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Abstract

The mitochondrion is the most important organelle in determining continued cell survival and cell death.
Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenera-
tive disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The
central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alle-
viating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease.
Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases
and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed,
recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and
manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochon-
drial dysfunction rationally could lead to selective protection of cells in different tissues and various disease
states. However, most of these approaches are in their infancy. Antioxid. Redox Signal. 13, 279-347.

I. Introduction and Topics Reviewed 280
II. Anatomy and Function of Mitochondrial Membranes 282
A. Outer mitochondrial membrane and its potential role as therapeutic target 282
B. Inner mitochondrial membrane and its potential role as therapeutic target 284
C. Mitochondrial permeability transition pore 286

III. Electron Transport Chain and Oxidative Phosphorylation: Modulation by Mitochondrial Ion Channels and
Exchangers 289
IV. Mitochondrial ROS and RNS 291
A. Mitochondria and reactive oxygen species 291
B. Mitochondria and reactive nitrogen species 294
V. Mitochondrial ROS Scavenging and Its Potential Therapeutic Value 295
A. Manganese superoxide dismutase 296
B. Glutathione thioredoxin, and peroxiredoxin systems 297
C. Catalase and glutathione peroxidase 298
D. Cytochrome c 298
E. Mitochondria as scavengers of cytosolic Oy~ 299
VI. Uncoupling Proteins in Modulation of Mitochondrial Function: Physiological and Pharmacologic Relevance 299
VII. Mitochondrial DNA-Related Pathologies and a Potential Therapeutic Target 300
VIII. Mitochondrial Interaction with other Organelles: Therapeutic Implications 302
A. Mitochondrion—mitochondrion interaction 302
B. Mitochondrion—nucleus interaction 303
C. Mitochondria—endoplasmic/sarcoplasmic reticulum interaction 304
IX. Mitochondria-Related Diseases and Cell Injury 305
A. Mitochondria and cardiac ischemia and reperfusion injury 305

Reviewing Editors: Enrique Cadenas, Andreas Daiber, Cherubino Di Lorenzo, Sanjeev Gupta, Sabzali Javadov, Jiri Neuzil, and
Michael Roth

Departments of 1Anesthesiology and 2Physiology, 3Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
“Research Service, Veterans Affairs Medical Center, Milwaukee, Wisconsin.

5Medical Service, Hunter Holmes McGuire Veterans Affairs Medical Center, Richmond, Virginia.

Departments of Medicine (Division of Cardiology) and Biochemistry, Virginia Commonwealth University, Richmond, Virginia.

279



280

. Mitochondria and the failing heart
. Mitochondria and diabetes
. Mitochondria and hypertension
. Mitochondria and neurodegenerative diseases
1. Alzheimer’s disease
2. Parkinson’s disease
3. Amyotrophic lateral sclerosis
4. Friedreich’s ataxia
F. Neoplastic diseases
G. Other mitochondria-related diseases
1. Mitochondria and psychiatric disorders
2. Mitochondria and migraine headache

mINw

X. Mitochondrial Pharmacology and Therapeutic Potential

A. Strategies for drug delivery to mitochondria
B. Mitochondria-targeted drugs

C. Approaches to improve mitochondrial function during ischemia and reperfusion

D. Preconditioning
E. Postconditioning

XI. Other Mitochondrial Therapeutic Approaches
A. Lipid replacement therapy

B. Transactivator of transcription proteins and mitochondrial therapy

C. Molecular genetics approaches

D. Mitochondria and caloric restriction

E. Mitochondria and dietary supplements
XII. Mitochondria Age and Lifespan

A. Mitochondria and age-associated diseases

B. Mitochondrial p66°™ and lifespan

XIII. Caveats and Potential Limitations in Mitochondrial Drug Targeting

XIV. Conclusion and Perspectives

CAMARA ET AL.

306
308
309
310
310
310
311
312
312
313
313
314
314
314
317
318
319
320
321
321
322
322
322
323
323
323
324
325
326

l. Introduction and Topics Reviewed

THE RECENT RESEARCH SPOTLIGHT on mitochondria is
attributed to observations that the organelle is involved
in a number of diseases, some of which are associated with
mutations of mitochondrial DNA (mtDNA). The rekindled
interest in this organelle is coupled with its role in pro-
grammed cell death, in which superoxide anions (O,"") and
its reactive oxygen species (ROS) products and dysfunction
in the energy production process are common underlying
factors. This “new” role of mitochondria is crucial in under-
standing their utility as potential targets against numerous
human diseases. Overall cellular function is dependent on O,
consumption by functioning mitochondria to produce en-
ergy with minimal electron leak to generate O,"". Mitochon-
dria are therefore vital for normal cellular function, including
intracellular metabolic activities and signal transduction of
various cellular pathways. They are involved in cellular ion
homeostasis, oxidative stress, and apoptotic and necrotic cell
death. Indeed, recent studies have identified a host of com-
mon disorders with apparent ties to mitochondria, including
metabolic (e.g., type 2 diabetes) and cardiovascular disorders,
cancer, neurodegenerative diseases, psychiatric disorders,
migraine headache, and the aging process.

A thorough understanding of mitochondrial function in
normal and pathological states is critical in developing the
full therapeutic potential of the organelle in mitigating or pre-
venting a given disease. Mitochondrial-related diseases are
vastly different and much of the science linking mitochondria

to different disease states is still being intensively studied.
The central premise of this review simply is that if mitochon-
drial abnormalities contribute to a pathological state (directly
or indirectly), then alleviating the mitochondrial dysfunction
should attenuate the severity or progression of the disease.
Hence, the main objective of this review is to present the
concept that mitochondria of varying cell types can be poten-
tially targeted for therapeutic intervention in mitochondria-
associated diseases. That is, the review will focus on how the
mitochondrion has become a potential therapeutic target in
disease management.

