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When people make decisions they often face opposing demands for
response speed and response accuracy, a process likely mediated by
response thresholds. According to the striatal hypothesis, people
decrease response thresholds by increasing activation from cortex
to striatum, releasing the brain from inhibition. According to the STN
hypothesis, people decrease response thresholds by decreasing ac-
tivation from cortex to subthalamic nucleus (STN); a decrease in
STN activity is likewise thought to release the brain from inhibition
and result in responses that are fast but error-prone. To test these
hypotheses—bothofwhichmaybe true—weconducted twoexperi-
ments on perceptual decision making in whichwe used cues to vary
the demands for speed vs. accuracy. In both experiments, behavioral
data and mathematical model analyses confirmed that instruction
from the cue selectively affected the setting of response thresholds.
In the first experiment we used ultra-high-resolution 7T structural
MRI to locate the STN precisely. We then used 3T structural MRI and
probabilistic tractography to quantify the connectivity between the
relevant brain areas. The results showed that participants who flex-
ibly change response thresholds (as quantified by the mathematical
model) have strong structural connections between presupplemen-
tary motor area and striatum. This result was confirmed in an inde-
pendent second experiment. In general, these findings show that
individual differences in elementary cognitive tasks arepartly driven
by structural differences in brain connectivity. Specifically, these
findings support a cortico-striatal control account of how the brain
implements adaptive switches between cautious and risky behavior.

basal ganglia | response time model | speed–accuracy tradeoff | structural
connectivity | subthalamic nucleus

For many everyday life decisions, people and animals face the
dilemma that fast decisions tend to be error-prone, whereas

accurate decisions tend to be relatively slow. In other words, the
temporal benefits of responding quickly come at a cost of increased
error rates, a phenomenon known as the speed–accuracy tradeoff
(SAT) (1–6).
Even though the SAT is ubiquitous in many areas of decision

making, relatively little is known about its neurobiological under-
pinnings. Currently available empirical data (2, 7, 8) and neuro-
computational models both suggest several brain mechanisms that
could be responsible for how people switch from cautious behavior
that is accurate but slow to risky behavior that is fast but error-
prone (1). The work presented here is relevant for two hypotheses
about how the brain controls the SAT (Fig. 1). First, the striatal
hypothesis posits that an emphasis on speed promotes excitatory
input from cortex to striatum; the increased baseline activation of
the striatum acts to decrease the inhibitory control that the output
nuclei of the basal ganglia exert over the brain, thereby facilitating
faster but possibly premature responses (2). Second, the STN hy-
pothesis posits that an emphasis on accuracy promotes excitatory
input from cortex (e.g., anterior cingulate cortex) to the sub-
thalamic nucleus (STN); increased STN activity may lead to slower
and more accurate choices (9).

In this study we focused on individual differences, both in be-
havior and in structural features of the human brain, because the
striatal and STN hypotheses make different predictions for the
relationships between these individual differences. In particular,
the striatal hypothesis predicts that the participants who are able to
better control SAT have stronger connections between cortex and
striatum, whereas the STN hypothesis predicts that they have
stronger connections between cortex and STN. We first tested
these predictions in the experiment that is the focus of this article,
and then replicated the results in data from a second, inde-
pendent experiment.

Results
In a behavioral session, nine participants performed a “moving-
dots task” (10, 11), which requires quick decisions about whether
a cloud of dots appears tomove to the left or the right (Fig. 2). SAT
was experimentally manipulated by means of pseudorandomly
intermixed cues (i.e., the German abbreviations “SN” for speed
and “AK” for accuracy) that instructed participants to adopt dif-
ferent levels of cautiousness on a trial-by-trial basis.

