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Recent studies suggest that certain cellular sensory systems display
fold-change detection (FCD): a response whose entire shape, in-
cluding amplitude and duration, depends only on fold changes in
input and not on absolute levels. Thus, a step change in input from,
for example, level 1 to 2 gives precisely the same dynamical output
as a step from level 2 to 4, because the steps have the same fold
change. We ask what the benefit of FCD is and show that FCD is
necessary and sufficient for sensory search to be independent of
multiplying the input field by a scalar. Thus, the FCD search pattern
depends only on the spatial profile of the input and not on its
amplitude. Such scalar symmetry occurs in a wide range of sensory
inputs, such as source strength multiplying diffusing/convecting
chemical fields sensed in chemotaxis, ambient light multiplying the
contrast field in vision, and protein concentrations multiplying the
output in cellular signaling systems. Furthermore,we showthat FCD
entails two features foundacross sensory systems, exact adaptation
and Weber’s law, but that these two features are not sufficient for
FCD. Finally, we present a wide class of mechanisms that have FCD,
including certain nonlinear feedback and feed-forward loops. We
find that bacterial chemotaxis displays feedbackwithin the present
class and hence, is expected to show FCD. This can explain experi-
ments in which chemotaxis searches are insensitive to attractant
source levels. This study, thus, suggests a connectionbetweenprop-
erties of biological sensory systems and scalar symmetry stemming
from physical properties of their input fields.
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Organisms and cells sense their environment using sensory
systems. Certain sensory systems have been extensively stud-

ied, and their input–output relations are well-characterized, in-
cluding human senses, such as vision (1, 2), touch, and hearing, and
unicellular senses, such as bacterial chemotaxis (3). Many sensory
systems have common features. One such feature is exact adapta-
tion in which the output to a change in input to a new constant level
gradually returns to a level independent of the input. A second
common feature, called Weber’s law, states that the maximal re-
sponse to a change in signal is inversely proportional to the back-
ground signal (4): Δy = kΔu/u0, where k is a constant, y is the
output, and Δu is the signal change over the background u0.
Weber’s law in vision, chemotaxis, and other sensory systems ap-
plies over a range of several orders of magnitude of background
input levels. Note that this definition stems from current practice
that generalizesWeber’s originalmeasurements on psychophysical
threshold sensitivity (4–7).
Recent studies of the input–output properties of certain cellular

signaling systems (8, 9) suggest that these systems show a feature
called fold-change detection (FCD): a response whose entire
shape, including its amplitude and duration, depends only on fold
changes in input and not on absolute levels (10) (Fig. 1 A and B).
For example, a step change in input from, for example, level 1 to 2
gives precisely the same output as a step from level 2 to 4, because
the two steps have the same fold change. FCD ismore general than
Weber’s law and exact adaptation: Weber’s law concerns only the
maximal initial response (Fig. 1D) and exact adaptation concerns

only the steady state of the response (Fig. 1C), whereas FCD
concerns the entire shape of the response.
Here, we ask what might be the biological function of FCD.

We show that FCD is necessary and sufficient to make sensory
searches in which an organism moves through a spatial sensory
field invariant to the amplitude of the field. This may be useful, for
example, tomake sensory searches invariant to the source strength
that multiplies the diffusing/convecting chemical fields sensed in
chemotaxis, the ambient light that multiplies the contrast field in
vision, and the stochastically varying protein concentrations that
multiply the output in many cellular signaling systems.
Furthermore, we ask what molecular mechanisms might give

rise to FCD. FCD places strong constraints on potential mecha-
nisms. A recent study showed theoretically that many known
models for biological regulation do not showFCD (10). That study
identified one mechanism that can provide FCD based on the in-
coherent feed-forward loop (IFFL). The IFFL is one of the most
common network motifs (recurring circuits in transcription net-
works) in which an activator activates both an output gene and
a repressor of that gene (11–14). Here, we ask whether one can
define a larger class of mechanisms for FCD. We present such
a large class of FCD mechanisms. These include specific kinds of
nonlinear integral-feedback loops. We show that one such loop is
found in the bacterial chemotaxis sensory circuit.
Finally, we show that FCD entails both exact adaptation and

Weber’s law but that these two features are not sufficient for
FCD.This study suggests a relationship between symmetries of the
physical world and the response and design of evolved sensors.

