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The time it takes an enzyme to complete its reaction is a stochastic
quantity governed by thermal fluctuations. With the advent of
high-resolution methods of single-molecule manipulation and
detection, it is nowpossible toobservedirectly this natural variation
in the enzymatic cycle completion time and extract kinetic informa-
tion from the statistics of its fluctuations. To this end, the inverse of
the squared coefficient of variation, which we term nmin, is a useful
measure of fluctuations because it places a strict lower limit on the
numberofkinetic states in theenzymaticmechanism.Hereweshow
that there is a single general expression for the substrate depen-
dence of nmin for a wide range of kinetic models. This expression
is governed by three kinetic parameters, which we term NL, NS,
and α. These parameters have simple geometric interpretations
and provide clear constraints on possible kinetic mechanisms. As
a demonstration of this analysis, we fit the fluctuations in the dwell
times of the packaging motor of the bacteriophage φ29, revealing
additional features of the nucleotide loading process in this motor.
Because a diverse set of kinetic models display the same substrate
dependence for their fluctuations, the expression for this general
dependence may prove of use in the characterization and study
of the dynamics of a wide range of enzymes.
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An enzymatic reaction can be seen as a sequence of distinct
kinetic states separated by energy barriers. The energy

needed to cross these barriers is provided by spontaneous thermal
fluctuations and, as a result, the time to complete an enzymatic
cycle is stochastic: two identical enzymes executing the same
kinetic mechanism will complete their cycles in different times.
Nonetheless, these fluctuations are not useless noise. The enzy-
matic mechanism determines how thermal fluctuations are
transformed into variation in the cycle completion time. Thus,
statistical measures of these fluctuations promise to provide
new insight into enzyme dynamics (1–3).

Experimental advances in the methods of single-molecule
manipulation and detection as well as synchronized ensemble
methods have made the measurement of these fluctuations
increasingly routine (4–7). However, observation of these fluctua-
tions alone is not enough to create new insights into the enzy-
matic mechanism. Fluctuations must be quantified and classified,
and statistical measures must be related to constraints on possible
mechanisms. For measurements of the mean cycle completion
time as a function of substrate concentration such classification
is typically provided by the well-studiedMichaelis-Menten expres-
sion and its parameters, kcat andKM (8, 9) or themore general Hill
expression (8, 10). With these expressions and their parameters,
the behavior of different enzymes can be succinctly reported
and compared, and basic limits can be placed on the enzymatic
mechanism (8). Unfortunately, no analogous expressions exist
for enzymatic fluctuations.

Before fluctuations can be characterized and classified, they
must be quantified. One particularly simple and useful statistical
measure is the squared coefficient of variation—the variance in
the cycle completion times normalized by the mean squared time.

This measure is used in the study of a wide variety of random
systems, ranging from telecommunications (11) to gene expres-
sion (12). In single-molecule enzymology, the squared coefficient
of variation has been related to the randomness parameter (1, 13,
14), the mechanicity (15), and the zero frequency component of
a Fourier analysis of fluctuations (16, 17). In some cases (18, 19),
this value can be estimated even when the individual enzymatic
cycles are obscured by experimental noise (1, 13, 14, 16, 17).

Here we consider the inverse of the squared coefficient of
variation,

nmin ≡
hτi2

hτ2i − hτi2 ; [1]

where hτi is the mean time to complete the enzymatic cycle and
hτ2i − hτi2 is the variance in this time. We adopt the term nmin for
this ratio because, remarkably, it provides a strict lower limit on
the number of kinetic states that must compose the enzymatic
mechanism. Explicitly, if a given kinetic model has N kinetic
states, the measured value of nmin must obey

nmin ≤ N: [2]

This inequality applies for any stochastic process composed of
distinct Markov states with exponentially distributed lifetimes
(20)—reasonable assumptions that are common in kinetic mod-
eling (3). Because [2] is based on general assumptions, the mea-
sured value of nmin can be used to eliminate candidate kinetic
models with very little a priori knowledge of the kinetic mechan-
ism. Simply put, any model with fewer kinetic states than the
measured value of nmin need not be considered. This model
independence is a feature not shared by most methods of fluctua-
tion analysis where it is typically required that a specific kinetic
model or family of models must first be assumed before fluctua-
tions can be analyzed.

