PDGF β-receptor–
targeting PTPs. Analyses in cellular and in vitro models have
provided indications that PTP domains indeed display intrinsic
differences in oxidation susceptibility (13–15). Analyses of PTP-
PEST oxidation in migrating endothelial cells have also implied
that the restricted subcellular localization of different PTPs, to-

gether with a spatially restricted production of oxidizing agents,
confers specificity to this regulatory mechanisms (39). These
earlier findings should help in guiding future studies aiming at
identification of the PTPs that are preferentially targeted by
peroxidized lipids.
The ability of lipid peroxides to oxidize PTPs has not been

appreciated previously. To date, NADPH oxidase-derived su-
peroxide anion and H2O2 have been regarded as the major ox-
idizing mediators of PTPs (40, 41). However, here we found that
15-HPETE in the nanomolar range is much more effective in in
vitro PTP oxidation than H2O2. The concentration of 15-HPETE
required to achieve substantial PTP oxidation may be in the
physiological range (42). It is noteworthy that 12/15-LOX does
not only oxidize free fatty acids, such as arachidonic acid and
linoleic acid, but that it is also capable of oxidizing esterified
eicosanoids in membranes (43). Because Gpx4 also preferentially
acts at the membrane, it is conceivable that the PTPs with a lo-
cation suitable for PDGF receptor dephosphorylation are par-
ticularly affected by Gpx4. It should also be noted that NADPH
oxidase releases superoxide anion extracellularly, whereas 12/15-
LOX acts inside the cell. However, it should be emphasized that
possible interactions between NADPH oxidase-derived super-
oxides and peroxidized lipids should be further studied.
Important topics for future studies will be analyses of mech-

anisms that control Gpx4 activity and possible interactions be-
tween RTK stimulation and Gpx4 and 12/15-Lox activities. It has
been postulated that Gpx4, similar to other glutathione perox-
idases, controls LOX and cyclooxygenase activities via the cel-
lular peroxide tone (44, 45). Furthermore, future studies should
also explore whether HPETEs other than 15-HPETE show
similar capacity to oxidize and inactivate PTPs. In this context it
should be noted that the oxidation of the lipid phosphatase
PTEN is regulated by unidentified arachidonic acid metabolites
(46). Other previous studies meriting attention include the
findings that 13-OOH-octadecadienoic acid augments EGFR
signaling and that 12-HPETE activates p38 MAPK in platelets
(42, 47).
Increased levels of peroxidized lipids have been linked to

many complex diseases with an inflammatory component like
neurodegeneration, atherosclerosis, and type II diabetes (48).
There is also an altered redox status in cancer cells, which may
lead to increased levels of peroxidized lipids (49). The demon-
stration of the present study that peroxidized lipids are strong
inducers of PTP oxidation should prompt further studies on how
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this effect of peroxidized lipids contributes to their physiological
and pathophysiological effects.

Materials and Methods
Cell Lines, Cell Culture Conditions, and Chemicals. The isolation of mouse
embryonic fibroblasts from Gpx4+/fl and Gpx4fl/fl embryos, stable transfection
with Tam-inducible MERCreMER (MER, mutated estrogen receptor), lenti-
viral add-back of wild-type Gpx4 in MERCreMER;Gpx4fl/fl cells, and cultiva-
tion of cells have been described recently (31). To induce the knockout, cells
were treated for 48–60 h with 1 μM 4-OH-tamoxifen (# H7904; Sigma-
Aldrich) dissolved in DMSO. Gpx4 expression levels were studied using
a monoclonal peptide antibody raised against murine Gpx4 as previously
described (31).

PTP Activity Assay. A PTP activity assay of cell lysates, monitoring in vitro
dephosphorylation of the Src optimal peptide (AEEEIYGEFEAKKK), was
performed as previously described (14). A detailed description is provided in
SI Materials and Methods.

In-Gel Assay of PTP Oxidation. The assay was essentially performed as pre-
viously described (50). In brief, reverse in-gel assay cell lysates were prepared
with or without iodoacetic acid in the dark. Immunoprecipitated TC-PTP
and total cell lysates were separated on an acrylamide gel containing [γ-32P]-
labeled Glu4Tyr peptide. The gel was subjected to several washing steps to
renature and reduce the proteins before it was dried and exposed to film. A
detailed description is provided in SI Materials and Methods.

oxPTP Antibody-Based Analyses of PTP Oxidation. For analyses of oxidation of
immunoprecipitated SHP-2, the oxPTP antibody was used essentially as de-

scribed in ref. 14. The in vitro PTP oxidation experiment was carried out as
previously described (13), with some minor modifications. For details see SI
Materials and Methods.

Analyses of PDGF Receptor Phosphorylation and Signaling. Cells were routinely
stimulated with PDGF-BB (10 ng/mL final concentration) for 3 min at 37 °C in
starve medium (DMEM supplemented with 100 μg/mL BSA). Immunoblotting
analyses of PDGF receptor expression and phosphorylation followed estab-
lished procedures (4). ERK and PLC-γ phosphorylation was also determined
according to standard procedures. IP3 formation was monitored by labeling
of cells with 3H-inositol and subsequent scintillation-based determination of
IP3 on an eluate from an ion-exchange column (4). In vivo dephosphory-
lation was monitored in cells stimulated with PDGF-BB, blocked of further
stimulation with the PDGF inhibitor AG1296, and harvested at different
times after stimulation and analyzed for receptor phosphorylation. Further
details on these analyses are provided in SI Materials and Methods.

PDGF-BB–Induced Cytoskeletal Changes. Tam-treated cells were stimulated
with PDGF-BB before staining with phalloidin-FITC for determination of
lamellipodia formation, as outlined inmore detail in SI Materials andMethods.
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