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Abstract
The study addresses the relationships between task parameters and two components of variance,
“good” and “bad”, during multi-finger accurate force production. The variance components are
defined in the space of commands to the fingers (finger modes) and refer to variance that does (“bad”)
and does not (“good”) affect total force. Based on an earlier study of cyclic force production, we
hypothesized that speeding-up an accurate force production task would be accompanied by a drop
in the regression coefficient linking the “bad” variance and force rate such that variance of the total
force remains largely unaffected. We also explored changes in parameters of anticipatory synergy
adjustments with speeding-up the task. The subjects produced accurate ramps of total force over
different times and in different directions (force-up and force-down) while pressing with the four
fingers of the right hand on individual force sensors. The two variance components were quantified,
and their normalized difference was used as an index of a total force stabilizing synergy. “Good”
variance scaled linearly with force magnitude and did not depend on force rate. “Bad” variance scaled
linearly with force rate within each task, and the scaling coefficient did not change across tasks with
different ramp times. As a result, a drop in force ramp time was associated with an increase in total
force variance, unlike the results of the study of cyclic tasks. The synergy index dropped 100-200
ms prior to the first visible signs of force change. The timing and magnitude of these anticipatory
synergy adjustments did not depend on the ramp time. Analysis of the data within an earlier model
has shown adjustments in the variance of a timing parameter, although these adjustments were not
as pronounced as in the earlier study of cyclic force production. Overall, we observed qualitative
differences between the discrete and cyclic force production tasks: Speeding-up the cyclic tasks was
associated with better adjustments of the timing accuracy, which helps achieve comparable force
variance in tasks with different rates of force production. This does not happen in discrete tasks. The
lack of scaling of the anticipatory changes in the synergy index with ramp time represent is the first
reported feature that distinguishes anticipatory synergy adjustments from anticipatory postural
adjustments. We discuss the differences between the cyclic and discrete tasks within a hierarchical
control scheme offered by Schöner.
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Introduction
A number of recent publications have emphasized differences in the neural control of discrete
and cyclic motor tasks based on theoretical analyses, studies of movement kinematics, and
brain activation maps (Sternad and Dean 2003; Schaal et al. 2004; Hogan and Sternad 2007;
Ronsse et al. 2009). Most of these studies did not address issues of motor coordination in
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redundant motor systems, in particular issues of the relations between characteristics of motor
variance in such systems and task parameters. In non-redundant systems, indices of force
variability (for example, the standard deviation) typically scale with force level (Newell and
Carlton 1993; Slifkin and Newell 1999; Christou et al. 2002). In redundant systems, however,
this dependence may break down due to co-variation among forces produced by individual
effectors (Shinohara et al. 2003, 2004). Such a co-variation stabilizes a performance variable
produced by a redundant system as a whole, which is a signature mark of a synergy (reviewed
in Latash et al. 2002b, 2007). In this study (and in its earlier companion, Friedman et al.
2009), we focus on differences in synergy characteristics during discrete and cyclic isometric
multi-digit actions.

We view the system for movement production as a hierarchy with at least two levels, where
the higher level produces a low-dimensional output related to salient characteristics of the
motor task (Latash 2010; Latash et al. 2010). Neural processing of this signal by the lower
level results in a higher-dimensional set of elemental variables whose values may or may not
co-vary across repetitive attempts at the task. Synergies are defined as neural organizations at
the lower level of the hierarchy that produce co-variation of elements stabilizing (reducing
across-trials variability) of a salient output variable.

To study synergies we have been using the framework of the uncontrolled manifold (UCM)
hypothesis (Scholz and Schöner 1999). Within this hypothesis, the space of elemental variables
is viewed as consisting of two complementary sub-spaces. One of these sub-spaces (the UCM)
corresponds to a fixed value of a potentially important performance variable. The other sub-
space is orthogonal to the UCM. To quantify motor synergies, variance in the space of elemental
variables is quantified within each of the two sub-spaces per degree-of-freedom (VUCM and
VORT). If VUCM > VORT, a conclusion is drawn that there is a synergy of elemental variables
stabilizing the performance variable for which the two sub-spaces have been defined.

In a recent study (Friedman et al. 2009), we found evidence for an unusual behavior of VORT
in cyclic tasks: As expected from earlier studies (Latash et al. 2002a; Goodman et al. 2005),
this variance component scaled with force rate over the cycle duration and this scaling persisted
over tasks performed at different frequencies. However, the scaling coefficient changed across
the tasks with the task frequency in such a way, that VORT magnitudes were nearly the same
across tasks performed at different frequencies. These results were interpreted within an earlier
model by Goodman et al. (2005) as pointing at an ability of the controller to adjust variance
of a timing parameter τ to achieve about the same performance variability level across different
frequencies.

In this study we ask a question whether the ability of the controller to adjust τ variance is unique
for cyclic tasks or it can also be observed in discrete tasks. This question was explored at two
levels, behavioral and model. At the behavioral level, we analyzed the relations between the
time patterns of VORT and of force rate (dF/dt) across different task times. We used a linear
regression model to link VORT to dF/dt (Latash et al. 2002a) and explored the regression
coefficient within this model as a dependent variable across different task times. We also
explored quantitative features of force stabilizing synergies using the two variance components
(VUCM and VORT) and the index of synergy (ΔV) as dependent variables.