The inequality in [2] can yield more than a single constraint on
potential mechanisms. As external parameters such as substrate
concentration or force are varied, kinetic rates will change, and
different sets of kinetic states will become rate-limiting (8, 21).
Thus, nmin, as an estimate of the number of “effective” rate-limit-
ing states, will vary with substrate concentration. Such substrate
dependence has been calculated for a variety of specific kinetic
models (1, 13, 15, 19, 22–27), and these expressions have been fit
to experimental measurements (when available) (13, 15, 28).
However, by assuming a specific kinetic model, the expressions
derived previously are only applicable to the assumed models,
and, thus, do not exploit the model independence of [2]. What
is needed is a general expression for the substrate dependence
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of nmin applicable for a large family of kinetic models—an expres-
sion analogous to the Michaelis-Menten equation.

Here we consider the substrate concentration dependence of
nmin for an important family of kinetic models and show that
there is a single, compact expression that contains, as a subset,
all previous equations (1, 13, 15, 19, 22–27). We discuss the
kinetic parameters introduced by this expression and derive
the mechanistic constraints they provide. Finally, we conclude
by applying our expression to fluctuation data collected for the
packaging motor of the bacteriophage φ29 (29).

Results
Assumptions and Schematic Proof. We model enzymatic dynamics
as a first passage process through a series of discrete kinetic
states, each of which has an exponentially distributed lifetime
and transition rates that depend only on the current kinetic state
(3). We further restrict our analysis to an important class of
kinetic models: the nearest neighbor models as depicted in
Fig. 1A. This class of models contains all kinetic mechanisms
in which every state is on-pathway, i.e., there are no off-pathway
branches and no parallel catalytic pathways, and includes the text-
book Michaelis-Menten mechanism (Fig. 1B), mechanisms with
multiple intermediate states (Fig. 1C), and even systems that
involve the binding of multiple substrate molecules (Fig. 1D).

In addition, we consider only models that display a Michaelis-
Menten-like substrate dependence for the mean cycle completion
time:

hτi ¼ 1

kcat
þ KM

kcat

1

½S� ; [3]

where [S] is the substrate concentration (8, 9). kcat, the “effective”
catalysis rate, determines the maximum rate of the reaction while
KM , the “Michaelis” constant, determines the substrate concen-
tration at which the reaction proceeds at half the maximal speed.
This substrate dependence can also be exhibited by mechanisms
that require the binding of multiple substrate molecules as long as
these binding events are separated by irreversible transitions (29)
(Fig. 1D; SI Text).

Finally, we require that the enzymatic reaction concludes with
an irreversible transition that produces a measurable signal. For
the case of a molecular motor, this transition might correspond to
a physical movement such as a discrete step or rotation (3, 8),
but, more generally, this transition could be an internal confor-
mational change or the formation of the enzymatic product,
revealed, perhaps, by a change in fluorescence (5, 6). The final
irreversible transition is not needed if reverse reactions can be
identified and analyzed separately (19) though it simplifies our
analysis here.

Given these assumptions, our proof of the general form for the
substrate dependence of nmin proceeds as follows: we start with
the closed-form, analytic solutions for the mean cycle completion
time and the variance in these times as a function of the indivi-
dual rate constants for all nearest neighbor kinetic models (19,
30). We then derive the necessary and sufficient restrictions
required to produce a Michaelis-Menten substrate dependence
for the mean dwell time and apply these restrictions to the expres-
sion for the variance in the cycle times. With the substrate depen-
dence of the mean and the variance, we derive the general
substrate dependence of nmin via the definition in [1]. The full
proof is provided in the SI Text.

The General Substrate Dependence of nmin.Under the above assump-
tions, we find that the general substrate dependence of nmin is
described by

nmin ¼
NLNS

�
1þ ½S�

KM

�
2

NS þ 2α ½S�
KM

þ NL

�
½S�
KM

�
2
; [4]

Eq. 4 defines a family of curves governed by the same KM that
appears in Eq. 3 and three dimensionless parameters, NL, NS,
and α. In general, these parameters are complicated functions
of both the number of kinetic states and their interconversion
rates (SI Text: Equations S22–S25). However, for all of the models
considered here, the individual kinetic rates combine in such a
way that they can be captured with just these parameters, hiding
the individual complexity of different models.