Results
Definition of FCD.Consider a system that has input u(t) and output
y(t). The system is initially at steady state with y(t= 0) = y0. FCD
means that the output y(t) is exactly the same for any two inputs
u1(t) and u2(t) that are proportional to each other, u2(t) = pu1(t),
for any p > 0 and u1(t) > 0. For example, consider two input steps
with the same fold change but different absolute levels (Fig. 1A).
A system with FCD displays precisely the same dynamical re-
sponse to both steps (Fig. 1B), including equal amplitude and
response times.

FCD Entails Exact Adaptation and Weber’s Law but Is Not Guaranteed
by Having Both. Exact adaptation means that the steady-state
output is independent on the steady-state level of input. FCD
entails exact adaptation, because FCD by definition means that,
for any two constant inputsu1 andu2= pu1, the steady-state output
must be the same.However, exact adaptation does not entail FCD:
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Fig. 1C shows a system with exact adaptation, namely linear in-
tegral feedback (detailed later inEqs. 9 and 10), that does not show
FCD, because it responds differently to two input steps with the
same fold change but different absolute levels.
FCD also generally entails Weber’s law, formulated as fol-

lowing (4): the maximal response ymax, after a small step input
from u0 to u1, is proportional to u1/u0 (Materials and Methods).
However, Weber’s law (even together with exact adaptation)
does not necessarily entail FCD, as shown in Fig. 1D. In this
example, amplitude depends on relative change in input as in
Weber’s law, but FCD is not found because the adaptation time
varies with the absolute input strength.

FCD Allows Spatial Searches That Are Invariant to Input Source
Strength. We now study the effects of FCD on organisms that use
their sensory system to search in space. Consider an organism that
searches by sensing an input field. The sensory-system output y
guides the motion of the organism (Fig. 2), tending to bring it to
a desired spatial location. We define sensory fields with scalar
symmetry asfields that have the samepattern up to amultiplicative
constant (this can also be called amplitude symmetry). We find
that FCD is necessary and sufficient for the search to be invariant
to scalar symmetry of the input field (invariant to the amplitude of
the input field; proof shown in Materials and Methods). The in-
tuitive reason for this invariance is that FCD cancels out the am-

plitude of the input field by facilitating a search that depends only
on the relative changes in input that are generated as the sensing
organism moves through space.
Note that FCD is also necessary for the search to be invariant to

scalar symmetry of the input field. The putative system of Fig. 1D,
for example, has no FCD, because its adaptation time depends on
absolute input level. Thiswouldmake the spatial search depend on
the amplitude of the input field. Because input amplitudes in most
sensory systems can vary by many orders of magnitude, such de-
pendence could lead to long or inefficient searches and thus, limit
the range of usefulness of the sensory system.
Note that at low signal levels, the cost of search might exceed its

benefit. Furthermore, at very low and very high input levels, sto-
chastic noise and saturation might affect the system. Thus, FCD is
expected to be useful only in a finite range of input stimuli.
We now give three examples of input fields that can have scalar

symmetry: bacterial chemotaxis, vision, and protein-based signal-
transduction system. In bacterial chemotaxis, bacteria perform
a spatial walk through a chemo-attractant field: uð r!; tÞ. Along this
walk, they sense the concentration at their current position and
compute the tumbling rate (rate of random direction changes) to
climb up the gradient (Fig. 3) (15–22). The input field often results
from diffusion or convection from a source of attractant (23), and
bacteria attempt to accumulate at this source. Because the equa-
tions for diffusion or passive scalar convection are linear in the
source strength us, the input field uð r!; tÞ is linear in the amplitude
us. For example, diffusion from a pulse-like source at position r!0
results in uð r!; tÞ ¼ us=ð4πDtÞ3=2expð− ð r!− r!0Þ2=4DtÞ, which is
linear in us. The information about the position of the source is,
thus, encoded in the shape of the field, not in its amplitude.
Therefore, it is reasonable for bacteria to evolve a search pattern
that is independent of us.
Below, we show that recent models of bacterial chemotaxis