At the model level, we compared variance of τ across different task times within the Goodman
et al. (2005) model. The model includes two parameters, b and τ, related to the planned force
magnitude and planned timing of force production. It has been shown, in particular, that
variance in setting τ (timing variance across trials) affects primarily the VORT variance
component, while variance in setting b is mostly reflected in the VUCM component. In
particular, the dependence of VORT on variance of τ results in a nearly linear dependence of
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VORT on derivative of force with respect to time (see also Latash et al. 2002a). We used the
coefficient of variation of τ, CV(τ), estimated based on the data, as a dependent variable and
explored its changes with task time in both discrete and cyclic tasks.

Based on an earlier study (Latash et al. 2002a) that, however, did not explore a range of force
rates, we hypothesized that the discrete tasks will not show the demonstrated feature of the
cyclic tasks, namely the ability to adjust the regression coefficient linking VORT and dF/dt and
CV(τ) such that the magnitude of VORT is preserved across different task times.

A secondary aim of the study has been to explore whether preparation to a faster force
production is accompanied by earlier/larger anticipatory synergy adjustments (ASAs). The
ASAs are changes in a synergy index computed with respect to a particular performance
variable (total force in our study) seen 100-200 ms prior to a planned quick change in that
variable (Olafsdottir et al. 2005; Shim et al. 2005). The ASAs have been hypothesized to
attenuate synergies that would otherwise act against the planned action. Based on this
hypothesis and observations by Shim and his collagues (2005), we expected to see earlier and
larger ASAs prior to trials with faster force production. We used the time of the earliest change
in the synergy index (with respect to the time of action initiation) and the magnitude of its
change by the time of action initiation as dependent variables to address this aim.

Methods
Subjects

Eight right hand dominant subjects, five males and three females (mean ±standard deviation:
Age: 27±4 years, weight: 69.5±8 kg, height: 1.72±0.1 m, hand width: 7.9±0.4 cm, hand length:
17.8 ± 1.1 cm) volunteered to participate in the study. All the subjects were healthy and had
no known history of any neurological or motor disorders. All the subjects gave informed
consent according to the policies of the Office for Research Protections at The Pennsylvania
State University.

Experimental setup
Figure 1 shows the experimental setup. The setup consisted of four one-directional
piezoelectric force sensors (model 208C02; PCB Piezotronic Inc.) to measure forces applied
in vertical direction by the four finger tips of the right hand. Each of these sensors had a diameter
of 1.5 cm and the space between the sensors in the medio-lateral plane was 3 cm. The location
of the sensors in the forward-backward direction could be adjusted to match individual
subject’s anatomy. The signals from the force sensors were amplified by signal conditioners
(M482M66, PCB Piezotronic Inc.) and then sampled at 200 Hz with a 12-bit resolution using
a Labview program running on a PC.

During the experiment, the subject sat comfortably in a chair facing the test table, with his/her
upper arms at approximately 45° of abduction in the frontal plane and approximately 45° of
flexion in the sagittal plane. The elbow was flexed at approximately 45°. The forearm was
strapped with two pairs of Velcro straps to a wooden board placed on the table so as to prevent
movement of the forearm. To ensure that the finger posture does not change during the
experiment, we placed a small wooden smooth object under the hand. The subject received
task information and feedback on performance through a 17” LCD monitor placed on the table
approximately 65 cm from the subject.

Experimental procedure
There were three types of tasks: (1) MVC tasks; (2) Single-finger ramp tasks; and (3) Discrete
accurate force production tasks. In all these tasks, subjects received visual feedback on the
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force produced by the instructed finger(s) via a constantly updating plot of force magnitude
(vertical axis) against time (horizontal axis).

In the MVC task, the subjects tried to produce maximal force by each of the four fingers (I -
index, M - middle, R - ring, and L - little) and their combination (IMRL). Subjects initially
rested all the fingers on the sensors. After the cursor passed a vertical line (at 10 s after the
start of the trial), the subjects were required to press “as hard as possible” in a self-paced manner
with the instructed finger(s). After reaching a maximum, the subjects were allowed to relax,
while still keeping all fingers on the sensors. Each of these trials lasted 30 s. Two trials were
recorded for each task finger(s) and the greater force of the two was used in later analysis. The
subjects were instructed to keep all four fingers on the sensors, but were told not to pay attention
to unintended force production by fingers other than the instructed finger. There was a one-
minute rest break between trials. The order of the fingers was randomized across subjects.

In single-finger ramp tasks, the subjects were required to produce force so that the cursor
followed a template shown on the screen. This template consisted of a horizontal line at zero
force for the first 5 s, then a slanted line from 0% to 40% MVC over the next 10 s and then a
horizontal line at 40% MVC for the last 5 s. In each trial, the subject was told to press with one
of the fingers to produce force so as to follow the template. The template scale was set such
that the top of the screen always corresponded to 50% MVC of the instructed finger. The
subjects were required to keep all the fingers on the sensors but were instructed not to pay
attention to any unintentional force produced by non-instructed fingers. There was feedback
only on the force produced by the instructed finger, not on the forces produced by other fingers.
There were two trials for each finger and we block randomized the trials across subjects. There
was a 30-s rest between trials. We used the data from these trials to compute the enslaving
matrix (see later).