Behavioral Data and LBA Model.The behavioral data (Fig. 3) showed
the expected effect: compared with the accuracy cue, the speed cue
resulted in performance that was both faster and less accurate. We
modeled the behavioral data with the linear ballistic accumulator
(LBA) (2, 12), a mathematical model that decomposes the ob-
served response time and accuracy measures into latent psycho-
logical processes. The model allows researchers to separately
quantify decision processes, such as speed of information accu-
mulation, nondecision time, and response caution (11). In the LBA
model, response caution is conceptualized as the distance from the
starting point to the response threshold; this distance quantifies the
average amount of evidence that needs to be accumulated before
a response is initiated (1, 11, 12). For historical reasons we assume
that changes in response caution originate from adjustments of
response thresholds. Note, however, that adjustments of response
thresholds aremathematically equivalent to adjustments of starting
points, and therefore the LBAmodel cannot be used to distinguish
between these two accounts.
Statistical model selection techniques (Materials and Methods)

confirmed that the LBA explained the data best when response
threshold was the only parameter free to vary between the two
experimental conditions. With this restriction the LBA provided
an excellent fit to the data (Fig. 3). These statistical considerations

Author contributions: B.U.F. and R.B. designed research; B.U.F., A.S., and J.N. performed
research; B.U.F. contributed new reagents/analytic tools; B.U.F., A.A., J.N., S.B., and E.-J.W.
analyzed data; and B.U.F., A.A., A.S., J.N., S.B., E.-J.W., R.B., and R.T. wrote the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: b.u.forstmann@uva.nl.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1004932107/-/DCSupplemental.

15916–15920 | PNAS | September 7, 2010 | vol. 107 | no. 36 www.pnas.org/cgi/doi/10.1073/pnas.1004932107

mailto:b.u.forstmann@uva.nl
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004932107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1004932107/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1004932107


confirm that the speed and accuracy cues acted to influence se-
lectively the level of caution with which participants performed the
task. Individual differences in efficacy of changing response cau-
tion were quantified by the differences in LBA threshold estimates
between the accuracy condition and the speed condition.

Ultra-High-Resolution MRI and Diffusion Tensor Imaging. In different
sessions, the same participants underwent two structural MRI
scans. Interest centered on the brain structures hypothesized to be
involved in SAT: presupplementary motor area (pre-SMA), pri-
mary motor area, anterior cingulate cortex, inferior frontal gyrus,
striatum, and STN. Diffusion-weighted MR images were acquired
on a 3 Tesla (T) scanner to quantify the connectivity between the
relevant brain areas using probabilistic tractography (13). Fig. 4A
shows that it is very difficult to pinpoint the location of the STN
using standard 3T MR image resolution and contrast and that it is
particularly difficult to distinguish the anterior medial part of the
STN from the substantia nigra pars reticularis. Thus, ultra-high-
resolution 7T MR scans were acquired and used for manual seg-
mentation of the STN. Two researchers independently segmented
each participant’s STNwith high interrater reliability (mean/SD of
Cohen’s κ = 0.86/0.05; intraclass correlation coefficient of STN
volumes as measure of agreement between the two raters, 0.94; SI
Appendix, SI Text).
STN segmentations from the two raters were conjoined and used

for probabilistic tractography using connectivity-based seed clas-
sification to quantify the relative fiber tract strengths between pre-
SMA, primary motor area, anterior cingulate cortex, inferior
frontal gyrus, striatum, and STN (SI Appendix, SI Text).

Individual Differences. We then examined the possible relation
between the individual differences obtained from the behavioral
LBA model and the structural indices of brain connectivity (Fig.
4B). Our data show that participants who flexibly change response
thresholds have strong structural connections between right pre-
SMA and right striatum (R = 0.934, 95% confidence interval
0.652–1, P= 0.0002), whereas no such association was present for
the connections between other considered brain areas, including
the connections from cortical areas to STN (SI Appendix, SI Text).
The 95% confidence interval on the correlation suggests that the
magnitude of the correlation is estimated with considerable un-
certainty; moreover, prior knowledge suggests that the true cor-
relation is likely to be lower than the point estimate of 0.915—
nevertheless, the results are consistent with the striatal hypothesis
and statistically support the claim that there is some positive as-
sociation between LBA flexibility and the strength of structural
connections between right pre-SMA and right striatum. To further
increase our confidence that this highly significant association was
not due to chance, we sought additional evidence.

