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It has been known for decades that the metabolic rate of animals
scales with body mass with an exponent that is almost always <1,
>2/3, and often very close to 3/4. The 3/4 exponent emerges natu-
rally from two models of resource distribution networks, radial ex-
plosion and hierarchically branched, which incorporate a minimum
of specific details. Both models show that the exponent is 2/3 if
velocity of flow remains constant, but can attain a maximum value
of 3/4 if velocity scales with its maximum exponent, 1/12. Quarter-
power scaling can arise evenwhen there is no underlying fractality.
The canonical “fourth dimension” in biological scaling relations can
result from matching the velocity of flow through the network to
the linear dimensionof the terminal “service volume”where resour-
ces are consumed. These models have broad applicability for the
optimal designof biological and engineered systemswhere energy,
materials, or information are distributed from a single source.
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Allometric scaling laws reflect changes in biological structure
and function as animals diversified to span >12 orders of

magnitude in body size. Since the seminal work of Kleiber in 1932,
it has been known that the metabolic rate, B, or rate of energy use
inmost animals andplants scales as approximately the 3/4 power of
bodymass,M (1–8), and thisB∼M3/4 scaling has come to be known
as Kleiber’s rule. Most other biological rates and times, such as
heart rates, reproductive rates, blood circulation times, and life
times, scale with characteristic quarter powers, asM−1/4 andM1/4,
respectively (4–9). This unusual fourth dimension came as a sur-
prise to biologists, who expected that heat dissipation would cause
metabolic rate to scale the same as body surface area and hence
geometrically as the 2/3 power of volume or mass. Quarter-power
scaling lacked a unified theoretical explanation until 1997, when
West et al. (WBE) (10) produced a model based on optimizing
resource supply and minimizing hydrodynamic resistance in the
supply network.
The WBE model stimulated a resurgence of interest in allo-

metric scaling in biology. It initiated a lively debate about the
empirical generality of 3/4-power metabolic scaling and its theo-
retical explanation (11–26). A recent study revived the case for
geometric scaling by showing that simple models of distribution
networks generate metabolic scaling exponents of 2/3 (25). Nev-
ertheless, the increasing number of empirical studies repeatedly
finds exponents>2/3,<1, andoften very close to 3/4 (14, 24, 26, 28–
30). Here we show that an exponent of 3/4 emerges naturally as an
upper bound for the scaling ofmetabolic rate in two simplemodels
of vascular networks. Furthermore, quarter power scaling is shown
to hold evenwhen there is no underlying fractal network. Aunique
prediction of our models is that blood velocity scales as the 1/12
power of animal mass. These models have broad application to
biological and human-engineered systems where resources are
distributed from a single source.
We explore two different models in which resources flow from

a central source to supply a 3D volume. For simplicity, we omit
constants of proportionality that are independent of animal mass,

and which ensure that all quantities have proper dimensions. Both
models start by making the following simplifying assumptions:

A1. Definition of metabolic rate: Metabolic rate, B, can bemea-
sured as the rate offlowof discrete particles througha supply
network. In mammals, for example, metabolic rate is rou-
tinely measured as the rate of oxygen consumption, and the
oxygen molecules are transported in the blood vessels from
a central source, the heart, to terminal units, the mitochon-
dria, where they are consumed.

A2. Steady-state postulate: The flux of resources is at steady
state, so supply matches demand, the rate B of particles
being consumed by the terminal units matches the rate B
of particles leaving the source, and the number of particles
in transit does not change over time.

A3. Geometric similarity: Animals, especially those in the
same taxonomic or functional group, are geometrically
similar, so their geometry can be characterized by length,
L, surface area, A, and volume, V, and simple Euclidean
geometrical scaling gives V ∼ L3 and A ∼ L2.

A4. Directed transport: The average distance (d) from the
source to each terminal unit is proportional to the length,
L, of the animal (11).

A5. Velocity, v, is assumed to be uniform within an animal.
The average transit time, τ, scales as τ ∼ d/v.

A6. Mass is proportional to volume: The density of protoplasm
is approximately constant across animals, so mass, M, is
proportional to volume, V.

A7. Particles in transit are contained within animal volume:
The number of resource particles in transit, N, scales lin-
early with M and V.