In the accurate force production tasks, the subjects were required to press with the four fingers
and produce a force profile that would resemble a ramp. The start and end of the ramps were
specified by a cross on the screen. For force increase segments (ramp-up), the starting level
was set at 5% MVC of IMRL and the target level was set at 25% MVC of IMRL such that the
force amplitude was 20% MVC. For force decrease segments (ramp-down), the starting level
was set at 25% MVC IMRL and the target level was set at 5% MVC IMRL. There were five
different ramp times: 300 ms, 400 ms, 500 ms, 700 ms and 1400 ms. These times were chosen
based on the results of a pilot experiment to cover the range of times within which subjects
could successfully perform the task. In all conditions, the subjects were required to hold the
final force level for at least 2 s. A sample performance is given in Figure 1. The order of the
conditions (ramp times) was block randomized across subjects. For each condition, there were
10 trials with 3 force-up and 3 force-down ramps each. Each trial was 30 s long. In total, the
subjects produced 30 force-up ramps and 30 force-down ramps. There were 10-s breaks
between trials.

Data processing
The data were processed offline using Matlab (The Mathworks, Natick, MA). The force-up
and force-down ramps were analyzed separately. The ramps in each condition were aligned by
the point at which the subjects were instructed to start. Force rate (dF/dt) was computed using
a five-point derivative after the force data were low-pass filtered with a two-way second-order
zero-lag Butterworth filter at 6 Hz.

It is known that, when a subject intends to change force of one finger, other fingers of the hand
also show force changes (Kilbreath and Gandevia 1994, Zatsiorsky et al. 2000). To avoid
spurious effects of this phenomenon (enslaving) on finger force co-variation indices, we
converted the finger force values into finger modes using the corresponding enslaving matrix,
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E (described below). Finger modes are hypothetical variables that can be manipulated by the
central nervous system one at a time. They correspond to intentional involvement of fingers.
Changing one mode value leads to proportional force production by all fingers (Zatsiorsky et
al. 1998; Danion et al. 2003).

We used single-finger ramp trials to generate the enslaving matrix, E for each subject
separately. For each single-finger trial, we performed a linear regression of forces produced
by individual fingers against the total force produced by all four fingers over the 10 s ramp.
The slopes of the regression lines were used to construct an enslaving matrix, E as follows:

(1)

where Mi,j are the slopes of the regression line of the force produced by finger i (i = I, M, R,
L) with the total force produced by all four fingers when finger j (j = I, M, R, L) was the
instructed finger.

The force data from the accurate force production trials, f were converted into mode magnitudes
m by using the E matrix: m = [E]−1f

Further, the data from the accurate force production task were analyzed within the framework
of the uncontrolled manifold (UCM) hypothesis (Scholz and Schöner 1999). The UCM
hypothesis offers a method to decompose variance of elemental variables (m in our study) into
two components, one that does not affect the total force (VUCM) and the other that does
(VORT). Briefly, for every time sample, the space of elemental variables (m) was divided into
two sub-spaces, one that corresponded to a constant value of total force across trials (UCM)
and one that led to changes in total force (the space orthogonal to UCM, ORT). Further, we
compared variance across trials within each of the subspaces, VUCM and VORT (per dimension).
VUCM > VORT was taken as an indication of a multi-digit synergy that stabilized total force.

For each condition and at each point in time, variance components were computed using de-
meaned mode data as detailed below: Changes (from the mean) in the modes are given by the
vector dm=[dmi dmm dmr dml]T, where T is a sign of transpose. Changes in the value of the
total force can be written as a function of dm as follows:

(2)

where df = [dfi dfm dfr dfl]T. An orthogonal set of eigenvectors in mode space, ei defines the
sub-space where mode variations do not alter the total force, i.e.

(3)

These eigenvectors spanned the null-space of the Jacobian of this transformation ([1 1 1 1]
E). Then, the mean-free modes dm were projected onto these directions and summed:

(4)
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where n = 4 is the number of degrees of freedom of the m vector, and p=1 is the number of
degrees of freedom of the performance variable (FTOT). The component orthogonal to the null
space is given by:

(5)

The amount of variance per DOF within the UCM is then given by:

(6)

This is the variance that does not affect the total force. Similarly, the amount of variance per
DOF orthogonal to the UCM is given by:

(7)

This is the variance that affects the total force. Note that VUCM and VORT are normalized per
degrees of freedom in the corresponding spaces.

An index of mode co-variation (ΔV) was computed as,

(8)

where VTOT is the total variance per degree of freedom. Further, ΔV values were z-transformed
(adapted to boundaries of ΔV) as:

(9)

Relation between variance components and tasks characteristics: Linear model
A linear model to describe the relationship between the two components of variance (VUCM
and VORT) and characteristics of the task such as total force magnitude (FTOT) and its rate of
change (dFTOT/dt) was proposed by Latash et al. (2002). According to this model, for each
condition, there is a linear relationship between VUCM and FTOT, and a linear relationship
between VORT and dFTOT/dt (and, to a lesser extent, FTOT):

(10)

(11)
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where  and  are mean total force and mean force rate respectively, a1 is a
coefficient of linear regression that quantifies the dependence of VUCM on mean total force and
c1 is an error term, a2 is a coefficient of linear regression that quantifies the dependence of
VORT on mean total force; b2 is a coefficient that quantifies the dependence of VORT on mean
force rate and c2 is an error term. We slightly modified the model in Latash et al. (2002) to get
the model described above (as in an earlier work, Friedman et al. 2009). We used absolute
force rate  rather than force rate dFTOT(t)/dt to be able to link VORT (t) (which is
always positive) to dFTOT(t)/dt (which is negative for force-down ramps). We used this model
and fit its parameters, a1, c1, a2, b2 and c2 using linear regression, to the observed variances,
force, and force rate magnitudes.