Independent Replication Study. We replicated the above results
using data from an independent study (2). In this study, 12 par-
ticipants again contributed behavioral data from amoving-dot task
under cue-induced emphasis on speed vs. accuracy. As before, the
LBA model fits indicated that the effect of the cue instruction
could be accounted for by only changing response caution (see
figure 2 in ref. 2). These 12 participants had also undergone dif-
fusion 3T MR scans, the data from which have not previously
been reported.
We analyzed the data from the structural 3T scans with proba-

bilistic tractography, using the same cortical and subcortical masks
as in the first study presented above. The results confirmed that
tract strength between the right pre-SMA and right striatum again
predicted the efficiency with which participants change their re-
sponse thresholds (R = 0.763, 95% confidence interval 0.269–
0.949, P=0.005; see Fig. 5 and SI Appendix, SI Text). Note that this
replication study and its analysis are statistically independent from
the first experiment; hence, the probability that the measured
strength of the same tract as before would once again yield the
highest correlation with the LBA parameter is small (i.e., 1/18,
because 18 connections were tested; see SI Appendix, SI Text), and
the probability that this correlation would again be significant is
very small (<0.0002).
Thus, both studies suggest that the flexibility with which people

change thresholds is positively associated with the strength of white
matter tracts from striatum to pre-SMA. In addition, our studies did
not yield reliable evidence for an association between flexibility and
the strength of white matter tracts that involve the STN. However,
the 95% confidence intervals on the correlations that involve the
STN are relatively wide (SI Appendix, SI Text), and this indicates
that the present data lack the precision to detect small or medium-
sized correlations. Thus, our analyses do not provide strong support
against the assertion that the STN mediates threshold settings; the

Fig. 1. Striatal vs. STN theories for the SAT (1). Arrows denote excitatory
connections, circles denote inhibitory connections.

NS

Fig. 2. Moving dots paradigm with cues emphasizing speed (SN is the
German abbreviation for fast), and accuracy (AK is the German abbreviation
for accurate).

Fig. 3. Observed and predicted defective cumulative density functions. For
speed and accuracy conditions, the upper and lower lines show data and LBA
model fit for correct and error responses, respectively.
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absence of evidence does not constitute compelling evidence for the
absence of an association.

Discussion
How does the brain switch between behavior that is cautious (i.e.,
accurate but slow) and behavior that is risky (i.e., fast but error-
prone)? Consistent with the striatal hypothesis of SAT, our find-
ings suggest that the connections between pre-SMA and striatum
act to enhance flexible adjustments of response caution. This
suggestion is based on an association between a psychological
process (i.e., the efficacy of changing response caution) and
structural measures of brain connectivity. The former is a latent,
unobserved process, the estimation of which was made possible by

the application of the LBAmodel for response time and accuracy;
the latter is a measure of brain connectivity that is intrinsic to the
individual, context independent, and unaffected by what the par-
ticipants are doing or thinking at the time of measurement. The
association between these two very different variables was pre-
dicted by the striatal hypothesis, and we are not aware of other
hypotheses or theories that would have made the same prediction.
Anatomical data suggest that striatal neurons canbe divided into

two groups (14): one projecting directly to the basal ganglia output
nuclei (i.e., the direct pathway) and the other projecting to the
output nuclei via inhibitory neurons in the globus pallidus externa
(i.e., the indirect pathway). Whereas both types of striatal neurons
receive input from cortical motor areas (15), activation of the di-
rect pathway facilitates movements, and activation of the indirect
pathway inhibits movements (14). On the basis of these anatomical
considerations alone it is difficult to predict whether increased
cortico-striatal activation is excitatory or inhibitory. However, the
study of Forstmann et al. (2) demonstrated that in the motion
discrimination task, the overall striatal activity (as measured by the
blood oxygen level–dependent signal) was higher in the speed
condition, in which participants made faster responses. This sug-
gests that in this context, increased cortico-striatal activation is
overall more likely to facilitate than inhibit responses.
Our findings also show that, inconsistent with the STN hypoth-

esis of SAT, there is little or no evidence that strong connections
fromany cortical region to STN lead tomoreflexibility in threshold
settings. It is unlikely that this result is due to an inability to
locate the STN precisely; in fact, we used ultra-high-resolution 7T
structural MRI to manually segment the STN—this procedure
provided results far superior to those that could be obtained with
standard 3T imaging (compare Fig. 4A). Instead, the relatively