A8. Definition of service volume:We define a service volume as
a unit of tissue that has a fixed metabolic rate independent
of animal mass. Thus the number of service volumes is pro-
portional to B. In an animal with volume V, each service
region has volume proportional to V/B and radius or length

ls ∼ ðV=BÞ1=3: [1]

The service volume does not necessarily correspond to any bi-
ological structure, although in mammals the service volume can
be thought of as the volume of tissue supplied by a capillary, the
terminal unit of the vascular network.
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The Explosion Network
The simplest centralized network that minimizes transport dis-
tances to the service volumes is an explosion network (27), with
∼B independent straight-line routes radiating out from a single
central source to supply each of ∼B service volumes (Fig. 1A).
We begin with this simple network to derive an upper bound on
the metabolic scaling exponent. We first show that if particles
travel at a constant velocity, v, not only within a body but also
across bodies of varying size, this simple network and the
assumptions above generate a metabolic scaling exponent of 2/3
(consistent with ref. 25). Then we allow v to increase with in-
creasing body size and show that the metabolic scaling exponent
can also increase, but only up to an upper bound of 3/4. This
upper bound is determined by the characteristic length of the

service volume, ls, and this length and the velocity, v, will both be
shown to scale as M1/12.
First we hold v constant and calculate B. The total number

of particles in transit, N, is the number of routes times the mean
number of particles in transit per route. Because there are ∼B
service volumes (A8), there are ∼B routes. The number of par-
ticles in transit per route equals the length of a route divided by the
separation distance, s, between particles on the route. The average
length of a route is the mean distance from the source to each of
the B service volumes, which scales as L ∼ V1/3 (from A3 and A4).
The steady-state assumption (A2) requires a relationship be-

tween the velocity of particles on a route and the separation dis-
tance between particles (Fig. 2). Consider a single route between
the source and a service volume. From A8, one particle is con-
sumed by the service volume in a fixed unit of time. From A2, for

Fig. 1. Sketches of 2D supply networks. Similar considerations apply to 3D animals. All three networks depict the supply routes from a single source to the
service regions. (A) Radial explosion network. An individual route directly connects the central source to each service volume. The average length of a route is
proportional to the length (L) of the animal, where L∼M1/3. The shortest routes (solid lines) are those to service volumes adjacent to the source, so their length is
ls ∼ (V/B)1/3 ∼ (M/B)1/3. The scale of the velocity is set by these routes and yields Eq. 3. (B) Hierarchical branching network, similar to that described byWest et al.
(10). The shortest pipes (capillaries, solid lines) are proportional to the radius of the service volume (M/B)1/3. There is backtracking through the pipes, so that the
distance from the heart through the arteries to each service volume is the same and is equal to the length (L) of the animal, where L ∼ M1/3. (C) Hierarchical
branching network without backtracking. The network is similar to A in that there is no backtracking as blood flows from the central source to the service
volumes and it is similar to B in that nearby supply routes are aggregated and the lengths of the shortest pipes (capillaries, solid lines) are proportional to the
radius of the service volume (M/B)1/3.

Fig. 2. Schematic demonstration of how length scales change with animal mass (M) in the radial explosion network. In each animal, the length scale (L) and
average distance between the central source and the service regions (d) are proportional toM1/3, the volume of the service region is ∼M/B, and from Eq. 1, the
length of the service volumes (ls) is proportional to (M/B)1/3. The length of the shortest pipe is ∼ls , and thus the maximum separation between particles, s, is ∼ls.
From Eqs. 1 and 5, ls ∼M1/12. Thus, inA, s is slightly larger (∼M1/12) and d is much larger (∼M1/3) than in B. Because velocity is proportional to s (Eq. 2), we have the
following relationships: v∼ s∼ ls ∼ ðM  = BÞ1=3 ∼M1=12, d∼L∼M1=3:
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each particle consumed in the service volume, another particle
leaves the source and enters the route. So, the separation distance,
s, between nearest particles on a straight-line route is proportional
to their velocity, v:

v∼ s: [2]

