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Abstract
Purpose of Review—Describe ion and water homeostatic mechanisms in the inner ear, how they
are compromised in hearing disorders, and what treatments are employed to restore auditory function.

Recent Findings—The ion and water transport functions in the inner ear help maintain the proper
endolymph K+ concentration required for hair cell function. Gene defects and idiopathic alterations
in these transport functions cause hearing loss, but often the underlying cause is unknown. Current
therapies largely involve glucocorticoid treatment, although the mechanisms of restoration are often
undeterminable. Recent studies of these ion homeostatic functions in the ear are characterizing their
cellular and molecular control. It is anticipated that future management of these hearing disorders
will be more targeted to the cellular processes involved and improve the likelihood of hearing
recovery.

Summary—A better understanding of the ion homeostatic processes in the ear will permit more
effective management of their associated hearing disorders. Sufficient insight into many homeostatic
hearing disorders has now been attained to usher in a new era of better therapies and improved clinical
outcomes.
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I. Introduction
Many recent studies are providing a clearer picture of ion and water transport mechanisms in
the ear required to maintain the critical high K+ levels of endolymph. Numerous hearing
maladies result from disruption of these homeostatic processes. Many cases are spontaneously
or therapeutically reversible, suggesting management is possible. Unfortunately many are due
to genetic defects and irresolvable. The focus of this review will be to evaluate the latest
research into the ion homeostatic processes of the ear, their associated hearing disorders, and
what therapeutic approaches have been successful in their management.
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II. Ion Homeostasis in Ear
The inner ear is an ion transport organ. The hair cell depolarizes following transduction of
some motion, releases neurotransmitter, and elicits nerve conduction signals to the brain. All
of these processes require a unique environment of endolymph (high K+) surrounding the hair
cell stereocilia and perilymph (high Na+) around the hair cell body. K+ enters the hair cell as
part of the transduction process, is recycled back to the lateral wall via a series of gap junctions
and other transport mechanisms, and is secreted back into the endolymph by the stria vascularis
(Fig. 1). Thus, the ion homeostasis mechanisms are simply the life support system for the hair
cell. An extensive description of these channels and transporters is beyond the scope of this
paper and one is referred to recent reviews of hair cell function [1–2], inner ear ion channels
and transporters [3–6], and the genetic disorders that impact them [7–8].

The various cell layers of the stria vascularis have unique ion channels for moving K+ into the
endolymph (Fig. 2). The basal cells and marginal cells are sealed by tight junctions to control
movement of ions and other substances. The capillary endothelial cells, also sealed by tight
junctions, make up the blood labyrinth barrier. The spiral ligament also has an extensive
vascular network and is occupied largely by fibrocytes. The fibrocytes in the spiral ligament,
the basal and intermediate cells of the stria, and the endothelial cells of the strial vessels are
all joined by gap junctions that mediate K+ transport. This extensive syncytium reflects the
significant control of ion homeostasis in the ear, as well as the potential for transport
dysfunction that can occur.

III. Disorders of Homeostasis
There are numerous hearing disorders that are the direct result of disrupted ion homeostasis.
While the initial cause may be something else (inflammation, ototoxicity, noise, etc.), the
ultimate impact on the ear is the interference of some ion or water transport mechanism. Thus,
impaired ion homeostasis is essentially the final common pathway for many inner ear diseases.

A. Ear vasculature/homeostasis processes
The endothelial cell monitors its environment and responds accordingly when stimulated by
bacteria, virus, trauma, circulating antibodies, and immune complexes [9–11].

Mechanisms—The endothelial cell is not a victim of inflammation, but rather a major player
in the local inflammatory response. It produces cytokines and other pro-inflammatory factors,
such as adhesion molecules that bind leukocytes, monocytes, and macrophages, to move them
across intercellular junctions into the tissue for host defense [12–14]. These inflammatory
response processes in the brain involve microglia, astrocytes, and endothelial cells, leading to
disruption of the blood brain barrier [15–17]. Debate still is ongoing as to whether such
inflammation is protective, destructive, or both, but the ultimate goal is to protect the host from
the pathogen or other inflammatory attack [16,18]. Inner ear studies show a similar role played
by the cochlear vasculature. The lateral wall vasculature is a complex of endothelial cells,
pericytes, and resident perivascular macrophages [19–21], all the components needed for the
vascular inflammatory response to occur in the inner ear.