Links to Goodman et al. (2005) model of motor variability
Goodman et al. (2005) proposed a model of motor variability within a multi-effector system.
According to this model, for multi-finger force production, f(t) profiles of finger forces are
defined as:

(12)

where fkn(t) is the force-time profile produced by a finger n (n = I, M, R, L) in trial k.

This model specifies two scaling parameters bkn and τkn that modify a template un(t). These
two parameters are chosen randomly from a normal distribution with average values bn and
τn and standard deviations SDbn and SDτn and are set before each trial. One consequence of
this model is that force variance across trials is related to force rate multiplied by a term
containing variance of τ, Var(τ), while effects of variance of b are small. Since variance of total
force is defined by VORT, this model implies that VORT is primarily defined by Var(τ).

To analyze how Var(τ) affected VORT, we computed the coefficient of variation of the timing
parameter τ (CV(τ)) based on the Goodman model and the collected data. Briefly, we related
the total force variance with characteristics of task performance (mean force, force rate) as:

(13)

where Var(Ftot (t)) ,  ,  are computed for each condition across trials. Using
linear regression, we computed the coefficients x and y for each condition for each subject.
Note that y in (13) above is related to CV(τ), as follows:

(14)

Equations (13) and (14) are generalizations of Goodman et al. (2005) model for the four-finger
(IMRL) case. Using (14), we computed CV(τ) for each condition for each subject.

Anticipatory synergy adjustments
To study anticipatory synergy adjustments, individual trials were aligned by the time at which
the force rate in each particular trial reached 5% of its peak value in that trial (t0). For this
analysis, we considered the data between the following times: 500 ms before t0 and 100 ms
after t0. The index of mode co-variation across trials (ΔV) was computed and further z-
transformed (ΔVZ) adapted to its boundaries, as explained earlier.
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The mean value and standard deviation of ΔVZ (ΔVZ-MEAN and ΔVZ-SD) were computed over
the time interval between 500 ms and 300 ms before t0; this time interval was selected to
represent steady-state based on earlier studies (Olafsdottir et al. 2005; Shim et al. 2005). The
time of initiation of anticipatory synergy adjustments, tASA, was computed for each subject
and each condition separately, as the time when ΔVz dropped below ΔVZ-MEAN by more than
ΔVZ-SD and stayed below that value until t0.

To study changes in the magnitude of ΔVz, we computed an index, ΔΔVz = ΔVZ-MEAN -
ΔVZ(t0), for each subject and each condition.

Statistics
Standard descriptive statistics were used. ANOVA with repeated measures was run on a
number of dependent variables.

In order to test whether the variance of total force scaled with ramp time, a two-way repeated
measures ANOVA was performed on peak variance of total force with factors Ramp-Time (5
levels) and Direction (2 levels). Direction was included as a factor in order to capture possible
differences between the force increase and force decrease trials.

In order to test if VUCM and VORT varied across conditions, we performed a two-way repeated
measures ANOVA on peak-to-peak VUCM and peak VORT with factors Ramp-time (5 levels)
and Direction (2 levels).

For ΔV analysis, we computed ΔVz at five equally spaced times (phase 1%, 26%… 100%). To
test if ΔV changed across ramp times, or directions, or phases, a repeated measures ANOVA
with factors Ramp-time (5 levels), Direction (2 levels) and Phase (5 levels) was used.

To test dependence of VORT on absolute magnitude of force rate, we performed a two-way
repeated measures ANOVA on the parameter b2 of the linear model (equation 8) with factors
Ramp-time (5 levels) and Direction (2 levels). We used direction as a factor to capture
differences between force increase and force decrease ramps.

To test if the CV(τ) varied across ramp times and directions, we performed a two-way repeated
measures ANOVA on CV(τ) with factors Ramp-time (5 levels) and Direction (2 levels). To
test if ASA magnitude ΔΔVZ varied across tasks, we performed a two-way repeated measures
ANOVA on ΔΔVZ with factors Ramp-time (5 levels) and Direction (2 levels).

Results
Task performance and patterns of total force variance

An example of performance in a typical trial is shown in the inset in Figure 1. This figure shows
the task with the 500 ms ramp time. Variance of total force was calculated over all trials for
force increase and force decrease and for each subject separately. The variance showed a bell
shaped profile for all conditions with a peak in the middle of the ramp. Variance at the end of
the force increase ramp was slightly higher than that at the beginning of the ramp. Mean
performance and variance of performance in one condition by a typical subject in force increase
and force decrease trials are shown in Figures 2A and 2B respectively.

Variance of total force, Var(F), increased as the ramp-time decreased. Figure 3A shows the
time profiles of force variance averaged across subjects for the force increase ramps and Figure
3B shows these time profiles for the force decrease ramps. For across-subjects comparisons,
all the variances were normalized by the four-finger (IMRL) MVC squared. Figure 3C presents
peak values of Var(F) averaged across subjects for both force increase and force decrease
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ramps. This panel shows that the variance was higher for actions with shorter ramp-times for
both force increase and force decrease. It is also clear from Figure 3C that force decrease ramps
were characterized by higher Var(F). These observations were confirmed by a two-way
repeated measures ANOVA performed on peak variance of total force with factors Ramp-
Time (5 levels) and Direction (2 levels). Significant main effects were found for Ramp-Time
(F (4, 63) = 13.31, p < 0.001) and Direction (F (1, 63) = 15.5, p < 0.001), without a significant
interaction. Pair-wise comparisons showed that the peak Var(F) for the 1400 ms ramp time
tasks was significantly different from peak Var(F) in all other tasks, peak Var(F) in the 700 ms
tasks was significantly different from that in the 300 ms tasks, and peak Var(F) in the 500 ms
tasks was significantly different from that in the 300 ms tasks. The effect of Direction
corresponded to higher Var(F) values for the force decrease ramps, compared to the force
increase ramps.