Geometric Interperation of the nmin Parameters.Thenmin parameters
have simple geometric interpretations (see Fig. 2).NL is the value
at asymptotically low or Limiting substrate concentrations,

NL ¼ lim
½S�∕KM→0

nmin [5]

whileNS is the value at asymptotically high or Saturating substrate
concentrations,

NS ¼ lim
½S�∕KM→∞

nmin: [6]

Fig. 1. Kinetic Models. (A) A schematic diagram of the nearest neighbor
kinetic models considered here. Each kinetic state, i, can transition to either
the state before it, i − 1, or the state after it, i þ 1. One or more of these tran-
sitions (green) corresponds to the binding of a substrate molecule and occurs
with a rate constant proportional to the substrate concentration, ki ½S�.
The transition from the final state in the cycle, state N, is assumed to be
irreversible (red) and to produce a detectable signal that marks the end
of one cycle and the beginning of the next. This family of kinetic models
includes (B) the common Michaelis-Menten mechanism as well as generaliza-
tions of this mechanism with (C) intermediate states (E*S) and (D) additional
substrate binding events.

Fig. 2. General Substrate Dependence of nmin. nmin vs. substrate concentra-
tion, measured in units of KM . NL determines the asymptotic limit at low sub-
strate concentrations while NS determines the asymptotic limit at saturating
substrate concentrations. The parameter α determines the height of the peak
between these two asymptotic limits. The solid red curve corresponds to
NL ¼ 2.5, NS ¼ 1, and α ¼ 0. The solid blue curve corresponds to NL ¼ 1,
NS ¼ 3, and α ¼ 0. The dashed lines correspond to the same values as the solid
curves but with α ¼ 0.3.
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Between these two asympotic values, nmin can peak to a value
greater than either of the two limits. α controls the properties
of this peak. When α < minðNL; NSÞ, there is a peak in nmin while
there is no peak when α is between NS and NL. If α is larger
than both NS and NL, nmin does not peak, but rather drops to a
local minimum. Such a situation seems unphysical since at this
point both increasing and decreasing substrate concentration
would produce more rate-limiting events; thus, we propose
that α ≤ maxðNL; NSÞ.

If there is a peak in nmin, the value at this peak is

maxðnminÞ ¼
NL þ NS − 2α

1 − α2

NLNS

; [7]

and it occurs at a substrate concentration of

½S�max ¼ KM
NS − α

NL − α
: [8]

For small α, maxðnminÞ ∼NL þ NS − 2α. Thus, α is roughly half
the difference between the peak value and the sum of the two
asymptotic limits. If α ¼ 0, then the maximum of nmin is
NL þ NS and it occurs at ½S�max ¼ KMNS∕NL. The substrate con-
centration at which this maximum occurs can be either below or
above the KM depending on the larger of NL and NS.

Physical Interpretation of the nmin Parameters. As we show in the
SI Text, the three nmin parameters place clear limits on possible
kinetic mechanisms. First, if the underlying kinetic model has
N ¼ NB þ Nother kinetic states, where NB is the number of sub-
strate binding states and Nother is the number of other states, then
the value of NS provides a strict lower limit on the actual number
of non-substrate-binding kinetic states in the cycle:

NS ≤ Nother: [9]

Moreover, NS ¼ Nother if and only if the system visits each kinetic
state once and only once and the lifetimes of each kinetic state
are equal, i.e., all transitions are irreversible with the same transi-
tion rate. Any difference in the transition rates or reversibility in
the cycle will result in a value of NS < Nother.