Because in this case we assume that v is constant within and be-
tween animals, then s is also constant. Because the average dis-
tance along a route is ∼V1/3 (from A3), the mean number of
particles in transit per route, L/s is also∼V1/3. The total number of
particles in transit, N, is obtained by multiplying the number of
routes (∼B) times the mean number of particles per route (∼V1/3).
Thus,N∼BV1/3. BecauseN∼V (fromA7), thenB∼V2/3∼M2/3. So
this very simple network givesmetabolic rate scaling with the same
geometric 2/3 power as body surface area (25).
We now relax the assumption that velocity is constant across

animals. We keep the assumption that v is uniform within a body,
but allow v to vary across bodies of varying body size. As above, the
delivery rate of particles along each route to a service volume is
fixed. Thus, the velocity, v, must be proportional to the separation
distance, s, between particles along a route. One can imagine that
particles can be close together and moving slowly or far apart and
moving quickly in order for particles to leave a route and enter
a service volume at fixed rate. Again, the steady-state assumption
(A2) requires that for every particle consumed in a service volume
in each unit of time, a matching particle leaves the source, and so
the maximum separation distance between particles on the
shortest route is proportional to the length of the shortest route.
The length of the shortest route is the distance from the source to
the nearest service volume and hence proportional to the radius of
the service volume, s ∼ ls (Fig. 2). From Eq. 2, v ∼ s, so the maxi-
mum velocity, v, along this shortest route is also proportional to ls,
and because v is uniform within an animal, its maximum value is
∼ls. Another way of understanding this result is to note that if the
ratio of the velocity with ls, were to increase withM, so would the
rate that particles arrive at the nearest service volume, contra-
dicting our assumption (A8) that each service volume has a fixed
metabolic rate independent of M. Substituting from Eq. 1,

v∼ ðV=BÞ1=3: [3]

To derive the scaling of B, we again note that N is proportional
to the number of routes times the number of particles per route.
Again the number of routes is ∼B, and the number of particles
per route is ∼L/v. Substituting L ∼ V1/3 and v from Eq. 3 gives

N∼B ·B1=3 ∼B4=3: [4]

Rearranging and expressing these variables in terms of mass
leads to the central scaling relations

B∼M3=4 [5]

v∼M1=12 [6]

and because the time in transit, τ, is equal to the average length
of a route divided by the velocity,

τ∼M1=3  = M1=12 ∼M1=4: [7]

So, the explosion model, Eq. 5, gives the frequently observed 3/4-
power scaling of metabolic rate, Eq. 6 gives a 1/12-power scaling of
velocity, Eq. 7 gives the 1/4-power scaling of characteristic bi-
ological times, and, because rates∼1/τ, also the−1/4-power scaling
ofmass-specificmetabolic rate andother biological rates.The1/12-
power scaling of the velocity withmass is a unique prediction of our
theory. So quarter-power scaling is possible if velocity increases
with increasing size with the maximum possible exponent of 1/12,

and this allows metabolic rate to scale with a maximum possible
exponent of 2/3 + 1/12 = 3/4. If natural selection maximizes met-
abolic power and minimizes time to deliver resources to cells, we
expect to observe empirically measured exponents close to this
maximum possible value of 3/4. The explosion network is a specific
example of a class of simple centralizednetworks that naturally give
B ∼M3/4 as the upper bound for the scaling of metabolic rate.

The Hierarchical Branching Network
We now consider the case where the separate routes supplying
the service volumes are bundled together into a hierarchy of
successively larger pipes culminating in a single large pipe at the
source. It is important to note that, in the explosion network,
the metabolite particles are not contained within pipes, but in the
hierarchical branching network we introduce pipes with a total
pipe volume that is constrained to scale linearly with M and V.
The pipes contain a flowing fluid that facilitates transport of dis-
solved metabolites. An elegant way to accomplish such aggre-
gation is through a fractal-like branching network. This is the
design principle that evolved by natural selection to give rise to
the hierarchically branched vascular networks of mammals and
trees. WBE pointed out that such a fractal-like network, with
small vessels joining to form larger ones, has the advantage of
lowering the hydrodynamic resistance of blood flow. Our model
is based on the mammalian system; we use the terms capillaries,
arteries, and aorta, respectively, for the hierarchy of vessels from
the service volume back to the heart, and we refer to the particles
as red blood cells, which transport oxygen molecules in blood.
Our hierarchical model is similar to WBE’s with several im-

portant exceptions. The WBE model assumes or derives the
following scaling relationships:

W1. The service volume scales as M/B.
W2. The length of a capillary supplying a service volume is

constant, so lcap ∼ M0.
W3. The branching of the network is symmetrical so the dis-

tance from heart to every capillary and every service vol-
ume is the same.