Sections II and III describe the primary function of mito-
chondria, ATP synthesis through oxidative phosphorylation
(OXPHOS), and how this energy production is carried out on
a folded inner mitochondrial membrane (IMM) with protein
complexes that transfer electrons from one protein complex
to another at different redox potentials. Figure 1 provides
a simple scheme of mitochondrial function. Figures 2 and 3
illustrate the interactions of some IMM and outer mitochon-
drial membrane (OMM) proteins important in the regula-
tion of cell survival and cell death as a consequence of
oxidative stress, how regulation of transmembrane ion
fluxes maintains cell homeostasis, and how perturbing this
anatomical and functional link can lead to pathological con-
ditions.

Section III explains one of the side effects of electron
transport, generation of O,"” and its products, and Section IV
summarizes the roles of ROS and reactive nitrogen species
(RNS) as both regulators of cell function and cell death. Sec-
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FIG. 1. Basic mitochondrial structure and function. The figure shows the basic structural components of the five ETC
complexes (I, II, II, IV, and V) as well as cytochrome c (Cyc), the flow of electrons through the complexes, and the generation of
ATP. Fatty acid oxidation (FAO) and TCA cycle generate NADH and FADH, needed to energize mitochondria and establish
mitochondrial membrane potential (A¥,,; —180 to —200mV). AY¥,, is also modulated by uncoupling proteins (UCP). Phos-
phate carriers, including the adenine nucleotide translocase (ANT), regulate mitochondrial matrix phosphate levels. Substrate
uptake is mediated through inner mitochondrial membrane (IMM) proteins [e.g., carnitine palmitoyl transferase (CPT) and
pyruvate dehydrogenase (PDH)]. Mitochondrial DNA (mtDNA) encodes mitochondrial-specific proteins and cytosolic pro-
teins produced by nuclear DNA (n) are translocated to mitochondria through the translocator of the outer membrane (TOM)
and inner mitochondrial membrane (TIM); Ca*" is taken up through the calcium uniporter (CaU). The mitochondrial
Ca’" level is dependent on the level of Ca?" within the microdomain with the endoplasmic reticulum (ER). This basic function
of mitochondria and its interaction with the nucleus and ER is the basis for understanding the role of the organelle in myriad of
mitochondria-related diseases. Reproduced and modified from Wall et al. (604).

tion V describes the elaborate free radical scavenging system and serve as an effector of cell viability and how an imbalance
that regulates ROS within physiologically acceptable values in the rate of ROS production and the rate of ROS scavenging
and the critical importance of balance in the production and lead to oxidative stress, a marked contributor of mito-
scavenging of O," in normal cellular physiology. These sec- chondrial mediated pathology. Section VI discusses how
tions summarize how mitochondria modulate bioenergetics ~uncoupling proteins and drugs enhance mitochondrial
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FIG. 3. Some components of the mitochondrial ETC, OXPHOS, the TCA cycle, and various cation transporters and

exchangers in IMM. Some aspects of the transporters and exchangers have been characterized computationally and phar-
macologically. Protein components of the exchangers/transporters have yet to be fully characterized. Reproduced with
permission and modified from Beard (47) and Dash and Beard (148).

respiration, but not ATP synthesis, as a way to paradoxically
protect the organelle and cell.

Mitochondrial dysfunction and dysregulation may have
their genesis in mtDNA mutations (e.g., colon and prostate
cancer) and/or impairment or reversal of mitochondrial elec-
tron transport chain (ETC). Section VII notes that many
human diseases are linked to mtDNA mutations and mito-
chondrial dysfunction and describes how mitochondria have
emerged as central foci in the investigation of the etiology
of numerous cardiovascular, metabolic, neurological diseases,
cancer, psychiatric disorders, and migraine. Mitochondrial
membrane integrity and mitochondrial functional and mor-
phological connectivity with each other and with other
organelles, for example, the nucleus or the endoplasmic re-
ticulum (ER) are critical in maintaining cellular integrity and
they also provide continuity in cellular function. Most mito-
chondrial proteins are encoded by the nuclear genome and
complexes are encoded by both mitochondrial and nuclear
genomes. Consequently, any defects in the production of
these proteins could induce mitochondrial cytopathies that
underlie a multitude of diseases or pathological conditions.
Thus Section VIII explores the interaction of mitochondria
with themselves (the mitochondrial reticular network) and
with the nucleus and ER. In this section it is discussed how
mutations in the genes for nuclear-encoded mitochondrial
proteins, the so-called nuclear-mitochondrial crosstalk, are
implicated in a number of tissue degenerative disorders.
Section IX summarizes how mitochondrial dysfunction un-
derlies a number of diseases including cardiac ischemia and
heart failure, diabetes, hypertension, as well as neurologic and
neoplastic diseases and other lesser-known mitochondria-
related diseases. For example, myocardial ischemia causes
damage to the mitochondrial distal ETC that could be an

important link between ischemia and the mitochondrial-
induced myocyte damage that occurs on reperfusion. Section
X explores known strategies for delivering drugs to the
mitochondrion and discusses some mitochondria-targeted
procedures and drugs that appear useful in treating some
disease states, especially cardiac ischemia and reperfusion
(I/R) injury. Other mitochondrial therapeutic approaches
are presented in Section XI. Examples are lipid replace-
ment therapy (LRT), transactivator of transcription (TAT)
protein delivery, novel genetic approaches and the potential
benefits of caloric restriction, and nutritional supplements.
Section XII explores the role of mitochondria in the aging
process and the role of the mitochondrial adapter protein,
p66°" in lifespan determination. Finally, Sections XIIT and XIV
bring up the shortcomings and limitations of mitochondria-
targeted drug delivery and the authors’ conclusions and per-
spectives.