Fig. 4. Structural differences in brain connectivity predict individual differences in decision making. (A) The STN (arrows) can be localized precisely with 7T
scanning but not with 3T scanning. (B) Connectivity-based seed classification for the pre-SMA projecting into the striatum (green) and STN (red). Individual
differences in tract strength between right pre-SMA and right striatum are associated with flexible adjustments of SAT.
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Fig. 5. Independent replication: individual differences in tract strength
between right pre-SMA and right striatum are again associated with flexible
adjustments of SAT.
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wide 95% confidence intervals suggest that the two studiesmay not
have had enough participants to determine the relation between
tract strength and threshold flexibility with sufficient precision. It is
clear that the present data do not support the STN hypothesis but
that they also do not allow it to be confidently rejected. Future
work will have to determine the role, if any, that the STN plays in
the tradeoff between speed and accuracy.
Several other studies have examined the association between

behavior and structural measures of the brain. For instance, dif-
ferences in brain connectivity have been associated with effects of
juggling training (16), effects ofmusical training (17), and the effects
of age on task-switching (18); in addition, individual differences in
brain connectivity have been linked to individual differences in
personality traits (19), choice response time (20), and response in-
hibition (21). These individual differences in white matter connec-
tivity may originate from individual differences in axon caliber or
neural myelination (22, 23), suggesting that the structural connec-
tivity measures may provide partial information about the func-
tional effectiveness of fiber bundles (because bundles with a higher
degree of myelination are able to process information more rap-
idly). The above work suggests that research on individual differ-
ences in brain connectivity provides awindowonto human cognition
that is complementary to that provided by popular methods such as
functional MRI or transcranial magnetic stimulation.
In sum, our findings suggest that individual differences in tract

strength between pre-SMA and striatum translate to individual
differences in the efficacy with which people change their response
thresholds. This supports the striatal hypothesis of how the brain
regulates the competing demands for speed vs. accuracy and shows
that individual differences in brain connectivity affect decision
making even in simple perceptual tasks.

Materials and Methods
Participants. All nineparticipants (six female,meanage24.5 y, SDage2.1 y) gave
informed consent before the experiment. Participants had normal or corrected-
to-normalvision,andnoneofthemhadahistoryofneurological,majormedical,or
psychiatric disorders. All participants were right-handed, as confirmed by the
EdinburghInventory(24).Theexperimentalstandardswereapprovedbythelocal
ethics committee of the University of Leipzig. Data were handled anonymously.

Behavioral Task. In a separate session, participants performed a moving-dots
task, popular in neuroscience and research with primates (10; for an overview
see ref. 11) (Fig. 1). This task required participants to decide whether a cloud of
dots appears to move to the left or the right. Out of 120 dots, 60 moved co-
herently and 60 moved randomly. From one 50-ms frame to the next, the
“coherent set” of 60 dots was moved 1 pixel in the target direction, whereas
the remaining “random set” of 60 dots was relocated randomly. On the sub-
sequent frame, the coherent set and the random set switched roles, such that
each dot was displaced coherently on one frame and displaced randomly on
the next. This scheme ensures that the cloud remains centered, even though it
gives the impression of moving systematically in one direction. Each dot con-
sisted of 3 pixels, and the diameter of the entire cloud circle was 250 pixels. In
this circle, pixels were uniformly distributed (see also ref. 2).