Variance within and orthogonal to the uncontrolled manifold
Further, finger force data were transformed into finger modes (see Methods), and the variance
in the finger mode space was quantified separately in two sub-spaces: The uncontrolled
manifold (UCM) and its orthogonal complements (ORT). Variance within the UCM (VUCM)
and orthogonal to the UCM (VORT) were computed using equations 6 and 7, respectively, for
each subject and condition. Across subjects and conditions, time profiles of VUCM resembled
the F(t) time profiles. VUCM increased with force increase and decreased with force decrease.
Patterns of VUCM time profiles for various conditions, averaged across subjects, are presented
in Figure 4A for the force increase ramps and in Figure 4B for the force decrease ramps. Note
that this index is normalized by MVC squared and number of dimensions (n = 3). Figure 4C
shows the normalized peak-to-peak VUCM values for the force increase and force decrease
ramps. A two-way repeated measures ANOVA on peak-to-peak VUCM, with factors Ramp-
Time (5 levels) and Direction (2 levels) showed a significant effect of Ramp-Time (F (4, 63) =
2.75, p < 0.05) but not Direction; there was no interaction. Pair-wise contrasts showed that the
effect of Ramp-Time corresponded to a significant difference between the 700 ms ramp tasks
and the 300 ms ramp tasks.

In contrast to VUCM, VORT exhibited a bell-shaped time profile for both force increase and force
decrease ramps. The peak of VORT was approximately half way through the ramp time,
approximately coinciding with peak force rate. Patterns of time profiles of VORT for various
conditions, averaged across subjects, are presented in Figures 5A and 5B for the force increase
and force decrease ramps. Figure 5C shows that peak VORT increased as the ramp-time
decreased. VORT is also higher for the force decrease segments as compared to the force increase
segments. These observations were confirmed by a two-way repeated measures ANOVA
performed on peak VORT with factors Ramp-Time (5 levels) and Direction (2 levels).
Significant main effects were found for Ramp-Time (F (4, 63) = 13.31, p < 0.001) and
Direction (F (1, 63) = 15.50, p < 0.001), but not for the interaction. Pair-wise comparisons
showed that peak VORT for the 1400 ms ramp time was significantly different from peak
VORT for all other conditions, peak VORT for the 700 ms ramp time was significantly different
from that for the 300 ms ramps, peak VORT for 500 ms ramp time was significantly different
from that for the 300 ms ramp. The effect of Direction was due to the higher VORT for the force
decrease ramps as compared to the force increase ramps.

The index of mode co-variation, ΔV was higher in the beginning of the ramp and at the end of
the ramp when compared with the middle portion of the ramp. Figure 6A shows a plot of ΔV,
averaged across tasks and subjects for the selected five phases of force increase. Figure 6B
shows a plot of log-transformed ΔV values, ΔVz, averaged across tasks and subjects for various
phases of force increase. The error bars show standard errors across subjects. A repeated
measures ANOVA on ΔVz with factors Ramp-time (5 levels), Direction (2 levels) and Phase

SKM et al. Page 9

Exp Brain Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5 levels) showed significant main effect of Phase (F(4,343) = 375, p < 0.001) but not of Ramp-
time. Higher ΔV in the beginning of the trial and at the end of the trial when compared with
the middle of the trial was confirmed by pair-wise comparisons. The interaction Direction ×
Phase was also significant (F(4,343) = 77.21, p < 0.001). The interaction reflected a higher
change of ΔV across various phases of the trial during force increase than during force decrease.
The interaction Ramp-time × Phase was also significant (F (16,343) =7.77, p<0.001).

As post-hoc contrasts, we used two-way ANOVAs run separately on the data for the two ramp
directions, force increase and force decrease. ANOVA on ΔV for force increase with factors
Ramp-time and Phase showed a significant effect of Phase (F(4,168) = 167.9, p < 0.001). This
corresponded to a higher ΔV at the beginning and at the end of the trial when compared to the
middle of the trial. The interaction Ramp-time × Phase was also significant (F(4,168)=3.1,
p<0.001). This was because ΔV was lower at the end of the trial when compared to the beginning
of the task in faster tasks. But ΔV was higher at the end of the trial when compared to the
beginning of the trial in slower tasks.

ANOVA on ΔV for force decrease with factors Ramp-time and Phase showed a significant
effect of Phase (F(4,168) = 275.87, p < 0.001). This corresponded to a higher ΔV at the beginning
and at the end of the trial when compared to the middle of the trial. The interaction Ramp-
time×Phase was also significant (F(16,168) = 7.94, p < 0.001). This was because the difference
in ΔV between the start of the trial and the end of the trial was lower in slower tasks than in
faster tasks.

Relationships between characteristics of total force and components of variance
The two components of variance, VUCM and VORT, showed time profiles similar to those of
total force and force rate (dF/dt), respectively. These relationships are illustrated in Figure 6
for the force increase ramp over 400 ms performed by a typical subject. Figure 7A presents
total force averaged across trials and VUCM while Figure 7B presents mean dF/dt and VORT.
Note the qualitative similarity between the curves shown in Figures 7A and 7B. This similarity
suggested using a linear model described in the Methods (equation 8) to link the two variance
components to total force characteristics. Table 1 presents the averages and standard errors of
various parameters of this analysis. On average, the regressions accounted for more than 85%
of the variance.