Il. Anatomy and Function of Mitochondrial Membranes

A. Outer mitochondrial membrane and its potential
role as a therapeutic target

The elaborate structure of a mitochondrion is important for
the normal functioning of the organelle and therefore as
a potential therapeutic target. Two specialized membranes
encircle each mitochondrion, dividing the organelle into a
narrow intermembrane space (IMS) bordered by the OMM
and the inner IMM (Figs. 1 and 2). The OMM contains many
channels formed by the protein porin that makes the mem-
brane relatively permeable. One of the membrane proteins is
the peripheral benzodiazepine receptor (PBR). PBR is a small
evolutionarily conserved protein involved in cholesterol
transport and steroid synthesis; it is also a regulator of apo-
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ptosis (177, 194, 217, 412). The PBR is also involved in
OMM permeabilization by interaction with the pro-apoptotic
Bcl family of proteins. However, OMM permeability may
be independent of mitochondrial permeability transition
pore (mPTP) opening because blocking PBR with 4'-
chlorodiazepam (CDZ) protects against ischemia-induced
cytochrome c release independent of damage to the IMM (74,
194, 411); CDZ also reduces ischemia-induced arrhythmias
(74). PBR is found in close association with the voltage de-
pendent anion channel (VDAC) and additional components
of the mitochondrial contact site (194,412) as shown in Figure
2. This close association also suggests that PBR-VDAC may
serve as a target for modulating apoptosis and may have
implications for drug design to treat such disorders as cancer
and neurodegenerative diseases (194, 412).

During the activation of cell death programs, permeation
of the OMM occurs through the unopposed activation of
effector proteins Bcl-2-associated X protein (Bax) and Bcl-2
homologous antagonist/killer (Bak) (3). These proteins
are located in the cytosol but oligomerize and translocate to
the OMM as a consequence of oxidative stress. They are
activated by interaction with activator peptides including
truncated-bid (t-bid) or Bim. The activator proteins are ini-
tially sequestered and inhibited by the anti-apoptotic pro-
teins Bcl-2 and Bcl-X1 (3, 229, 311, 620). Bcl-2 and Bcl-XI also
interact with sensitizer BH3-only domain peptides including
Bcl-2-associated death proteins (Bad), Bcl-2-interacting killer
(Bik) protein, and perhaps Bcl-2/adenovirus E1B 19 kd-
interacting protein (Bnip). These peptides preferentially in-
teract with and sequester B-cell lymphoma (Bcl-2) and Bcl-2
X protein (Bcl-Xl), tilting the balance toward unopposed
action of the activator peptides (229). When activated, Bak
and Bax homo-oligomerize at the OMM and promote the
release of apoptotic factors cytochrome ¢, AIF, HtrA22 /Omi
and other factors (Section II.C). The ‘BH3 only’ promotes
the oligomerization of Bax and Bak to the OMM. The anti-
apoptotic proteins Bcl-2 and Bcl-XL, located on the OMM,
antagonize these effects. It is understood that the role of Bcl-
2 and Bcl-Xl in inhibiting OMM permeation to cytochrome c
is focused on direct interactions of Bcl-2 and Bcl-X1 with
effectors Bax and Bak.

The VDAC is a mitochondrial protein synthesized by the
nuclear genome. It is considered the principal site for ex-
change of metabolites between the IMS and the cytosol.
VDAC has a large hydrophilic pore capable of translocating
ions and a variety of metabolites such as ATP and ADP (420).
As a major gateway in and out of the mitochondrion, VDAC
mediates an intimate dichotomy between metabolism and
death in all cells (583). The mitochondrial mediated cell death
involves an array of OMM and cytosolic proteins that in-
clude the hexokinases (I and II) and the Bcl family of proteins
that alternatively promote or prevent cell injury (78, 443, 444,
583).

Accumulating evidence has shown that hexokinases (HK)
(Fig. 2) play a crucial role in promoting cell survival, when
needed, and to instigate its removal if cell death is required.
HK, and II in particular, mediate cytoprotection by binding
specifically to the VDAC (31, 195, 583), in part via the hy-
drophobic N terminus specific residues of the VDAC in the
presence of Mg®" (583). It is postulated that Mg>" facilitates
binding in part by charge shielding or specific bridging effects
to facilitate the apposition of negatively charged amino acids
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on the enzymes and the phospholipids of the OMM (443). HK
III and IV lack the terminal hydrophobic region, thus they
cannot bind to the mitochondria (457). Like other cytopro-
tective maneuvers, HK is translocated from the cytosol to the
OMM (74,78, 194, 411, 414, 443, 444, 583) and the interaction
with VDAC is believed to prevent mPTP formation. Indeed, in
malignant tumor cells, unlike normal cells, the enhanced as-
sociation between HK and VDAC provides extra protection
against permeabilization of the OMM and resistance to
apoptosis (195). Recent evidence shows that the interaction
between HKs and VDAC is regulated by many factors, in-
cluding protein kinases (443). However, it is worth noting that
the binding to the VDAC is not a prerequisite for HK binding
to OMM, because the enzyme binds to OMM in yeasts, which
are known to be deficient in VDACs.