Participants indicated their response by pressing one of two spatially com-
patible buttonswith their left or right indexfinger. A cue (i.e., SN for speedand
AKforaccuracy) instructedparticipants toadoptdifferent levelsofcautiousness
on a trial-by-trial basis. The cue was presented for 1,000 ms. Cues were pseu-
dorandomly intermixed. After each cue, a fixation cross was displayed for 500
ms. Subsequent to fixation, participants had 1,500ms to view the stimulus and
give a response. The stimulus disappeared as soon as a response was made. At
the end of each trial, participants received feedback that depended on the
previously presented cue. In the speed condition, participants saw themessage
“too slow”whenever they exceeded a response time criterion of 400ms or “in
time.” In the accuracy condition, participants saw the message “incorrect”
whenever they made an incorrect response or “correct” whenever they made
a correct response. This feedback procedure provided an additional incentive
for participants to adopt different levels of response caution in response to the
different cues (2). A total of 425 speed trials and 425 accuracy trials were in-
cluded in the experiment. The experiment took ≈50 min.

LBA Model for Response Speed and Accuracy. The LBA model has five param-
eters that determine its predictions for a pair of correct and incorrect response
time distributions. However, many of these parameters can be fixed across
different experimental conditions. For example, in our experiment, it is rea-
sonable to expect that the response threshold parameter b should be equal for
left- and right-moving stimuli. Equally, one might expect the response thresh-
old parameter to be different across the two types of cue (speed and accuracy)
because these were intended precisely to manipulate response caution.

We investigated eight different designs for constraining the parameters of
the LBA model across the key experimental manipulation (speed vs. accuracy
cue). The eight different designs consisted of all combinations allowing three
model parameters to either vary with cue type or be fixed across cue type. The
threeparameters tested in thiswaywere the response thresholdparameter (b),
the drift rate parameter (v), and the time taken for nondecision processes (t0).
We made the simplifying assumption that the variability of the start point
distribution should be fixed between speed and accuracy conditions (i.e., pa-
rameter A). The variability of the drift rate distribution was arbitrarily fixed at
s = 1, to satisfy a mathematical scaling property of the model.

For each of the eight model constraint designs, we fit the data using
maximum likelihood estimation. Start points for SIMPLEX searches (25) were
generated using automatic heuristics. For all models except the simplest,
extra parameter searches were conducted using start points generated from
the best-fitting parameters for simpler, nested models. The best-fitting
parameters were used to calculate Bayesian Information Criterion (BIC)
measures of model adequacy (26) for each of the eight designs, separately
for each participant.

The design with the best BIC summed across participants allowed only re-
sponse threshold (b) to vary with speed vs. accuracy cue, keeping all other
parameters fixed. This confirms that the experimental manipulation of ur-
gency cues successfully influenced participants to change the amount of evi-
dence they required to make a decision. The average parameter estimates,
across participants, showed that the effect of cue type was quite strong—
average response thresholdswere set at 1.78 times theminimum possible value
in response to an accuracy cue but only 1.39 times the minimum value in re-
sponse to a speed cue. Theminimumpossible value for the response threshold is
the upper limit of the start point distribution (estimated atA = 0.734). The other
average parameter estimates were: nondecision time, t0 = 146msec; mean drift
rate for the accumulator corresponding to the correct response was 2.68, and
for the accumulator corresponding to the incorrect response was 1.14.

Data Acquisition of Ultra-High-Resolution Anatomical Images. Participants un-
derwent structural scanningona7TMagnetomMRI system(Siemens)witha24-
channelheadarrayNovacoil (NovaMedical).Thewholebrainwasacquiredwith
a magnetization prepared rapid-acquisition gradient echo (MP-RAGE) (27)
sequence [repetition time (TR) = 3,000 ms, echo time (TE) = 2.95 ms, inversion
time (TI) = 1,100 ms, voxel size = 0.8 mm isotropic, flip angle = 6°, GRAPPA
acceleration factor= 2].Moreover, amultiecho fullyflow-compensated spoiled
3D gradient echo (GRE) (28) sequence (TR = 43ms, TE = 11.22ms, TE = 21.41ms,
TE = 31.59 ms, flip angle = 13°, voxel 0.5 × 0.5 × 0.6 mm3, 56 coronal slices) was
acquired. To assess replicability of the results, the GRE sequences were re-
peated during each session and for participant. Subsequently, correlations for
all voxels within each individual STN were computed within sessions. For each
participant, the results showed a high correlation between voxels (r > 0.8).
Acquisition time was ≈60 min for each session. The T1-weighted MP-RAGE
scans were coregistered into Talairach space (29), and the GRE images were
registered on the T1 images using rigid-body transformations with a mutual
information cost function as implemented in FSL (www.fmrib.ox.ac.uk/fsl).