Within the equation VUCM = a1FTOT + c1, parameter a1 did not vary consistently with ramp
time, while the intercept c1 was typically close to zero.

Within the equation VORT = a2FTOT + b2dF/dt + c2, parameter a2 was relatively small and
showed no regular trend with changes in ramp time. Parameter b2 reflected the dependence of
VORT on absolute force rate. This parameter also did not show any regular trend with ramp-
time. Intercept c2 was typically very small (close to zero).

A two-way repeated measures ANOVA was performed on parameter b2 with factors Ramp-
Time (5 levels) and Direction (2 levels). None of the effects were significant.

Links to Goodman et al. (2005) model
A model proposed by Goodman et al. (2005) specifies two scaling parameters, an amplitude
parameter b and a timing parameter τ that modify a template un(t). Within this model, VORT
is primarily defined by variance of τ, Var(τ). The coefficient of variation of the timing parameter
τ was computed to check if this parameter varied systematically with ramp time. Figure 8
presents the average values of CV(τ) for various conditions. Error bars indicate standard errors.
A two-way repeated measures ANOVA on CV(τ) with factors Ramp-time (5 levels) and
Direction (2 levels) was performed. Significant main effects were found for Ramp-Time

SKM et al. Page 10

Exp Brain Res. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(F (4, 63) = 66.28, p < 0.001) and Direction (F (1, 63) = 7.83, p < 0.01), but not for the interaction.
Pair-wise comparisons showed that CV(τ) values for ramp times 1400 ms and 700 ms were
significantly different from those for all other ramp times. The effect of Ramp-Time
corresponded to a decrease in CV(τ) as the ramp time decreased. In other words, as slope
increased, CV(τ) decreased. The effect of Direction corresponded to a higher CV(τ) for force
increase as compared to force decrease.

Anticipatory Synergy Adjustments
For this analysis, individual trials were aligned by the time at which the force rate reached 5%
of its peak value. Then, an index of mode co-variation, ΔV was computed (See Methods). Figure
9A shows time-series of ΔV for a typical subject for the 400 ms ramp-time. Note that ΔV starts
to decrease at about 120 ms before t0.The time at which ASAs emerge (tASA) was computed
for each ramp time for each subject. These times, averaged across subjects are presented in
Figure 9B. The figure shows that tASA ranged from about 80 ms to about 180 ms; there was no
consistent change in tASA with ramp time or direction. The magnitude of ASAs, ΔΔVZ was
(mean ± SE) 0.23±0.04 for force increase and 0.25±0.04 for force decrease. The index ΔΔVZ
did not show any consistent change with respect to ramp times or direction. This was confirmed
by a two-way repeated measures ANOVA on ΔΔVZ with factors Ramp-time (5 levels) and
Direction (2 levels). There were no significant effects.

Discussion
The main question asked in our study was whether the controller was able to prevent the “bad
variance”, VORT from increasing with the force rate as observed in the previous study of cyclic
force production tasks (Friedman et al. 2009). We got a negative answer: A drop in force ramp
time was associated with an increase in total force variance (and VORT) unlike the results of
the cited study of cyclic tasks. However, analysis of the data within the Goodman model
(Goodman et al. 2005) documented significant adjustments in variability of the timing
parameter τ, similarly to the observations in the study of cyclic force production. We will
discuss implications of these seemingly contradictory findings for the control of discrete and
cyclic actions.

Our secondary goal was to explore quantitative characteristics of anticipatory synergy
adjustments (ASAs) with changes in the force rate. We expected to see earlier and larger ASAs
prior to trials with faster force production. This prediction was not supported by the data.
Indeed, ASAs were seen prior to the initiation of force change in all the tasks, but both the
timing and magnitude of ASAs were similar across tasks with different force rates. This forced
us to reconsider the earlier hypothesis on the role of ASAs in preparation to an action (cf.
Olafsdottir et al. 2005; Shim et al. 2005).

Components of force variance in redundant tasks
Motor redundancy may be viewed as a source of computational problems that require using
sophisticated methods, for example optimization (for review see Seif-Naraghi and Winters
1990; Rosenbaum et al. 2001), to find particular solutions from the infinite sets afforded by
redundant systems. A different view is represented by the principle of abundance (Gelfand and
Latash 1998). According to this approach, when a neural controller faces a problem of motor
redundancy, it does not look for unique solutions but rather facilitates families of solutions that
are equally capable of solving the problem. Within this general framework, the uncontrolled
manifold (UCM) hypothesis offers a computational approach, which we used to analyze across-
trials variance in two sub-spaces of elemental variables (finger modes, see Danion et al.
2003), compatible with the total force magnitude (estimated as the average magnitude across
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trials) and leading to total force changes. We address these two variance components as “good”
and “bad” variance or, equivalently, as VUCM and VORT.

In this study, we observed multi-finger synergies stabilizing the total force (VUCM > VORT)
across all the tasks (similarly to earlier studies, Latash et al. 2002a; Shim et al. 2005). Changes
in the force rate led to significant changes in only one of the two variance components,
VORT, resulting in smaller differences between VUCM and VORT for faster actions (reflected in
the smaller synergy index values, ΔV). Force direction also had an effect on VORT, while
VUCM was similar between the force-up and force-down tasks: Force-down tasks were
associated with larger VORT reflected in the larger total force variance. These results confirm
the findings of Shim et al. (2005) who studied tasks with trapezoidal time profiles of force
production.