In recent preliminary studies, Cheng et al. (119) showed that
HKSs could also modulate VDAC activity via protein kinase-
mediated interaction. Specifically, this study showed that
human VDACs incorporated into lipid bilayers are phos-
phorylated under basal conditions because treatment with
phosphatases increases channel conductance, and HK bind-
ing to the channel decreases conductance of the channel. The
HK-VDAC complex significantly decreased VDAC conduc-
tance, and this effect was reversed by addition of phospha-
tase. Thus, it was concluded from these observations that at
the functional level basal phosphorylation of cardiac VDAC
may be required for modulation by HK. This observation is
consistent with the notion that HK promotes VDAC closure.
In a somewhat related study from Ardehali’s group (549), a
hypothesis was tested that HK overexpression increases
VDAC phosphorylation and that this effect may autoregulate
the binding of these proteins to mitochondria. They showed
that full length HKSs (I and II) expression resulted in a signif-
icant increase in VDAC phosphorylation and since HKs do
not directly phosphorylate proteins, they proposed that the
increased phosphorylation was via PKCe. Akt, an onco-
genic protein kinase activated by PI3K, mediates HK binding
to VDAC by affecting the phosphorylation state of VDAC
and/or hexokinase. Indeed, Akt can directly phosphorylate
HKII and this has been associated with protection against I/R
injury (381, 443). Pastorino et al. (443) showed that GSK3-$, a
kinase inhibited by Akt and located in mitochondria and
nuclei, can phosphorylate VDAC, and that this phosphory-
lation affects HKII binding to mitochondria. Activation of
GSK3-f has been linked to phosphorylation of Bax, which
upon translocation to mitochondria, makes the cell more
susceptible to apoptosis. In addition, a disruption of the HK-
VDAC interaction, as in the phosphorylation of the HK
docking site to VDAC by GSK3-f, facilitates the induction
of OMM permeabilization and subsequent apoptosis (120,
195, 447).

Insofar as the GSK3- is implicated in apoptosis, inhibiting
the kinase can be cytoprotective. Yazlovitskaya et al. (637)
showed that inhibition of GSK3-f with LiCl prevented
radiation-induced damage to cultured hippocampal neurons.
However, in some circumstances, GSK3-f can exert an anti-
apoptotic effect, as evidenced by recent observation that cer-
tain GSK3-f inhibitors are able to induce apoptosis in tumor
cells through a p53-dependent mechanism (210). Further-
more, GSK3-f expression in melanoma cell line has been
shown to protect against the apoptotic effect of the chemo-
therapeutic agent sorafenib by increasing the basal levels of
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the Bcl-2 proteins. Thus there is a strong rationale for the use
of GSK3-f inhibitors (e.g., GSK3-IX) as adjuncts in the treat-
ment of cancer (437).

HK binding promotes oligomerization of the VDAC (443)
and impedes cytochrome c release (2, 523). Neoplastic cells
also resist death in part by increasing the interaction between
mitochondria and HK; this could be prevented, as a thera-
peutic approach, by adding 3-bromopyruvate (3BrPA), an
inhibitor of HK to VDAC, in order to kill a hepatoma cell line
characterized by overexpression of HKI and HKII (447).
Transfection of leukemia-derived U-937 cells with HK sig-
nificantly reduced staurosporine-induced apoptosis when
compared to GFP transfected cells (31). Taken together, these
studies suggest that interference of the binding of HK to mi-
tochondria by VDAC-derived peptides (2) and peptide tar-
geting of the N-terminal of the HK protein (120, 443) may offer
a novel strategy to potentiate the efficacy of other modes of
conventional chemotherapy (2). However, recent evidence
also suggests that HK-mediated protection against apoptotic
signals can occur independently of VDAC (443). For instance,
HK is known to prevent apoptosis by interfering with Bax
binding to mitochondria to induce cytochrome c release (644).
Thus, in normal cells, preservation of the OMM with HKs is
accompanied by increased retention of cytochrome ¢ and
improved electron transfer and more effective OXPHOS.

These studies demonstrate that cellular injury could be
ascribed to increased permeability of the OMM and that
limiting the permeability of the OMM will protect against cell
damage and cell death due to oxidative stress. Indeed, HKII
detachment from the OMM with clotrimazole, or with de-
signed peptide fragments that target the N-terminal (amino
acid sequences) of the HKII domain for VDAC (120), leads to
cell death. Therefore, a mitochondria-targeted therapy de-
signed for the OMM as a potential therapeutic maneuver is
highly relevant and is the subject of intense research. A better
understanding of the interaction between the cytosolic pro-
teins and OMM will greatly optimize therapies for treating
ischemic heart disease, neurodegenerative diseases, and can-
cer. These different mitochondrial related diseases and the
potential targeting of the organelle as a mitigating factor will
be discussed in much detail in the following sections.

B. Inner mitochondrial membrane and its potential
role as therapeutic target

The IMM, relative to the OMM, is highly impermeant and
allows only certain small molecules to pass through. It is
convoluted into a large number of infoldings called cristae.
Cation permeation is regulated by ion channels and ex-
changers whose functions are governed by a high IMM
potential (A¥y,) (Fig. 3). The transmembrane cation fluxes
through specialized cation transporters and exchangers are
essential for mitochondrial bioenergetics (53, 379). The spe-
cialized coupling of OXPHOS requires a low permeability of
the IMM not only to protons but also to other cations (53, 201).
Mitochondrial cation anti-porters/exchangers (proton-linked)
regulate any osmotic differential across the IMM that would
result from the high proton motive force (AuH™). The chemi-
osmotic hypothesis of energy conservation indeed requires the
presence of electroneutral cation anti-porters, for example, the
Na™/H* exchanger (NHE) and the K™ /H" exchanger (KHE),
as well as a low permeability to the cations K* and Na*
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(Fig. 3). The requirement of low cationic permeability and
a strong H™ electrochemical gradient Ay (provided by the
substrates and stored in the Ay, and pH gradients) along
with cation exchangers to prevent any osmotic overload,
might seem to obviate the need for specific cation channels/
uniporters. However, it is now evident that there are or need
to be mitochondrial channels for K, Ca**, and perhaps Na™*
(53). These channels are likely to modulate Apyy.