The value of nmin at asymptotically low substrate concentra-
tion, NL, has a similar interpretation. If the enzyme only binds
one substrate molecule, i.e., NB ¼ 1, then NL ¼ 1. However, if
the enzyme binds multiple substrate molecules, NL provides a
strict lower limit on the number of molecules that bind each cycle:

NL ≤ NB: [10]

In general, NL is a complicated function of the individual kinetic
rates that are involved in the binding and commitment of each
substrate molecule (SI Text: Eqs. S7, S23). The average rate at
which this process occurs, the catalytic efficiency of binding
(8), is βi ¼ kcat;i∕KM;i where kcat;i and KM;i are the Michaelis-
Menten parameters for the binding of each substrate molecule.
Despite its complex dependence on individual rate constants, NL
has as a simple dependence on the catalytic efficiencies:

NL ¼

�
∑

NB

i¼1

1
βi

�
2

∑
NB

i¼1

1
β2i

: [11]

This relationship should allow catalytic efficiencies to be inferred
or constrained from the measured value of NL with no a priori
knowledge of the specific mechanism by which substrate is bound
and committed to the cycle.

Eq. 11 implies that NL ¼ NB if and only if the catalytic efficien-
cies for binding each of the substrate molecules are identical.
In contrast to NS, this equality need not imply that the binding
of substrate molecules is irreversible or even that each binding
process involve exactly the same kinetic states with the same
rates. Rather, multiple substrate molecules may be bound via
very different mechanisms, yet if the catalytic efficiencies of
these processes are the same, NL will be equal to the number
of substrate molecules that bind.

For the nearest neighbor models considered here, we find that
NL, NS ≥ 1. Thus, an observed value of NL, NS < 1 necessarily
implies that the enzymatic mechanism must have features not
treated here, e.g., parallel catalytic pathways or off-pathway
pause states. This conclusion is supported by theoretical studies
on enzymatic systems that display dynamic disorder—i.e., a large
or infinite set of parallel catalytic pathways—in which it is shown
that nmin < 1 (23, 31). Similarly, it is possible to measure a value
of nmin < 1 when a population of enzymes display heterogenous
dynamics, i.e., static disorder.

Finally, the value of the parameter α places some physical re-
strictions on the enzymatic mechanism. Under the assumption
that the underlying kinetic mechanism contains no off-pathway
branches or parallel pathways (Fig. 1A), α ¼ 0 if and only if i)
the binding of substrate molecules is strictly irreversible and ii)
the binding state is not in equilibrium with the previous kinetic
state. In other words, a measured value of α ¼ 0 indicates that the
binding of substrate must obey:

E0 → Eþ S → ES; [12]

where E0 is the kinetic state that proceeds the binding state, E is
the binding competent state, ES is the substrate docked state, and
the arrows represent irreversible transitions. If the enzyme binds
multiple substrate molecules, then these conditions must hold for
each binding transition.

Application to the Packaging Motor of the Bacteriophage φ29. As an
illustration of the use of Eq. 4 and its parameters, we have applied
this analysis to recent data collected on the packaging motor of
the bacteriophage φ29. This bacteriophage utilizes a pentameric
ring (32) of identical ATPase subunits to drive the compaction of
its dsDNA genome into a proteinacous precursor capsid during
viral self-assembly (33). Recent high-resolution optical trapping
measurements (29) have revealed the discrete, 10 base pair, in-
crements of DNA packaged each cycle of the motor. The obser-
vation of the discrete steps of this motor makes it possible to
compile the exact time between steps—the dwell times of the en-
zyme. Both the average dwell time and the variance in these times
as a function of [ATP] were determined, as was nmin for all [ATP]
under conditions of low opposing load (see Fig. 3). Additional
measurements at high opposing loads revealed that after the
dwell, the DNA was packaged not in a single step, but in a burst
of four 2.5-bp steps. The observation of four steps per cycle
strongly suggests that the motor loads four ATPs to four different
subunits during the observed dwells (29).

Previous work (29, 34) has shown that the mean dwell time is
well described by a Michaelis-Menten [ATP] dependence; thus,
we expect that the substrate dependence of nmin is fit by Eq. 4. To
test this hypothesis, we first fit the nmin data with Eq. 4, allowing
all four parameters to vary. Fig. 3B shows that the resulting fit
describes well the substrate dependence of the data (solid black
line), producing a KM ¼ 36� 18 μM consistent with the value
measured directly from the mean dwell time, KM ¼ 23�
7 μM. The agreement between the KM measured from hτi and
from nmin lends support to both the data and the theoretical treat-
ment considered above. We then refit the nmin values using the
KM measured from the mean dwell time, which is better con-
strained than the value measured from a fit to nmin directly.
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Again, Fig. 3B shows that the data are well fit by Eq. 4 (dashed
black line). Table 1 lists the values of NL, NS, α, and their uncer-
tainties for these fits.