(Fig. 3A) show FCD, predicting that bacterial chemotaxis should
be invariant to source strength. This is consistent with the results
of a classic experiment on bacterial chemotaxis. Mesibov et al.
(24) measured the number of Escherichia coli that swim into
a capillary containing attractant at concentration us when placed
onto a glass slide with attractant concentration ub (Fig. 3B). They
varied us and ub across several orders of magnitude, keeping
ub = us/3.1. The number of bacteria that swim into the capillary
after 1 h was nearly constant across two orders of magnitude of
concentrations and varied by less than a factor of three across
three orders of magnitude (7 ± 3 × 105 bacteria in the range from
10−2 to 1 mM of α-methylaspartate) (Fig. 3C). This suggests that
the mean bacterial search process in this spatiotemporal attrac-
tant field is independent of the source strength, a feature that
may be provided by the FCD property of the chemotaxis system.
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Fig. 1. Dynamics of sensory response to fold change in input. (A) Input
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with exact adaptation but no FCD, because peak response and dynamics
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A second example is vision. The reflectance of objects R(r) is
multiplied by the ambient light I to provide the contrastfield sensed
by the eye, u = IR(r) (4). The eyes make spatial searches, for ex-
ample, by means of rapid movements called fixational eye move-
ments or saccades several times per second, which scan the visual
field. The visual system shows exact adaptation, as evidenced by
experiments that track the eyes and accordingly move the visual
field to cancel out these rapid eyemovements, rendering the viewer
unable to discern contrast within seconds (25–27). Vision also
shows Weber’s law to a good approximation across three decades
of stimuli (28, 29). Because vision exhibits both exact adaptation
and Weber’s law, it might also show FCD, a hypothesis that is ex-
perimentally testable. FCD in the visual system would allow visual
searches to be independent on the strength of ambient light. In-
deed, experiments suggest that spatial visual searches, in which the
eyes search for specific objects within a visual field, are insensitive
to ambient-light levels across several orders of magnitude (30, 31).
Scalar symmetry might also occur in a range of molecular sen-

sing tasks, our third example. Consider signaling systems in a cell.
A typical case involves a signaling proteinPwhose concentration is
PT, which can be found in active or inactive forms, P* and P0, re-
spectively. The rates of transition between these forms are v1 and
v2 and depend on the input signal u (Eq. 1):

P0�
v1ðuÞ

v2ðuÞ
P∗ [1]

The resulting concentration of active protein (the input to down-
stream components) is a function of the input, multiplied by a
scalar, PT (Eq. 2):

P∗ ¼ v1ðuÞ
v1ðuÞ þ v2ðuÞPT [2]

The multiplicative factor PT is a protein concentration. Protein
concentrations are known to vary stochastically from cell to cell
and in the same cell over time, typically by tens of percents (32–
36). An FCD system downstream of P* would allow response
to changes in input u and yet, cancel out stochastic variations in
PT (9, 10).

Class of Mechanisms That Show FCD. Here, we provide conditions
for the internal sensor structure that are sufficient for FCD. Con-
sider a system described by a set of ordinary differential equa-
tions, with internal variables x, input u, and output y. The dy-
namics of these variables are (Eqs. 3 and 4)

_x ¼ f
�
x; y; u

�
[3]

_y ¼ g
�
x; y; u

�
[4]

FCD holds if the system is stable (37, 38), shows exact adapta-
tion, and g and f satisfy the following homogeneity conditions for
any p > 0 (Eqs. 5 and 6):

f ðpx; y; puÞ ¼ pf ðx; y; uÞ [5]

gðpx; y; puÞ ¼ gðx; y; uÞ [6]

(proof shown in Materials and Methods). If f is linear, then this
condition is also necessary for FCD. A generalization of this
condition, replacing px by a function ϕ(p, x), is also provided in
Materials and Methods. Note that, in a system that exhibits exact
adaptation, the condition in Eq. 6 is sufficient to yield Weber’s
law (Materials and Methods).
We now discuss examples of FCD mechanisms based on these

conditions. The first example is the incoherent feed-forward loop
presented in ref. 10. Here, an activator u activates gene y and
repressor x, which represses y. When u is in its linear regime and
y is near saturation, one has (Eqs. 7 and 8)