Mitochondrial Ca®" (mCa®") uptake through the Ca*"
uniporter (CaU) is mainly dependent on Ay, and the Ca®*
gradient between the cytosol and the matrix. This uptake
of Ca®" into mitochondria helps to buffer cytosolic Ca®",
bringing it to levels where the ER can handle it. Mitochondrial
Ca®" loading may have profound consequences for mito-
chondrial function such as regulating cellular respiration and
mediating cell death by apoptosis or necrosis. A small in-
crease in mCa®" during increased workload is thought to be
necessary for activity of TCA cycle enzymes to furnish the
reducing equivalents necessary to match energy demand with
supply. The buffering capacity of the matrix proteins, adenine
nucleotides, and phosphates modulate mCa* to maintain a
physiologically relevant free Ca®" (249). However, high
m[Ca?"], as observed during cardiac I/R, can impair ATP
synthesis and lead to a loss of ion homeostasis, opening of
the mPTP, matrix swelling, and OMM rupture (277, 569). This
irreversible mPTP opening is associated with collapse of AV,
release of cytochrome ¢ and perhaps more ROS production
(Section III), resulting in the vicious cycle of further amplifi-
cation of ROS production, mCa®* overload, and increasing
irreversible cell damage (71, 391).

The electrophoretic Ca®* uptake through the CaU is mat-
ched by Ca®" extrusion primarily via the Na*-dependent
Na"/Ca®" exchanger (NCE) (71, 96, 139, 411) and via a puta-
tive Na'-independent Ca>" efflux mechanism (NICE), [e.g.,
a Ca>"/H" exchanger (CHE)] (226, 621). The Ca*" efflux can
also be regulated by the mPTP, which is insensitive to ru-
thenium red (RuR) (53, 177, 227). Transient opening of the
pore, perhaps in a low conductance state, will result in Ca%*
efflux without significant depolarization. This is only possible
if the pore opening is brief so that the transient depolarization
can recover.

Attenuation of mCa”" overload and the subsequent reduc-
tion in the sensitivity of the mPTP opening can be accomplished
in part by inhibiting NHE or the CaU. Indeed, studies have
shown that NHE inhibition and Ca*"channel blockers preserve
tissue ATP and creatine phosphate levels during cardiac I/R
injury (279, 322), in part by improving mitochondrial state 3
respiration (270). It was concluded from this study that inhi-
bition of NHE might be mediated in part via mitochondria to
prevent Ca®" overload, which could mitigate mPTP opening
and reduce cell injury (270). However, these effects of NHE
inhibition could also be attributed to delayed recovery of in-
tracellular pH, which inhibits mPTP opening (270).

In a recent study we reported that activation or inhibition
of NHE might impact mitochondrial bioenergetics directly as
evidenced by changes in mitochondrial redox state, mCa®"
overload, and O, production in isolated hearts. Oxidation of
the mitochondrial redox state, increased O,"~ generation, and
increased m[Ca?*] in hearts where NHE was activated were
associated with compromised functional recovery. Blocking
activation of NHE with a NHE inhibitor or by reperfusing
with acidic buffer to reduce the pH gradient minimized the
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mitochondrial dysfunction (10). We suggested that the pro-
tection afforded by NHE inhibition is due to a direct impact on
mitochondrial NHE, as well as on sarcolemmal NHE. Our
interpretation was based on an observation that cariporide, an
NHE-1 inhibitor, blocked mitochondrial matrix acidification
and ATP depletion during simulated ischemia in cardiac
myocytes (486). In the presence of the respiratory inhibitors
oligomycin and KCN, inhibition of mitochondrial NHE in-
creased mitochondrial acidification in permeabilized myo-
cytes (228). Based on this scenario, a decrease in matrix pH
and the concomitant depolarization of A¥,, (228) should in
turn reduce the driving force for mCa”"uptake and minimize
mitochondrial damage. Furthermore, in preliminary studies
we showed that RuR given in combination with perfusate
buffer at pH 7.4 (Fig. 4B) and 8 (data not shown), 10 min before
and after warm ischemia only improved cardiac function
slightly, but with a marked reduction of mCa*" (Fig. 4A). In
the same study using a similar protocol, we showed that
amobarbital, a complex I blocker, markedly reduced mCa*"
load and improved functional recovery (Figs. 4A and 4B) (11),
consistent with another study (380).