Maladies—Inner ear homeostasis is susceptible to numerous insults that compromise the
vasculature of the lateral wall (stria vascularis, spiral ligament) and modiolar artery.
Unfortunately, the programmed endothelial cell response to open intercellular junctions to
permit immune cell entry into the perivascular space will open the blood labyrinth barrier in
the ear. Because integrity of the strial endothelial cell tight junction is critical for maintenance
of the endolymph, such disruption will equilibrate ion potentials between the serum and
endolymph to cancel the endocochlear potential. Thus, such an inflammatory response, while
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generally protective of the host, is not compatible with hearing because of disrupted K+ levels
in the endolymph (Fig. 2).

Numerous insults to the inner ear have been shown to cause vascular inflammatory responses
and potentially hearing loss. This may be a factor in sudden hearing loss, rapidly progressing
hearing loss, immune-mediated hearing loss, autoimmune disease hearing loss, labyrinthitis,
etc. Several recent studies have shown pro-inflammatory insults impact the vasculature and
ion homeostatic processes of the lateral wall or endolymphatic sac:

- Circulating pathogens induce production of cytokines by endothelial cells [22].

- Circulating immune complexes and autoantibodies impact the ear [23–25].

- Noise trauma induces lateral wall inflammatory processes [19,26–30].

- Ototoxic drugs induce infiltrating lymphocytes [31].

- Hyperlipidemia occurs in Apo E null mice [32].

- Dysfunction of endolymphatic sac by inflammatory cytokine IFN-γ [33].

Management—The traditional glucocorticoid therapy (prednisone, dexamethasone,
prednisolone) would be beneficial in suppressing vascular inflammatory processes and
protecting/restoring hearing. However, one must be careful in interpreting whether the
treatment affected the underlying inflammatory process or the disrupted inner ear homeostatic
process. If inflammation disrupts stria vascularis ion homeostatic mechanisms, then therapies
may treat the inflammation, the ion transport problem, or both. For example, autoimmune
disease mice have significant hearing loss that develops due to elevated serum immune
complexes that compromise stria vascularis ion transport [25]. The mineralocorticoid
aldosterone upregulates the epithelial sodium channel (ENaC) and Na+,K+-ATPase, and is as
effective as glucocorticoids in managing or preventing this hearing loss in mice. However,
glucocorticoids also bind to the mineralocorticoid receptor, essentially upregulating genes
related to both receptors' functions. Furthermore, recent studies have shown glucocorticoids
in the ear may directly drive ENaC function via the glucocorticoid receptor also [34–35]. Thus,
the line between glucocorticoid and mineralocorticoid driven processes is blurring. The recent
characterization of serum- and glucocorticoid kinase -1 (SGK-1), which is produced following
binding by either steroid group, directly controls ENaC activation [36–37]. It also upregulates
expression of numerous other ion transport channels, many of which are found in the inner ear
[38]. How much SGK-1 impacts inner ear steroid treatment outcomes is currently
uninvestigated.

Because one seldom can determine the exact cause of the hearing loss, it is often not clear
whether the steroid given is suitable for the underlying homeostatic problem. This may be why
recent meta-analyses debate whether steroids or vasodilators are beneficial [39–41]. Further
compounding the confusion over outcomes is the fact the lateral wall will regenerate, causing
recovery in 50–60% of sudden hearing loss cases. Unfortunately most reports have small
sample sizes and power analyses suggest one would need 1,000 patients to effectively
demonstrate a statistically significant improvement over this spontaneous recovery rate [41].
Until more effective diagnostic tools are available to determine the actual underlying ion
homeostatic process involved in a patient's hearing loss, glucocorticoid therapy will continue
to be the major therapy. Mineralocorticoid treatment (aldosterone, fludrocortisone) has shown
some promise for treating human hearing loss, presumably by directly regulating ion transport
functions via the mineralocorticoid receptor.
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B. Middle ear processes
Although most research of otitis media has focused on the inflammatory cytokines, recent
studies have begun characterizing the role of ion and water transport channels in the middle
ear mucosa.