Data Acquisition and Preprocessing of Diffusion-Weighted Data. With a 32-
channelarrayheadcoilandamaximumgradientstrengthof40mT/m,diffusion-
weighteddataandT1-weighted imageswereacquiredonaSiemens3TTimTrio
scanner. The diffusion-weighted data were acquired using spin-echo echo
planar imaging (TR = 11 s, TE = 90 ms, 85 axial slices, resolution 1.5 × 1.5 × 1.5
mm). Diffusion weighting was isotropically distributed along 60 directions
(b-value = 1,000 s/mm2, number of excitations = 3). Note that high angular
resolution of the diffusion weighting directions yields robust probability
density estimation by increasing the signal-to-noise ratio and reducing di-
rectional bias. Seven data sets with no diffusion weighting (b0) were acquired
initially and after each block of 10 diffusion weighted images. These images
served as an anatomical reference for offline motion correction. The acquisi-
tion of this protocol lasted ≈42 min.

All baseline b0 images were aligned to a reference b0 image to estimate
motion correction parameters using rigid-body transformations implemented
in FLIRT (part of FSL software). The resulting linear transformation matrices
werecombinedwithaglobal registrationtotheT1anatomycomputedwith the
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same method. The gradient direction for each volume was corrected using
the rotation parameters. The transformation matrices were applied to the
diffusion-weighted images, and the three corresponding acquisitions and
gradient directions were averaged.

Tractography. Diffusion image preprocessing and analyses was done using FSL
4.1.4 (www.fmrib.ox.ac.uk/fsl). In accordance with Behrens et al. (13), estima-
tion of tracts was conducted using probabilistic tractography. A probabilistic
fiber tracking approach was chosen, using 5,000 tract-following samples at
each voxel with a curvature threshold of 0.2. A dual-fiber model as imple-
mented in the latest version of bedpostX (FSL 4.1.4) was used. Dual-fiber
models account for crossingfibers (30), therefore yieldingmore reliable results
compared with single-fiber models. All tractography was done in each par-
ticipant’s native space (unnormalized) data, and resulting maps were warped
into standard space [using the Montreal Neurological Institute (MNI) 1-mm
isotropic brain as reference] for cross-participant averaging and comparison.
For the estimation of tract strength between the subcortical (e.g., striatum) as

well as cortical (e.g., pre-SMA) areas, MNI-space masks were normalized to
each participant’s native space, using the inverse of the normalization
parameters (SI Appendix, Fig. S1). Visual inspection ensured that tractography
maps were successful and acceptable for further analysis. For the estimation of
tract strength between the STN and cortical areas, the individual manually
segmented conjoinedmasks (i.e., overlapmasks derived from both raters were
used). Seed-based classificationwas done byfirst thresholding the images such
that only voxels with at least 10 samples are kept (31). Next, voxel values were
converted into proportions, such that the value at each voxel becomes the
number of samples reaching the target mask for that image, divided by the
number of samples that reach any target mask.

Seed-based classification was done from several cortical sites (SI Appendix,
Figs. S1 and S2) into the STN as well as from the pre-SMA to the striatum. The
values were later used for correlations with the mathematical model
parameters reflecting response caution (see main text, SI Appendix, Figs. S3–
S8, and SI Appendix, Tables S1–S8). All analyses were done separately for
each hemisphere.
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