The respiratory chain and the ion channel pumps are nec-
essary to maintain the substantial electrical potential across
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the IMM (Fig. 3). This potential is about two times larger than
the sarcolemmal membrane potential and therefore provides
a unique chemical opportunity for selectively targeting the
mitochondrion. This unique attribute of the mitochondrion,
coupled with recognized peptide signal sequences following
post-translational modification of nuclear encoded polypep-
tides, has been employed to direct the so-called “mitochon-
driotropic” drugs, where they accumulate in the matrix
(71). For example, the cationic metalloporphyrin superoxide
dismutase mimetic Mn (III) meso-tetrakis (N-ethylpyridium-
2-yl) porphyrin (MnlIIl TE-2-Pyp°") has been shown to accu-
mulate in mitochondria derived from mice cardiac myocytes
following systemic injection (534). Some of the mitochondrial
antioxidants, for example, vitamin E and coenzyme Q, have
been structurally modified to target the mitochondrion (218).
Smith et al. (532) reported that complexing vitamin E with
the triphenyl-phosphonium (TPP*) cation augmented mito-
chondrial uptake of the complex. Similarly, the scavenging
capability and anti-apoptotic efficacy of ubiquinone was en-
hanced by complexing the protein with spin traps (286). The
cell membrane permeable amphilite tempol (4-hydroxy-
2,2,6,6, -tetramethylpiperidine) can be partitioned to the mi-
tochondria (mito-tempol) by coupling it to TPP" (619). Table 1

2

mitochondrial Ca?* uptake, or amobar-
bital (AMO), a respiratory complex I in-
hibitor. Note that RuR, and to a greater
extent AMO, improved function and re-
duced m[Ca>"] after ischemia. All data B
are expressed as means +s.em. and
statistical differences (between groups
and within groups) were determined by
two-way ANOVA. Differences between
means were considered significant when
p <0.05 (two-tailed). If F tests were sig-
nificant, appropriate post hoc analyses
(Student-Newmann-Keuls or Duncan)
were used to compare means. *p < 0.05
treatment vs. baseline/time control;
tp<0.05 pH 7.4 or pH 8.0+RuR vs.
other treatments; $p < 0.05 pH 7.4 alone
vs. pH 8 alone; #p <0.05 pH 7.4+ Amo
vs. other treatments. Reproduced with
permission of Aldakkak et al. (11).
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shows examples of mitochondria-targeted drugs or agents
that are hitched to the carrier molecules that permeate the
mitochondrion.

Mitochondria-targeted peptides could also be recognized
by unique amino acid sequences that enable translocation of a
peptide to a mitochondrion. However, other mitochondrial
proteins translocate to the matrix without the targeting pep-
tide sequences. These proteins interact with and bind to sites
present on the OMM or IMM. For example, PKCe interacts
with and phosphorylates its target proteins in the IMM by

212, 262, 393, 465, 507, 551, 553, 554, 574):

Amino acid and peptide-based delivery systems
SS tetrapeptides (antioxidants)

Small peptides and proteins (101, 123, 136,
TAT proteins for delivery of proteins

Glutathione choline ester (519)
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g < = ischemia and increase ATP synthesis on reperfusion, which in
ESQ i g turn may increase the energy-dependent processes that are
g <ZC oy - involved in establishing the ion gradient across the sarco-

lemma and mitochondrial membranes (150).

It is important that mitochondrial ion channels and ex-
changers are controlled in order to provide the balance be-
tween energy supply and demand that is crucial for normal
cell function. Attempts to characterize the molecular struc-
tures of these channels remain elusive, however. Achieving
this goal from a pharmacological standpoint could “spur the
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between the VDAC and ANT to form the pore at the contact
site of the IMM and OMM (391) (Fig. 2). However, recent
studies have demonstrated that the VDAC and ANT act more
as regulatory proteins of the mPTP (37, 120).

The physiological role of CypD is not known, but its
pathological role as a component of the pore is widely
accepted (37). CypD, a peptidylprolyl cis-trans isomerase,
facilitates a conformational change in the ANT, converting it
to an “open” pore (397). The role of CypD in the regulation of
cell survival or death is evidenced by the finding that cells
from mice lacking the Ppif gene that encodes the protein are
protected from necrotic caspase-independent cell death but
not from caspase-dependent apoptosis (36, 43, 297). In a re-
lated study Naga et al. (397) reported that synaptic mito-
chondria show greater vulnerability to Ca>" overload when
compared to nonsynaptic mitochondria. This differential sen-
sitivity was attributed to higher levels of CypD in the synaptic
mitochondria when compared to the nonsynaptic mitochon-
dria. The differences in Ca>" handling between the synap-
tic and nonsynaptic mitochondria were greatly reduced in
CypD null mice, and a higher concentration of CsA was
necessary to increase the Ca®" retention capacity (Fig. 5) in
the synaptic mitochondria (397). Interestingly, the levels of
VDAC and ANT were not significantly different between
synaptic versus nonsynaptic mitochondria (397). The authors
postulated that the greater amount of CsA needed to block
mPTP opening in the brain synaptic mitochondria, compared
with the nonsynaptic mitochondria, has important implica-
tions with regard to the use of this compound and its deriv-
atives as neuroprotective agents (397). Other OMM proteins,
including anti-apoptotic proteins, are known to be associated
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with mPTP, but may mediate cell death independently of the
megapore opening (71, 74, 194, 443, 550).

The mPTP allows passage of electrolytes and solutes and
metabolites up to 1.5KDa. In addition to excess mCa*" load
and ROS production, mPTP opening can also be promoted
by AY ., depolarization, P;, and thiol modification of specific
mitochondrial proteins. Adenine nucleotides, Mg”", and ma-
trix H' inhibit the pore (71, 177, 236, 237, 411). Pore opening
causes dissipation of A¥,, and is exemplified by equilibration
of H" across the IMM, which leads to inhibition of ATP pro-
duction, further generation of ROS and ultimately to colloid
osmotic swelling (514) and rupture of the OMM (514, 572,
573). Depletion of intracellular ATP in turn leads to derange-
ment of ionic homeostasis and prolonged pore opening;
this could lead to irreversible cellular damage and necrosis.
Caspase-dependent apoptotic cell death on the other hand
is dependent on residual ATP production from “stunned”
mitochondria (573).