Mechanisms—Many of the ion transporters and aquaporins found in the inner ear also occur
in the middle ear. These include several K+ channels, ENaC, Na+,K+-ATPases, gap junctions,
tight junction claudins, the sodium potassium chloride cotransporter (NKCC), and chloride
channel (Clcnka) (42). These presumably are involved in the clearance of fluid to keep the
middle ear clear [43–46].

Maladies—Inflammation in the middle ear suppresses gene expression of many of these ion
channels and aquaporins [42–46], which possibly is responsible for failure of effusions to clear.
If inflammation is to protect the host from pathogens, effusion formation may help kill bacteria
by providing a concentrated pool of cytokines and inflammatory cells. Furthermore,
inflammatory cytokines in the middle ear cause similar cytokine expression and pathology in
the inner ear [47–52], leading to downregulation of these same ion and water transport channels
(unpublished data). The sensorineural hearing loss accompanying otitis media may include
inflammatory depression of these cochlear ion channels to decrease K+ transport into the
endolymph (Fig. 2).

Management—Because antibiotics are the only treatment for otitis media, little is known
about the potential management of the ion homeostatic disruption in the middle ear. Recent
efforts to manage these ion homeostasis channels in middle ear disease has focused on the
glucocorticoids to suppress inflammation and mineralocorticoids to enhance K+ and Na+

exchange via ENaC and Na+,K+-ATPase to clear middle ear fluid [53–54]. However, it appears
the glucocorticoid dexamethasone is also influential in driving middle ear ENaC function
[55]. Future studies will undoubtedly clarify this role of ion and water transport in middle ear
effusions and its control with therapeutics. Effusion control will reduce pain and discomfort
in children, lower the risk to the inner ear, and potentially eliminate the need for many
prescriptions of antibiotics that have limited effectiveness anyway.

C. Mineralocorticoid - Glucocorticoid processes
Several ion channels and transporters in the lateral wall are driven by natural and therapeutic
steroid hormones.

Mechanisms—Several ion transport channels in the stria vascularis and spiral ligament are
responsible for moving K+ into the endolymph and Na+ out (Fig. 2). These include the K+

channels (KCNJ10, KCNE1, KCNQ1), ENaC, Na+,K+-ATPase, NKCC, gap junctions,
aquaporins, TRPV4, purinergic receptors, and tight junction claudins. Mineralocorticoids and
glucocorticoids are the hormone drivers for some of these [4–5,25,34–35,56], as well as
arginine vasopressin, atrial natriuretic peptide, insulin, and endothelin [57]. However, the
drivers of many of these channels are thus far undetermined.

Maladies—Gene defects affect many of these channels [7–8], the most common of which are
the gap junction connexins [3–4,8,58]. These act primarily in the supporting cells and the
interconnected fibrocytes in the spiral ligament. Although fibrocyte gap junctions move K+,
recent studies show they move other molecules relevant to cochlear homeostasis [58–60]. It is
not clear if some forms of sudden and rapidly progressing hearing loss are the result of
disruption of these pathways. Meniere's disease does not appear to involve these channels
[61], instead involving those in the aquaporins-vasopressin complex (below). The vascular
inflammatory diseases above also may directly impact the function of these channels. Aging
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and noise damage can have a considerable effect on ion homeostasis. Noise exposure reduces
purinergic signaling, potentially leading to reduction in K+ secretion [62], while sound-induced
expression of osmotic stress protein 94 in the lateral wall may help protect ion homeostasis
[28]. Gene polymorphisms in these K+ channels and heat shock proteins also appear to
predispose individuals to noise-induced hearing loss [63–64]. Aging leads to degenerative
changes in the lateral wall and decreased ion and water transport [65–66]. Loss of tight junction
claudins leads to unregulated K+ transport and hearing loss [67–68]. Loss of the pendrin
function of anion exchange in the lateral wall impairs cochlear pH regulation, leading to hearing
loss and enlarged vestibular aqueduct [69–70].

Management—The various therapeutic steroids have an impact on these channels,
particularly ENaC, Na+,K+-ATPase, and some of the K+ channels. Both glucocorticoids and
mineralocorticoids upregulate KCNJ10, aquaporin 1, and gap junction connexin 26, with
greater effect seen following intratympanic delivery (unpublished data). This supports the
improved results seen with intratympanic steroid delivery clinically [71–74], although this is
still debated [75]. Speculation regarding antioxidant therapy to prevent age-related
degeneration of vascular and lateral wall functions raises an interesting possibility for the future
[76].