The specific fit values of the nmin parameters have several
implications for the kinetic mechanism of the packaging motor.
In particular, the values of NL and NS indicate that each cycle
must contain no less than two ATP binding states and no less than
four additional, non-ATP-binding states. Previously, similar
conclusions were drawn from the measured value of nmin at
the highest and lowest concentrations of ATP (5 μM and
1,000 μMATP), under the assumption that these conditions were
sufficiently limiting or saturating for ATP (29). However, limiting
or saturating concentrations of [ATP] for the mean dwell time
need not be limiting or saturating for nmin, and, thus, it was
not necessarily obvious that the values of nmin measured at the
lowest and highest [ATP] were accurate estimates of the asymp-
totic values of this parameter. The fit to Eq. 4 confirms the pre-
vious interpretations while eliminating the need to argue that a
specific [ATP] is sufficiently “saturating” or “limiting.”Moreover,
the fit to Eq. 4 provides estimates of the asymptotic values of nmin
that are better constrained and less biased by single measure-
ments. For example, at saturating [ATP] the uncertainty in the
asymptotic value drops from �0.5 (the single measurement at
1,000 μM) to �0.2 (Table 1). Furthermore, Fig. S1 shows that re-
moving each of the measured values of nmin at different [ATP]
does not significantly change the values of the fit parameters,
indicating that the asymptotic values are determined from all
measurements not just those at the lowest and highest [ATP].

Finally, the measured value of α is consistent with a small,
perhaps zero, value for this parameter. From previous work, it
has been established that the binding of ATP likely involves an

initial, reversible docking process followed by a tight binding tran-
sition, which is irreversible and commits the nucleotide to the
hydrolysis cycle (29, 34). A measured value of α consistent with
zero suggests that this initial docking process is not highly rever-
sible. However, the large uncertainty on this parameter prohibits
more detailed claims on the degree to which ATP binding is
irreversible.

Specific Restrictions on Catalytic Efficiencies. In addition to forma-
lizing previous interpretations, the specific values of the nmin para-
meters allow us to extract additional information from
fluctuations. In particular, under the assumption that four ATPs
load each cycle (29), we can restrict the relative catalytic efficiency
of binding ATP to each subunit from the measured value ofNL by
using Eq. 11. We first adopt a convenient parameterization: the
subunits are ordered from smallest catalytic efficiency to largest,
and the catalytic efficiency of each subunit is described as function
of the previous subunit (see Fig. 4A). By requiring that a1, a2, and
a3 ≥ 1 , we consider each combination of catalytic efficiencies only
once. The numbering of the individual subunits should not be
confused with the physical ordering of the subunits within the
motor ring. Eq. 11 treats all subunits identically, so rearranging the
order of the subunits would not change the measured value ofNL.

Under this parameterization, Eq. 11 becomes

NL ¼ ð1þ a−11 þ a−11 a−12 þ a−11 a−12 a−13 Þ2∕ð1þ a−21 þ a−21 a−22

þ a−21 a−22 a−23 Þ: [13]

Combined with the measured value of NL ¼ 1.6, this expression
defines a unique three-dimensional surface that constrains the
possible catalytic efficiencies in the ring, shown in Fig. 4B. This
surface reveals that not all combinations of a1 and a2 are permis-
sible rather a1 and a2 must be within a narrow set of values to
produce the measured NL. Remarkably, a1 ¼ a2 ¼ a3 ¼ 1 is
not a solution; thus, despite the fact that the individual ATPase
subunits in the packaging motor are chemically identical, they
cannot have identical catalytic efficiencies. This observation
implies that the conformation of a given subunit must be a func-
tion of the catalytic state of the surrounding subunits. While no
high-resolution structure exists for the packaging motor, the
structural asymmetries needed to produce this kinetic asymmetry
has been observed for related ring ATPases (35).