The most basic function of the mPTP is thought to be
initiation of mitochondrial turnover in instances where indi-
vidual mitochondria are dysfunctional because of accu-
mulating mutations in mtDNA and oxidative damage to
membranes and proteins. Moreover, the opening of the pore
has been associated with numerous pathological conditions
(e.g., stroke accompanied by brain ischemia). In this case,
prolonged pore opening led to loss of mitochondrial proteins,
most notably cytochrome ¢, second mitochondria-derived
activator caspase/direct inhibitors of apoptosis protein (IAP)-
binding protein (Smac/Diablo), apoptosis-inducing factor
(AIF), endonuclease G (Endo G), and HtrA2/Omi (295, 363,
546). Once released into the cytosol, these mitochondrial
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proteins trigger both caspase-dependent (by cytochrome c,
Smac/DIABLO, or HtrA2/Omi), and caspase-independent
(by AIF, Endo G, or HtrA2/Omi) apoptosis (110, 268).

AIF is a phylogenetically old protein confined in the IMS
in the healthy cell. Upon lethal signaling, AIF is released to
the cytosol and is then translocated to the nucleus where it
binds to DNA to instigate caspase-independent chromatin
condensation (93). Endo G is a mitochondria-specific nuclease
that once released from mitochondria translocates to the nu-
cleus and cleaves DNA into nucleosomal fragments inde-
pendent of caspases (336). Smac/Diablo and HtrA2/Omi are
two IAP antagonists identified in mammals. They are both
nuclear encoded mitochondrial proteins and cleavage of their
mitochondria-targeting sequence generates active Smac and
Omi. Released in the cytosol these peptides bind to and cleave
IAPs and thereby induce apoptosis (177, 642). For example,
increased expression of HtrA2/Omi in cells increases cleavage
of XIAP, while suppression of HtrA2/Omi by siRNA has the
opposite effect (535). Therefore, release of these pro-apoptotic
peptides could initiate and/or amplify cell death that occurs
via apoptosis (177, 550). Conversely, IAPs block the enzy-
matic actions of the caspase proteins that mediate cell death
(177, 550) (Fig. 6). Cancer cells are able to utilize the IAP pro-
teins by overexpression to confer chemoresistance. Recent
studies have also shown that the mitochondrial apoptotic
protein Smac can abrogate the protective function of IAPs
(134, 144, 546). These findings suggest the potential clinical
utility of Smac mimetics to trigger apoptosis and overcome
drug resistance conferred by IAPs.

mPTP opening can also mediate fast Ca®" release from
Ca”" loaded mitochondria (Fig. 2), perhaps through a Ca®*
induced release mechanism (177, 550). These actions of the
mPTP apply in most instances of cell damage and suggest that
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pharmacological agents or any other maneuvers that influ-
ence the pore could minimize the extent of permanent dam-
age that arises. In this regard, protective strategies directed to
mitochondria might be beneficial (572, 573). It is therefore
significant that achieving control of the mPTP during the
disease process is an important goal from the perspective of
minimizing the early loss of function, and maximizing salvage
as time proceeds following initial injury.

Despite considerable effort, however, the molecular iden-
tity of the mPTP remains controversial and uncertain. This
uncertainty in the pore structure, its constituents or secondary
targets (ROS production, Ca?* uniporter), have complicated
drug development directed at influencing pore opening.
Furthermore, the dubious role of the mPTP constituents in the
preservation of cell life or mediation of mitochondrial injury
complicates the therapeutic goal of targeting the pore. For
example, one therapeutic strategy targeting the mPTP is
overexpression of CypD, which has been shown to paradox-
ically increase resistance of cells to oxidative stress-induced
cell damage. In this case, CypD acts both as an instigator
of cell death on the one hand, and on the other hand as a
chaperone-like protein to protect against oxidative stress (341,
602). Nonetheless, several pharmaceutical agents targeting
the mPTP have been successfully employed in numerous
models of cellular injury to mitigate damage (572, 573, 602).
This is evident by the recent human clinical trial that shows
CsA reduced infarct size and improved recovery of contractile
function on reperfusion. The authors proclaimed that large-
scale trials are ongoing to address if these treatments might
improve clinical outcome in patients after acute myocardial
infarction (213).

These studies do provide some hopes for a clinical possi-
bility of targeting the mPTP. But other models of the pore

FIG. 6. A hypothetical model

mCaZ+. showing Bcl-2 and caspase regu-
Bax/Bad/Bak lation of Smac/DIABLO release
from mitochondria. Cytochrome ¢

and AIJF released from mitochon-

Bel-2 dria, as a result of mPTP opening

or OMM permeabilization (Bad-
Bax oligomerization), promote
creation of the apoptosome, which
triggers caspase-dependent feed-
back on mitochondria to release
Smac/DIABLO. Smac/DIABLO in
turn inhibits intrinsic IAPs, thereby
neutralizing their caspase-inhibi-
tory properties. This vicious cycle
could continue to lead to more ap-
optosis, or it could be interrupted
by the anti-apoptotic Bcl family of
proteins, which by acting on the
OMM reduce cytochrome c release
and subsequently reduce Smac/
DIABLO release and decrease ap-
optosis. The anti-caspase agent
Z-VAD could also mitigate apo-
ptosis by inhibiting the caspase-
dependent mitochondrial attack.