D. Aquaporin-Vasopressin processes
Recent studies are beginning to clarify the role of certain aquaporins and vasopressin in the
control of endolymph volume.

Mechanisms—Aquaporin 2 channels and vasopressin (anti-diuretic hormone) are
responsible for moving K+ and water into the endolymph. These channels are active in the stria
vascularis [77–78], and endolymphatic sac [79]. Vasopressin supplementation will cause
expression of numerous ion transport genes in the ear [80] and lead to hydrops [81–82]. The
endolymphatic sac also contains purinergic receptors [83] and TRPV4 channels [84] that are
proposed to control fluid balances, but whether they act in tandem with aquaporins and
vasopressin is unknown.

Maladies—Meniere's disease is often associated with dysfunction of vasopressin and
aquaporin 2 channels. Meniere's patients often have elevated levels of vasopressin during active
disease [85]. It has been challenging to develop the causative relationship between elevated
serum vasopressin and Meniere's disease since the symptoms are usually unilateral. Recently
it was determined that mRNA of the vasopressin receptor is expressed at much higher levels
in the endolymphatic sac of Meniere's patients [86–87]. This lead to the conclusion that it is
the unilateral cochlear elevation of receptor expression, coupled with slightly higher serum
levels, that causes unilateral Meniere's. Recent studies also have identified potential aquaporin
gene polymorphisms in Meniere's patients that may impact water movement and hydrops
formation [88]. Decreased aquaporin 4 expression has been suggested as a mechanism of aging
related hearing loss as well [65].

Hydrops results from excess K+ being moved into the endolymph, but it is not clear if this is
always due to aquaporins 2 – vasopressin functions. For example, endogenous ouabain
suppresses Na+,K+-ATPase, which is responsible for moving K+ into the endolymph.
Meniere's patients have low levels of endogenous ouabain [89], which may increase K+

transport and cause hydrops. Also, a gene polymorphism in adducin, which increases
Na+,K+-ATPase function, is increased in Meniere's patients [90]. ENac is also suppressed in
the endolymphatic sac by inflammation [91], suggesting reduced movement of Na+ out of the
endolymph may increase hydrops. Salicylates downregulate cochlear aquaporin 6, which
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suggests a link between the hearing loss and tinnitus seen with nonsteroidal anti-inflammatories
[92].

Management—Steroids have been shown to be effective in many cases of Meniere's disease,
but it is not clear why. They may be effective because of underlying inflammatory causes of
vasopressin and receptor abnormalities, or those responding to steroids may not have
aquaporins 2 – vasopressin issues at all. Dexamethasone does impact aquaporin 3 expression
[79], but glucocorticoids also would help clear fluid buildup by restoring normal ion
homeostasis. For example, we have shown that glucocorticoids upregulate cochlear gene
expression of the K+ channel KCNJ10, aquaporin 1, and gap junction connexin 26 (unpublished
data). Diuretic treatments have been suggested for Meniere's disease, but it is not clear if they
would operate on the vasopressin receptor to reduce water transport, act predominantly through
the NKCC channel to suppress K+ movement into the endolymph, or both.

Conclusion
Recent research on ion homeostatic mechanisms of the ear demonstrates the relevance of many
channels to clinical hearing disorders. Basic research is gradually building the molecular profile
of these channels and transporters that someday will make targeted therapies possible. Medical
management of such disorders may eventually include genetic hearing loss by upregulating
parallel transport systems to restore partial cochlear function. The molecular armamentarium
available to researchers, coupled with the translational research mind set of our clinician
scientists, set the stage for an exciting future.
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Fig. 1.
Movement of K+ ions in the endolymph. Hair cell transduction causes movement of K+ ions
through the hair cell, after which they are transported along the supporting cells and spiral
ligament (SL) to the stria vascularis (SV) for secretion back into the endolymph.
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Fig. 2.
Schematic of the stria vascularis showing the general directional flow of ions through the stria
vascularis. K+ is moved into the endolymph through a series of channels in the various cell
layers. Tight junctions occur between basal cells, marginal cells, and vascular endothelial cells,
the latter making up the blood labyrinth barrier.

Trune Page 14

Curr Opin Otolaryngol Head Neck Surg. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