_x ¼ u− x [7]

_y ¼ u
x
− y [8]

where x ≠ 0. These equations satisfy conditions in Eqs. 5 and 6
and show FCD (Fig. 4A). Note that here and in all of the
examples that we consider, FCD holds only when the input u and
controller x are far enough from 0. Generally, we expect FCD to
hold only for a range of inputs: not too small so that ratio-based
(u/x) comparisons can be made without x being too close to 0 and
not too large to saturate the sensor.
Note that not all IFFL designs show FCD [we find that none of

the list of feed-forward loop (FFL) designs compiled by ref. 39
show FCD]. For example, an incoherent FFL called a sniffer (40,
41), in which x enhances y degradation rather than repressing y
production, does not show FCD (in the sniffer, Eq. 8 is _y ¼ u− xy,
allowing exact adaptation but not FCD; the condition inEq. 6 does
not hold, except in a limit mentioned in ref. 10).
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Fig. 3. Bacterial chemotaxis search patterns do not depend on chemo-
attractant source concentration. (A) Bacterial chemotaxis is comprised of
runs and tumbles. When the bacteria sense an increase in attractant (i.e.,
movement in the right direction), they lower their tumbling frequency and
tend to continue in that direction. (B) The experiment by Mesibov et al. (24).
Bacteria are allowed to adapt to a background attractant concentration in
the plate. After a period of time, a capillary with attractant concentration
3.1 times higher than the background was presented. This formed an at-
tractant gradient, causing the bacteria to migrate to the capillary. The
number of bacteria reaching the capillary after 1 h was measured. The ex-
periment was repeated with different background concentrations, keeping
the capillary/background concentration ratio constant at 3.1. (C) The num-
ber of bacteria that reach the capillary was nearly constant over a three
order of magnitude change in background and capillary concentrations
adapted from ref. (24) (© Mesibov et al., 1973. J Gen Physiol 62:203–223)].
Plotted on the x axis is the average of the capillary and background con-
centrations of attractant.
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A well-known mechanism for exact adaptation, called integral
feedback, does not provide FCD in its commonly used linear
form (42, 43). Integral feedback involves feeding back on y by
a controller x, which integrates the error between y and its de-
sired steady-state level y0 (Eqs. 9 and 10)

_x ¼ y− y0 [9]

_y ¼ u− x− y [10]

These equations do not meet either of the conditions in Eqs. 5
and 6, and FCD is not found (Fig. 1C). Indeed, because this is
a linear system, it must show response amplitude that increases
with absolute signal strength and cannot show FCD.
The present conditions point the way to modifying linear in-

tegral feedback to achieve FCD. The following mechanism mul-
tiplies the error y− y0 by x to satisfy the condition in Eq. 5 and uses
a ratio-based controller u/x to satisfy the condition inEq. 6 (Eqs. 11
and 12):

_x ¼ x
�
y− y0

�
[11]

_y ¼ u=x− y [12]

This nonlinear feedback loop shows FCD (Fig. 4B). These equa-
tions are stable (SI Text) and reminiscent of certain forms of
adaptive control (44). In addition, if the dynamics of y are very fast
compared with x, one can replace y with its steady-state value and
still obtain FCD (Eqs. 13 and 14)

_x ¼ x
�
y− y0

�
[13]

y ¼ gðu=xÞ [14]

for any function g.
A third example in shown in Fig. 4C, where a linear integral

feedback system is provided with a log-transformed input. This
mechanism satisfies more general FCD conditions detailed in SI
Text. In addition, relationships between the three mechanisms
depicted in Fig. 4 can be found using variable transformations, as
discussed in SI Text.