W4. A space-filling assumption gives the characteristic length
of each branch of the network proportional to the radius
of the volume of tissue that it supplies.

W5. The average velocity of the blood through the network
from heart to capillary is invariant with body size and so
is ∼M0.

WBE simultaneously and inconsistently assume that capillary
length is invariant with size, lcap ∼ M0 (W2), but also that it is
proportional to the radius (ls) of a service volume (W4), where
the service volume is ∼M/B (W1), so capillary length lcap ∼ ls ∼
(M/B)1/3. To resolve the contradiction of whether the length of
a capillary is invariant, so is ∼M0, or scales allometrically, so is
∼(M/B)1/3, we keep assumptions W1 and W4 but modify as-
sumption W2 to set the length of a capillary proportional to the
radius of the service volume, so lcap ∼ ls ∼ (M/B)1/3 as in Eq. 1. We
keep this characteristic scaling for lengths of vessels up through
the hierarchy from capillary to aorta, so the average distance
from heart to capillary and the length of the aorta scale as M1/3,
consistent with our assumption of Euclidean geometric scaling of
lengths. By contrast, the WBE model, with contradictory assum-
ptions (W2 and W4), predicts that the average total distance
through the network from heart to capillary and the characteristic
length of a vessel, such as the aorta, scale asM1/4.
WBE also assume that branching is symmetrical (W3), so the

total distance through the network from source (heart) to each
invariant terminal unit (capillary or service volume) is constant
within an animal.We relax this assumption to allow for asymmetric
branching, which reduces the transport distance from heart to
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capillaries (shown inFig. 1B andC).A design that incorporates the
above modifications of WBE is depicted in Fig. 1C. This design is
a centralized, branched network with variable-length paths that
minimize distance from the heart to the service volumes.
We assume that the velocity is uniform within a body but, unlike

WBE, we allow velocity to vary as a function of animal massM. As
in the explosion network, for every red blood cell arriving in
a capillary and delivering its oxygen in a service volume, a red blood
cell leaves the heart (A2). Again the velocity must be proportional
to the shortest path from heart to the nearest service volume, and
therefore to the radius of a service volume, giving v ∼ (M/B)1/3

(fromEq. 2). In thismodel having velocity scale as v∼M1/12 has two
effects. First, blood cells are packed together at constant density
within arteries. But only the blood cells destined for a particular
service region are separated by a distance s∼M1/12, as shown inFig.
3. Second, for the velocity to increase with M, the cross-sectional
area of the arteries must be reduced relative to the number of
capillaries (also shown inFig. 3). Bloodvolume is keptproportional
to M by having the M3/4 capillaries supplied by a single aorta with
cross-sectional area ∼M2/3 and a network length L ∼M1/3.
Now, we invoke the same simplifying assumptions as above (A1–

A8), which lead to the same equations (Eqs. 3–6). So our branching
model, a significant modification of WBE’s, predicts the quarter-
power scaling exponents including metabolic rate scaling as M3/4

and velocity as M1/12, both exponents being upper bounds. To see
why a larger exponent is not possible without violating the above
assumptions, letB∼Mθ. The velocity v scales as (M/B)1/3∼M(1−θ)/3.
B is also proportional to the volume rate of flow of metabolites,
so B ∼ Aav, where Aa is the cross-sectional area of the aorta. Thus,
Aa∼B/v∼M(4θ−1)/3. The total blood volume scales asAa times aorta
length (L ∼ M1/3) and therefore as M4θ/3. By A7, blood volume
scales at most as M. Thus, the maximum value of θ is 3/4. As
a counter example, if θ=4/5, then v∼ ls∼M1/15,Aa∼ B/v∼M11/15,
and blood volume ∼M16/15, violating assumption A7.
Our hierarchical branchingmodel retains the fractal-like design

of WBE but shows how the self-similar branching through the
hierarchy of arteries arises naturally, with the number of capil-
laries (proportional to the metabolic rate) scaling as the cube (in
3D animals) of the ratio of the aorta length (∼M1/3) to the cap-
illary length (∼M1/12). Thus, the aorta length scales as the Eu-
clidean length of the organism while ensuring that blood volume
scales linearly with M. The changes from WBE—having blood
velocity scaling asM1/12 rather than asM0, aorta length scaling as
M1/3 rather than M1/4, and average cross-sectional area of the
network scaling as M2/3 rather than M3/4

—solve the problem of
fitting the fractal-like network into an animal with a fundamen-
tally Euclidean geometry (17).