We used an earlier suggested regression model (Latash et al. 2002a) linking the two variance
components to force and force rate (dF/dt) magnitudes. Within this model, VORT is linearly
linked to dF/dt. Although the linear relationships between VORT and dF/dt were seen in this
study, as well as in the earlier study of cyclic force production (Friedman et al. 2009), the
regression coefficients (b2) in the two studies behaved differently. During cyclic force
production, speeding the action up resulted in a significant drop in the regression coefficient
such that VORT modulation with dF/dt was present within each task but not across task
frequencies. This was due to adjustments of the regression coefficient to action frequency that
exactly cancelled out the expected increase in VORT with the increase in dF/dt in faster actions.
In the present study of discrete actions, VORT was modulated with dF/dt both within and across
tasks, and there was no adjustment of the regression coefficient across tasks performed at
different speeds.

These differences are illustrated in Figure 10A that shows changes in the b2 regression
coefficient across different action frequencies. For discrete tasks, we estimated the action
frequency assuming that the ramp time corresponded approximately to a half-cycle duration.
Note that in this study we explored a broader range of ramp times (frequencies), and no
adjustments in b2 were observed across frequencies.

Why does speeding the action up lead to an increase in VORT magnitude in the discrete but not
in cyclic tasks? To address this issue we turn to a model of multi-finger force production
developed earlier by Goodman and colleagues (Goodman et al. 2005).

Timing errors: Similarities and differences between discrete and cyclic actions
There have been several attempts to model typical patterns of finger force (and finger mode)
variance observed in multi-finger force production tasks. These attempts involved optimal
feedback control (Todorov and Jordan 2002), central back-coupling (Latash et al. 2005), and
feed-forward control schemes (Goodman and Latash 2006). One of these approaches extended
an earlier model by Goodman (Gutman) and his colleagues of single-joint kinematic variability
(Gutman et al. 1993) to multi-finger force production. This model, described briefly in
Methods, is based on two main parameters, b and τ, related to adjustments of action magnitude
and speed. The model assumes that, for each particular trial, both parameters are selected from
normally distributed sets that can be characterized with variances Var(b) and Var(τ). According
to the model, the “bad” variance is primarily defined by Var(τ).

Figure 10B shows changes in the coeffcient of variation of τ, CV(τ), across the two studies
with cyclic and discrete force production tasks. Note the much higher CV(τ) values for the
discrete tasks. In both studies, CV(τ) changed with action frequency. It can be seen from this
figure, however, that the drop in CV(τ) with frequency was faster for the cyclic tasks. Fitting
the data with logarithmic functions produces: CV(τ) = 0.17848 - 0.217log(f); R = 0.953 for the
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discrete actions, and CV(τ) = 0.060298 - 0.267log(f); R = 0.989 for the cyclic actions, where
f stands for frequency. Note the larger regression coefficient for the cyclic actions. The faster
drop in CV(τ) in cyclic tasks was associated with significant adjustments in b2 that allowed
the system to maintain constant total force variance across tasks. In discrete tasks, the smaller
CV(τ) adjustment was insufficient to cause b2 adjustments, and total force variance increased
with a decrease in action time (increase in action frequency).

Our findings fit a general theoretical view that the neural control of cyclic tasks may involve
adjustments in fewer control parameters (Hogan, Sternad 2007; Ronsse et al. 2009). In the
dynamic systems parlance, control of a cyclic task may be associated with setting a limit cycle
attractor with constant parameters, while the control of discrete actions involves transition
between two point attractors at a controlled rate that has to be defined for each such transition.
This general view has been supported by findings suggesting that neural implementation of
cyclic and discrete motor tasks may be different (Schaal et al. 2004; Spencer et al. 2007).

We should, however, mention a recent publication that reported better timing accuracy in
discrete tasks as compared to cyclic tasks (Elliott et al. 2009). This study, however, differed
from our experiments in a major aspect: It involved tapping tasks under different instructions
including continuous sine-like force production and discrete taps that were still produced
rhythmically. This is a major difference from our tasks, where there was no rhythm underlying
the production of discrete force ramps. Also, the emphasis of the Elliott et al. study was on
timing accuracy, not force magnitude accuracy.

What is the role of anticipatory synergy adjustments?
Several earlier studies reported changes in the index (ΔV) of force stabilizing multi-finger
synergies 100-150 ms prior to the earliest signs of force change in anticipation of a fast
voluntary force change (Olafsdottir et al. 2005; Shim et al. 2005) and in anticipation of a self-
triggered force perturbation (Kim et al. 2006; Shim et al. 2006). These phenomena have been
termed anticipatory synergy adjustments (ASAs). Some of the features of ASAs suggest rather
direct parallels with the well known anticipatory postural adjustments (APAs, reviewed in
Massion 1992). Such features involve the similar timing of both adjustments, their changes
under simple reaction time instruction, and attenuation with healthy aging (Inglin and
Woollacott 1988; De Wolf et al. 1998; Olafsdottir et al. 2005, 2007).

In our study, we observed ASAs within about the same time interval as in earlier studies, 80-200
ms prior to the first detectable change in total force. A surprising result was the presence of
ASAs prior to very slow force ramps that were similar in both time and magnitude
characteristics to the ASAs observed prior to the fastest tasks. An earlier hypothesis linked
ASAs to attenuation of a synergy that would act against a planned quick force change
(Olafsdottir et al. 2005). Our results suggest that the controller does not distinguish among
force changes at different rates when it facilitates ASAs. Note that APAs in the leg/trunk
muscles prior to fast arm movements scale both their timing and magnitude with the planned
action speed and may even disappear prior to slow actions (Horak et al. 1984; Crenna et al.
1987). The current finding seems to be the first one to report a qualitative difference in the
behaviors of ASAs and APAs.