There are two combinations of catalytic efficiencies that are of
particular interest. First, if one and only one subunit is distinct

Fig. 3. Statistical Properties of the Dwell Times for the Packaging Motor of
the Bacteriophage φ29. (A) Mean dwell time for the packaging motor of the
Bacteriophage φ29 as a function of [ATP] with a Michaelis-Menten fit (solid
black). Inset: Example packaging traces for 5 and 10 μM [ATP] (black and red,
respectively). Light gray corresponds to 1.25 kHz data averaged to 100 Hz in
color. (B) nmin vs. [ATP] with fits to Eq. 4 with either KM floating (dashed) or
fixed (solid). Fit values are listed in Table 1. Data are reproduced with permis-
sion from Ref. (29), Macmillan publishers Ltd: Nature © 2009.

Fig. 4. Relationship between the catalytic efficiencies of the different
subunits. (A) The ATP loading cycle of the pentameric packaging motor of
φ29. The catalytic efficiency for each subunit increases, βi , by the geometric
factors a1, a2, and a3. Green corresponds to subunits competent to bind ATP
while red (T*) corresponds to subunits loaded with ATP. (B) Contour plot of
the permitted values of a1, a2, and a3. Arrows highlight specific combinations
of a1, a2, and a3 mentioned in the text. (C) Contour plot of the smallest
catalytic efficiency in the ring for permitted values of a1 and a2.

Table 1. Fit Parameters for Fig. 3

Parameter Michaelis-Menten nmin Floating KM nmin Fixed KM

kcat 8.7� 0.2 s−1 N/A N/A
KM 23 ± 7 μM 36 ± 18 μM 23 μM
NL N/A 1.9 ± 0.4 1.6 ± 0.3
NS N/A 3.1 ± 0.3 3.3 ± 0.2
α N/A 0.2 ± 0.3 0.2 ± 0.3
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from the others, i.e., a2 ¼ a3 ¼ 1, then this “special” subunit must
have a catalytic efficiency 10.7� 5.2 times smaller than the other
three (the uncertainty is due to the uncertainty in NL). In such a
model, one might imagine that the first or last subunit would
sense the asymmetry in the ring and as a result bind and commit
ATP to the hydrolysis cycle more slowly than the other three.
Alternatively, each subunit might know its exact position in
the ring, first, second, etc., and each position might correspond
to a different catalytic efficiency for binding. In this case, it is
useful to consider a model in which the catalytic efficiency of each
subunit increases with respect to the previous subunit by the same
geometric amount, i.e., a1 ¼ a2 ¼ a3. To produce the measured
value of NL, this geometric factor must be 4.3� 1.7. Thus, on
average, the catalytic efficiencies between the different subunits
in the packaging motor must increase (or decrease) by a factor of
∼4 as each subunit loads ATP.

The absolute values of the catalytic efficiencies can also be
constrained. The inverse of the total catalytic efficiency at which
ATP is loaded to the ring is simply the sum of the inverse of the
efficiencies of the individual subunits (SI Text: Eq. S15); thus,
each set of a1, a2, and a3 in Fig. 4B corresponds to a specific
set of catalytic efficiencies. Fig. 4C shows that β0, the smallest
catalytic efficiency, varies remarkably little, <5%, across the
permissible range of a1, a2, and a3. It is interesting to note that
had we simply assumed that the four catalytic efficiencies were
equal we would have estimated a value three times larger,
∼1.5 μM−1 s−1.

Discussion
Enzymatic dynamics are dominated by fluctuations, and techni-
ques for quantifying these fluctuations directly are becoming
increasingly routine (1–7). In this article, we extend fluctuation
analysis by proving that for a wide range of kinetic models the
substrate dependence of a useful measure of fluctuations, nmin,
is governed by a single, general expression. Moreover, we show
that this expression is parameterized by just three kinetic para-
meters: NL which sets the value of nmin at asymptotically
limiting substrate concentrations, NS which sets the value of
nmin at asymptotically saturating substrate concentrations, and
α which parameterizes the difference between the maximum
value of nmin and the sum of the two asymptotic limits. These
parameters provide powerful constraints on the underlying
kinetic mechanism of the enzyme. In particular, NL and NS place
strict lower bounds on the number of substrate-binding events
and non-substrate-binding events, respectively, while the specific
value of α provides information on the degree to which the bind-
ing of substrate is reversible. Finally, we illustrate the power of
this analysis by using it to capture the substrate dependence of
the fluctuations observed for the packaging motor of the bacter-
iophage φ29. The values we derive from fits to previous data not
only rigorously confirm previous conclusions by providing the
true asymptotic values of nmin at low and high substrate concen-
tration, they also allow us to greatly restrict the possible values of
the catalytic efficiencies for the different subunits.