Conclusions
Two different designs for distribution systems, radial explosion
and hierarchically branched networks, give identical scaling ex-
ponents: a maximum of 3/4 for metabolic rate, a maximum of
1/12 for velocity, and Euclidean 1/3 for vessel lengths and radii.
Empirical studies support the velocity and length scaling pre-
dictions (1, 31). Moreover, the empirically observed M1/4 circu-
lation times (4–9) and M1/3 transport distances can be achieved
only if blood velocity scales as M1/12.
Real biological networks may deviate from the idealized sim-

plified networks shown above when other factors result in alter-
native designs. Deviations toward 2/3-power scaling are likely if
velocity does not vary significantly with animal mass. Deviations
toward linear scaling are likely if there is no vascular systemor if the
range of body sizes is sufficiently small that blood volume is able to
scale superlinearly. Indeed, several studies have recently shown
that basal or resting metabolic rate of mammals does not scale as
a single power law, but instead the exponent changes from ≈2/3 to
3/4 as body size increases (24, 26, 28). This result is not surprising,
because real mammalian metabolic and circulatory systems have
many complications that are not included in simple models. These
complications include the capacity to vary rate of metabolism and
oxygen supplymany fold between resting and active states (32) and
theneed to increase cross-sectional areasof the smallest vessels and
reduce blood velocity by several orders of magnitude before blood
enters the capillaries (33). Differences between resting, field, and
maximummetabolic rates can also arise because of deviations from
the basic assumptions, e.g., being in steady state. The canonization
of “Kleiber’s law” of M3/4 scaling of metabolic rate has led to
a search for the “fourth dimension of life” (3, 34, 35). Quarter-
power scaling does not arise from fractality, although it emerges
naturally in hierarchically branched, fractal-like designs that are so
common in both animals and plants. We show how this fourth di-
mension arises from the scaling of velocity to match the charac-
teristic linear dimension, ls, of the service volume, which in turn
comes from the fundamental space-filling property of the resource
supply network. The service volume has its analog in other trans-
portation systems that distribute energy, materials, and in-
formation from a central source to dispersed locations and that
have been designed to maximize performance (36). Examples in
engineered networks are the “last mile” that connects individual
consumers to global infrastructure networks such as the Internet or
the electrical power grid. The absolute length of the “isochronic
region” to which timing signals are delivered in computer chips is
measured in nanometers, but despite its miniscule size, it deter-
mines the frequency of the clock and thus the information pro-
cessing power of the chip (37), in the same way that that the length
of the service volume in an animal determines the speed of oxygen
delivery and ultimately rate of metabolism. The service volume is
also where a package flown across the globe at a speed of hundreds
of miles per hour is walked to a door by a mail carrier and where
passengers exit high-speed planes and trains to take slower modes
of transport home. The length and speed of transport over this last
mile ultimately constrain delivery rates. Strikingly, human engi-
neering and natural selection have both come up with the same
principles for the design of resource supply networks.
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Fig. 3. Red blood cells in a branching network with no backtracking, as in Fig.
1C. Blood cells are packed into arteries at constant density, whereas blood cells
destined for a particular service regionare separatedby adistance, s∼ ls∼M1/12.
Each cell is labeledwith the service region it will be delivered to. In this case, ls is
approximately the length of two red blood cells. In a larger organism, ls would
be larger, and there would be more red blood cells between cells labeled with
the same service region. Here there are eight service regions, each serviced by
one capillary, soB∼ 8∼M3/4, and eight red blood cells are releasedper unit time
from the central heart. Those eight red blood cells are squeezed into an aorta
with cross-sectional area∼M2/3, which causes the separation distance(s) and the
velocity of blood cells, v, both to be proportional to M1/12.
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