The lack of the difference in ASA characteristics across tasks with different ramp times may
be in part due to a common feature of these tasks, that is early small-amplitude, poorly
reproducible force jumps that are very hard to avoid even if one plans a smooth and slow force
increase. Such early force jumps are reflected in a disproportionate transient increase in “bad
variance” of finger force reported over the first 100-200 ms after the initiation of force
production (Shim et al. 2003, 2005). The current results suggest that ASAs are poorly graded
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with planned action speed and represent relatively standard synergy adjustments to planned
changes in performance variables produced by redundant sets of effectors.

Concluding comments
According to a general scheme suggested by Schöner (2002), movement production involves
a multi-level hierarchical system. Two levels of this scheme are those of timing (when to do
an action and how quickly to do it) and of synergies (how to organize elemental variables such
that they stabilize important features of performance). According to this scheme, if there are
timing errors originating from the higher timing level, they cannot be corrected at the lower
synergy level.

In our study, variance of τ has been assumed to reflect variance at the hypothetical timing level
of the Schöner scheme. This variance is indeed reflected primarily in the “bad” variance at the
level of individual fingers; in other words, the co-variation organized at the synergy level is
unable to handle errors introduced by this variance. The difference between the discrete and
cyclic tasks suggests, however, that the controller is able to mitigate the effects of varied τ on
performance only for cyclic tasks but not for discrete ones. This is likely to originate from two
sources of the observed τ variance. First, for an ongoing cyclic task, there is variance of τ across
cycles that reflects different values taken from the same distribution. Second, if a task is to be
stopped and repeated, the new realization is associated with specifying a new distribution of
τ and selecting a value from that distribution.

In other words, τ variance in discrete tasks reflects two sources of variance, between
distributions of τ for different task realizations and within-a-distribution variance. The within-
a-distribution variance is common across the cyclic and discrete tasks. Our results suggest that
the controller is able to adjust to this τ variance component by changing the coefficient that
links “bad” variance and force rate. This is likely true for both rhythmic and discrete tasks. The
controller, however, seems unable to handle the between-distributions source of τ variance that
dominates force variance in discrete tasks and leads to the described qualitative difference
between the discrete and cyclic tasks.
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Figure 1.
The experimental setup. Subjects pressed on four unidirectional force sensors with the index,
middle, ring and little fingers of the right hand. The feedback showed the total force produced
by all four fingers. The task was to produce ramp like trajectories between targets shown on
the screen. A typical performance is shown for the ramp time of 500 ms.
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Figure 2.
Total force (solid lines) and variance of the total force (dashed lines) averaged across the trials
in one condition (ramp time 700 ms) produced by a typical subject. A: force increase, B: force
decrease. Note the peak of force variance in the middle of the ramp.
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Figure 3.
Variance of total force, Var(F), averaged across subjects for different ramp times. Variance
values were normalized by MVC squared. A: Var(F) time profiles for the force increase ramps,
B: Var(F) time profiles for the force decrease ramps, C: Peak force variance for the different
ramp times and two directions of force change. Averaged across subjects data with standard
error bars are shown.
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Figure 4.
Variance within the UCM, VUCM averaged across subjects for the force increase ramps (A)
and force decrease ramps (B). C: Peak-to-peak VUCM for the different ramp times and two
directions of force change. Averaged across subjects data with standard error bars are shown.
The values were normalized by MVC squared and by the number of dimensions within the
UCM sub-space. Note that VUCM increases during force increase and decreases during force
decrease.
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Figure 5.
Variance orthogonal to the UCM, VORT averaged across subjects for the force increase ramps
(A) and force decrease ramps (B). C: Peak VORT for the different ramp times and two directions
of force change. Averaged across subjects data with standard error bars are shown. The values
were normalized by MVC squared and by the number of dimensions within the ORT sub-space.
Note that VORT shows a bell-shaped profile; it increases for faster tasks.
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Figure 6.
A: The index of mode co-variation, ΔV, B: Z-transformed values of ΔV (with standard error
bars) at selected phases for the force increase ramps, averaged across subjects and tasks.
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Figure 7.
A: Mean force (normalized by MVC) and VUCM (normalized by MVC squared, per dimension
in the UCM space) for a typical subject for one force increase condition (ramp time 500 ms).
B: Mean force rate (normalized by MVC/s) and VORT (normalized by MVC squared) for the
same subject and task. Note the similar time profiles.
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Figure 8.
CV(τ) for the force increase (dashed bars) and force decrease (black bars) for different ramp
times. The plotted values are averages across subjects with standard error bars. CV(τ) decreases
as ramp times decrease.
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Figure 9.
A: A typical time profile of ΔV showing a decrease in ΔV that starts about 120 ms before force
change initiation (t0). B: Time of ASA initiation (tASA) as a function of ramp time. Averages
across subjects with standard error bars are presented. tASA shows no consistent change across
ramp times.
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Figure 10.
A: Plots of the regression coefficient b2 for both cyclical and discrete tasks. While b2 decreases
with an increase in action frequency in cyclical tasks, it does not show a consistent change in
discrete tasks. B: CV(τ) as a function of frequency for both cyclical and discrete tasks. As
frequency increases, CV(τ) decreases in both discrete and cyclical tasks. The data for the
cyclical tasks are from Friedman et al. 2009.
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