In contrast to the expressions currently in use (1, 13, 15, 19,
22–27), Eq. 4 makes very limited assumptions about the under-
lying kinetic model. More importantly, one of the assumptions
that it does make—that the mean dwell time has a substrate
dependence described by the Michaelis-Menten expression—
can be easily verified experimentally. While our proof of Eq. 4
assumes a specific family of kinetic models, a cursory analysis
of specific kinetic models with off-pathway states or parallel
catalytic pathways suggests that Eq. 4 is not restricted to the
linear, unbranched kinetic models we consider here (36). Rather,
we conjecture that the specific substrate dependence for nmin cor-
responds to any kinetic model in which the mean dwell time has a
Michaelis-Menten substrate dependence and that the mechanis-

tic constraints implied by its parameters also hold for more
general kinetic schemes.

The general expression for the substrate dependence of nmin
derived here provides several practical and theoretical benefits.
First, extensive theoretical studies of the mean enzymatic beha-
vior as a function of different experimental conditions have
revealed that there are only a small number of basic substrate
dependencies for the mean velocity: the Michaelis-Menten
expression and the more general Hill expression (8). Knowning
these general forms allows experimentalists to classify the beha-
vior of their enzyme and to extract the relevant kinetic para-
meters, such as kcat and KM . In this sense, the general
substrate dependence for nmin should allow enzymes to be clas-
sified based on the measured values of NL, NS, and α in addition
to the values of kcat and KM .

Second, a general substrate dependence provides experimen-
talists with a way to quantitatively determine if truly saturating or
limiting conditions have been probed. Given that much of the
informative power of nmin comes from its values at asymptotically
low and high substrate concentrations, an understanding of what
signifies a saturating or limiting concentration of substrate is
crucial to extracting information from fluctuations. Of course,
truly saturating or limiting substrate concentrations can never
be probed, but by specifying the dependence of nmin on different
substrate concentrations, Eq. 4 allows the asymptotic limits of
nmin to be inferred from measurements over a finite range of
substrate concentrations.

Finally, and more fundamentally, a general substrate depen-
dence for nmin provides a clear indication of the information
content of such measurements. The mean dwell time or nmin
can be measured at many different substrate concentrations,
yet these measurements are not independent of one another.
For example, a mean dwell time that is described by the Michae-
lis-Menten expression is completely determined by just two inde-
pendent parameters, kcat and KM . After two different substrate
concentrations have been probed, additional measurements only
serve to better constrain these two parameters. Because a general
kinetic model may have many more than two independent kinetic
rates, measurements of the mean dwell time as a function of
substrate concentration cannot uniquely constrain typical models.

In this light, the results we provide here reveal the information
content of the variance in the cycle completion time. Specifically,
if the nmin of a given system has a substrate dependence described
by Eq. 4, then these measurements will provide only three
additional constraints on the underlying kinetic mechanism.
Once these parameters are specified, additional measurements
at new substrate concentrations will only better constrain these
parameters, not yield new constraints on the system. Since there
is a large degree of degenerecy in the types of kinetic models that
produce a given substrate dependence for both the mean dwell
time and nmin, care should be taken before touting the validity of
specific kinetic models on the basis of their fit to the experimental
data. Rather, experimental data should be used to dictate
features of the kinetic scheme

The mechanistic constraints provided by the measurements of
substrate dependence of enzymatic flucuations are fundamentally
different than those provided by measurements of the mean. In
practice, the specific values of kcat or KM say little about the
individual kinetic rates or binding affinities of the underlying
kinetic model. In contrast, the parameters of nmin provide funda-
mental limits on the enzymatic mechanism, placing firm con-
straints on the number of kinetic states that a candidate model
must contain. The ability to place restrictions on candidate mod-
els from statistical measures of fluctuations is a reflection of
the fact that there are fundamental differences between the
stochastic dynamics of enzymes that are goverened by different
kinetic models—properties which are now amenable to direct
measurement.
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