Model of Bacterial Chemotaxis Shows FCD.Arecent study byTuet al.
(3) provides a model of bacterial chemotaxis that captures a wide
range of experimental findings by the Berg lab, including small
signal response, response to exponential ramps and sinusoidal
perturbations, and large-step responses. The input of the system is
the chemoattractant ligand concentration u. The output y is the
receptor activity that determines the rate of tumbles that guide the
bacteria up chemoattractant gradients (Fig. 3A). The model is
based on a Monod-Wyman-Changeux (MWC) description of re-
ceptor clusters that rapidly responds to attractant and generates
a signal that affects the cells tumbling frequency. Exact adaptation
is provided by a slow integral feedback loop, first described by
Barkai and Leibler (45, 46), that adjusts receptor methylation level
and affects its affinity to the attractant. The model in ref. 3, for
a wide range of ligand input, can be written as (Methods) (Eqs. 15
and 16)

_x ¼ xF
�
y
�

[15]

y ¼ 1

1þ ðu=xÞN [16]

where F has a single stable fixed point F(y0) = 0. Here, the
variable x represents the effective Kd of the receptors for at-
tractant, which depends on the methylation level of the recep-
tors. This approximation to the full model holds in the range
KI << u << KA, a range of more than two orders of magnitude
for attractants such as α-methylaspartate, for which KI = 18 μM
and KA = 2.9 mM. These equations satisfy the present conditions
for FCD (Eqs. 5 and 6). Thus, we predict that the response to
two steps with the same fold change would yield identical output.
As discussed above, the experimental results of Mesibov et al.
(24) support the FCD behavior of bacterial chemotaxis.

Discussion
This study considered mechanisms and functions of FCD, a
property of systems in which the complete dynamics of the
output, including its amplitude and response time, depend only
on fold changes in the input and not on absolute input level. We
find that FCD is necessary and sufficient to allow organisms to
search in a spatial input field in a way that is invariant to mul-
tiplying the field by a constant. This can explain experiments in
which searches in bacterial chemotaxis and vision are inde-
pendent of variations over several orders of magnitude in at-
tractant source and ambient light, respectively.
FCD entails two commonly found features of sensory systems,

exact adaptation and Weber’s law. However, we found that these
features are not sufficient for FCD. Weber’s law concerns only
response amplitude, whereas FCD includes the amplitude, ad-
aptation time, and indeed, full temporal profile of the dynamics.
Thus, one may view Weber’s law and exact adaptation observed
in sensory systems as stemming from FCD.
The present study provides a range of mechanisms that can

provide FCD. These mechanisms include certain nonlinear in-
tegral feedback loops, one of which seems to be found in the
chemotaxis sensory circuit of E. coli.
Future work may investigate the possibility of FCD in other

sensory systems andmolecular signaling in cells. Examples include
sensorymodalities such as auditory searches for sound sources and
olfactory searches for odorant sources (47–50). Experiments can
investigate this on several levels: whether search movement is in-
dependent of signal source strength, whether the input–output
relationship shows FCD, and whether the molecular mechanism
follows the present conditions for FCD. Such studies can test the
hypothesis that FCDevolved in response to the scalar symmetry of
the sensory inputs found in nature to make searches independent
of the amplitude of sensory fields.
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Materials and Methods
Sufficient Conditions for FCD. Consider a system with _x ¼ fðx; y;uÞ and
_y ¼ gðx; y;uÞ that shows exact adaptation to a steady-state output y = y0. Here,
we showthat if f(px, y,pu) =pf(x, y,u) andg(px, y,pu) =g(x, y,u), thenFCDholds.
Compare the output of the system to two different inputs: u1(t) and u2(t) with
a constant ratio P > 0 between them, u2(t) = pu1(t). At time 0, the system is
adapted, y = y0 to constant input u1ð0Þ ¼ u0

1 and u2ð0Þ ¼ u0
2. Thus, at time 0, f =

0andg=0,with correspondingx ¼ x01and x02 .Usingthe conditionon f (Eq.5),we
have that x02 ¼ px01 [because fðx02 ; yo;u0

2Þ ¼ fðx01 ; y0;u1ðtÞÞ ¼ 0, u0
2 ¼ pu0

1, and
there is only one value for x that yields f = 0 at a given input u at steady state].
Consider the coordinate transformation for x2 and u2: ~x2 ¼ x2=p; ~u2 ¼ u2=p,
which yields _~x2 ¼ fðp~x2; y;p~u2Þ=p ¼ fð~x2; y; ~u2Þ ¼ gð~x2; y;u1Þ using ~u2 ¼ u1.
For y2, _y2 ¼ gðp~x2; y;p~u2Þ=p ¼ fð~x2; y;u1Þ. Because the initial conditions for y
and x are equal ðy0

1 ¼ y02 ¼ y0; x01 ¼ ~x02Þ and their time derivatives are equal,
x1ðtÞ ¼ ~x2ðtÞand y2(t) = y1(t), and FCD holds. These conditions are also necessary
if f is a linear function such as g = Ax + Bu. SI Text has a complete proof.

Conditions in Eqs. 5 and 6 have additional consequences. Setting the
parameter p in Eq. 5 to P = 1/x yields 1

xfðx; y;uÞ ¼ fð1; y;u=xÞ≡hðy;u=xÞ. Thus,
f(x, y, u) = xh(y, u/x) is a function of the ratio u/x. Similarly, g(x, y, z) =w(y, u/x).
A more general result is discussed in SI Text.

The sufficient conditions for FCD can be generalized: FCD holds if f(ϕ(p, x),
y, pu) = ∂xϕ(p, x)f(x, u, y) and g(ϕ(p, x), y, pu) = g(x, u, y), as can be shown by
the same approach. Furthermore, FCD can be generalized to input symme-
tries other than scalar symmetry. In general, an input transformation can be
written as Φ(p, u) (where p is any set of parameters). A sufficient condition
for having the output invariant under a Φ(p, u) transformation is having
a function ϕ(p, x) that gives f(ϕ(p, x), y, Φ(p, u)) = ∂xϕ(p, x)f(x, y, u) and g(ϕ(p,
x), y, Φ(p, u)) = g(x, y, u). Proof is in SI Text. In this context, note that sym-
metry in neuronal connections has been proposed to help detect symmetry
in input signals (51–53).

Tu et al. (3) Model of Chemotaxis Displays FCD over a Wide Range of Inputs. The
model of Tu et al. (3) suggests that receptor methylation m follows
_m ¼ Fða;m; ½L�Þ ¼ Fða− a0Þ, where F is a decreasing function that crosses
0 when a = a0. The tumbling frequency of cells is determined by the receptor
activity a = G(m, [L]), where [L] is the ligand concentration. G follows from an
MWC (54) model of clusters of N receptors rapidly transiting between active
and inactive states and is given by G(m, [L]) = (1 + exp(ft(m, [L])))−1, with ft(m,
[L]) = N[fm(m) + fL([L])]. The free energy is linear in methylation fm(m) = α
(m0 – m) and has a ligand-dependent term given by the MWC solution fL
([L]) = ln(1 + [L]/KI) – ln(1 + [L]/KA), where KI and KA are the dissociation
constants for the inactive and active receptors, respectively. At ligand levels
between KI << [L] << KA, fL([L]) ∼ ln([L]/KI), which yields the activity function
(output of the system): y = a = G(m, [L]) ∼ (1 + ([L]/x(m))N)−1 where x(m) ≡ KI

exp(– fm(m)) = KI exp(α(m – m0)). Thus, the condition in Eq. 6 is satisfied.
Taking the temporal derivative of x(m) yields _xðmÞ ¼ αxðmÞFðyÞ, and the
condition in Eq. 5 is satisfied. This model captures the response of E. coli to
the ligand α-methylaspartate very well with the parameter values α = 2,m0 =
1, a0 = 1/3, N ∼ 6, KI ∼ 18μM, and C ≡ KI/KA ∼ 0.0062 (3).

FCD Is Sufficient and Necessary for Spatial Searches That Are Invariant to Scalar
Symmetry of the Input Field. The input field is uð r!; tÞ, and the sensing agent
with position r!ðtÞ senses the input field at its current position uðtÞ ¼
uð r!ðtÞ; tÞ. The agent moves through space with dynamics that depend, for
the purposes of this searching task, only on the output y of the sensory
system: _r!¼ qðyÞ. FCD is sufficient: assume that FCD holds, thereby multi-
plying uð r!Þ by a scalar yields the same output y; thus, spatial dynamics of
the search r!ðtÞ are also equal as they are determined by y. FCD is necessary:

assume that the spatial search pattern is identical when multiplying u by
a scalar p; if the function q(y) is one to one, then y must also be invariant to
the scalar p, and FCD follows (a similar argument can be given if the position
r! is computed by a more general multidimensional system, and the system
is observable in the sense of control theory) (37). Note that in this proof, q(y)
can be either deterministic or a stochastic process whose distribution is
controlled by y (like tumbles in bacterial chemotaxis). In the latter case, the
search distribution (including its moments such as the mean search time) is
invariant to scalar symmetry of the input field.

FCD Generally Entails Weber’s Law. Compare the change in y for small-input
step-like perturbations around two steady states adapted to constant inputs
u1 and u2 (both have y = y0). A Taylor expansion yields the following re-
sponse at time t > 0: Δ _y1 ¼ ∂ugju1

Δu1 and Δ _y2 ¼ ∂ugju2
Δu2. Because of FCD,

perturbations with the same fold change Δu2/u2 = Δu1/u1 result in the same
output. Hence, u2=u1∂ugju2

¼ ∂ugju1
. Using u1 = 1 and denoting k ≡ ∂ug|u=1

yields Δ _y ¼ kΔu=u. Thus, for small perturbations, the entire shape of the
output y will linearly depend on the relative change in input, including the
peak response that is Weber’s law. In this derivation, Weber’s law requires g
to have a nonzero first derivative at u = 1. In the singular case that this de-
rivative is 0 (∂ug|u=1 =0),Weber’s lawdoesnothold, but ageneralization canbe
made using thefirst nonzero derivative kn ¼ ∂ðnÞu gju¼1, which givesΔy = kn(Δu/
u)n/n!. SI Text has a detailed analysis. Note that in Weber’s law, the relation
between sensory response and fold change in input is linear yWeber

max ¼ ku1=u0,
whereas FCD allows a response of general form yFCD = f(u1/u0).

In addition, as discussed in Results, the condition in Eq. 6 in a system
exhibiting exact adaptation is sufficient for Weber’s law for small input steps.
Consider the change in y for small-input step-like perturbations around two
steady states adapted to constant inputs u1 and u2 (because of exact adapta-
tion, both have y = y0). The ratio of inputs is p ≡ u2/u1. At steady state g
(x1, y0, u1) = g(x2, y0, u2) = 0. The condition in Eq. 6 and stability yield x2 =
px1. Thus, the response to a small change in input Δu2 results in
Δ _y2 ¼ ∂ugjx2 ;y0 ;u2

Δu2 ¼ ∂ugjpx1 ;y0 ;pu1
pΔu1 ¼ ∂ugjx1 ;y0 ;u1

pΔu1. Settingu1 = 1,u2 =
u yields Weber’s law Δy = kΔu/u, where k is the partial derivative of g. See
SI Text for a more general proof.

Weber’s Law and Exact Adaptation Do Not Necessarily Entail Each Other and
Having Both Does Not Guarantee FCD. Example for exact adaptation without
Weber’s law: consider a linear integral feedback system where _x ¼ y − y0 and
y = u – x. At steady state, x = u – y0 and y = y0. A small perturbation in input
du results in a response dy = du, and Weber’s law does not hold. Example for
Weber’s law without adaptation: _x ¼ u− x and y = u/x – z(x). At steady state,
x0 = u and y0 = 1 – z(u). Thus, y does not adapt and depends on input u.
However, Weber’s law holds: a small perturbation du results in dy = du/u.
Example of a system with Weber’s law and exact adaptation but without
FCD: _x ¼ y − y0 and _y ¼ u=x − y. The system adapts to a steady state y = y0
and a small perturbation in input yields dy = y0du/u, giving Weber’s law.
However, the condition in Eq. 5 is not satisfied and FCD does not hold (this
example was used for Fig. 1D), because the adaptation time depends on
absolute signal levels.
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