-

Reproduced with permission from
Adrian et al. (5).
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maintain that activation of the pore with ROS would impair
the antioxidant effect of CypD. Overall, the major goal is de-
velopment of novel, specific, and potent inhibitors that target
both the primary constituents, which still remains elusive, and
secondary targets (e.g., CaU) whose activities directly or in-
directly modulate pore activity. An example in this case is the
use of the antidepressant drug nortriptyline, which exerts its
neuroprotective effects against cerebral I/R injury in part via
delayed mPTP opening by resisting Ca>" overload (646).
Therefore, a complete molecular characterization of the CaU
could lead to better therapeutic targets that could minimize
matrix Ca®" uptake and indirectly mitigate mPTP-mediated
cellular damage.

Other therapeutic strategies involve the direct targeting of
constituents of the pore. For example, ANT inhibitors have
been used to block mPTP, but their use in the heart is of
limited values because the heart stops beating (74). CsA, and
its nonimmunosuppresive derivative NIM811, prevent mPTP
activation in part by blocking CypD binding to ANT and thus
prevent mitochondrial depolarization (573). Sanglifehrin, a
novel immunosuppressive natural product that also binds
to CypD and inhibits its peptidyl-prolyl isomerase, is effective
in protecting against pore opening and minimizing I/R-
mediated cellular injury. The translation of these agents from
experimental studies to clinical trials is hampered, however,
by their undesirable side effects. CsA is known to exert un-
wanted side effects on the heart by inhibiting calcineurin (138,
236). It is reported that CsA has a narrow window of activity;
the optimal concentration is approximately 200 nM for opti-
mal protection but it declines as a protective agent at higher
concentrations. Other mPTP inhibitors whose mode of actions
are not well known include trifluoperazine, which is only
active in energized mitochondria, and ubiquinone analogues
which modulate pore opening by interacting with complex I
(236).

Knowledge of the structural constituents of the mPTP and
how agents modulate the dynamic function and structure of
the mPTP is essential to understand the role of mitochondria
as a therapeutic target for human diseases in which apoptotic
and anti-apoptotic mechanisms are directly implicated in the
etiology. The goal here would be to selectively manipulate
mPTP protein function by therapeutic intervention, either to
activate it to induce apoptosis for cancer therapy, or to inhibit
it to protect against cell death during cardiac or cerebral is-
chemia.

lll. Electron Transport Chain and Oxidative
Phosphorylation: Modulation by Mitochondrial
lon Channels and Exchangers

Mitochondria are the primary organelles for the generation
of ATP under normal aerobic conditions. They contain the
terminal oxidative pathway (TCA cycle) for carbohydrate and
fat oxidations that produce the reducing equivalents NADH
and FADH, (H" and electron pairs). In OXPHOS, electrons
are transferred from NADH and FADH, to molecular O,
through the ETC complexes I-IV until two electrons and two
protons combine with %0, to produce H,O at complex IV
(respiration). Concomitantly, protons are pumped from the
mitochondrial matrix into the IMS. This generates a pH gra-
dient and an electrostatic potential, A¥,,, across the IMM.
Under normal physiological conditions, A¥,, contributes
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most of the Auyy, which drives the protons back into the mi-
tochondrial matrix down their electrochemical gradient
through the F;F;—~ATPase (ATP synthase) to synthesize ATP
(phosphorylation). Both A¥,, and Ay tend to decrease if the
supply of NADH and FADH, through the TCA cycle does not
match the increased flux through the ETC during mitochon-
drial respiration. Together, the various compartments of mi-
tochondria are able to work in harmony to generate ATP in a
complex multistep process.

ATP is involved in a myriad of cellular processes that are
essential for cell survival such as maintaining ionic homeo-
stasis, cell proliferation, and gene regulation. The dependence
of cells on mitochondrial ATP varies. For example, cancer
cells and astrocytes can survive well on ATP generated from
glycolysis and are much less dependent on mitochondrial
OXPHOS to generate ATP. Other cells such as neurons and
cardiomyocytes depend almost entirely on mitochondrial
OXPHOS for their function. Preservation of the constituents of
the mitochondrial ETC is paramount in maintaining the bio-
energetics status of the mitochondrion and the cell homeo-
stasis. Indeed, mitochondrial defects encompassing complex
I-1V of the ETC characterize a large number of neurodegen-
erative diseases (124, 125).

Mitochondrial ETC complexes are involved in cytoprotec-
tion. Studies have shown that amobarbital and volatile anes-
thetics block complex I, diazoxide blocks complex II, and
hydrogen sulfide blocks complex IV. Although these drugs
have additional effects, they emerge as potential means to
protect against cellular injury following I/R (9, 113, 244-246,
324, 325). The targeting of mitochondrial complexes for a
therapeutic purpose is in part ascribed to their vulnerability
to oxidative stress. Therefore, a limitation of electron transfer
during ischemia to complex III, a major site for electron leak
and ROS production, is a new concept to limit mitochondrial
damage specifically during ischemia (9, 116, 117, 330). Mi-
tochondria sustain progressive damage to the ETC during
the course of myocardial ischemia; 10-20min of ischemia
decreased complex I activity and caused damage to the
OXPHOS apparatus, including complex V and the ANT (330).
As ischemia time lengthens (30—45 min), damage to complex
III and IV becomes evident.

Hence, while a complex I defect occurs early in ischemia,
damage continues to progress to involve complexes IIl and IV.
Complex I activity will go down due to a decrease in the
NADH dehydrogenase component, possibly the loss of the
FMN coenzyme; complex I activity is also modulated by
post-translational modifications including S-nitrosylation and
phosphorylation. These peptide alterations are amenable to
pharmacologic manipulation, as in the use of S-nitroso-2-
mercaptopropionyl glycine (SNO-MPG) in providing pro-
tection against ischemic damage (396). SNO-MPG inhibits
complex I during the critical late ischemia and early reperfu-
sion stage (59, 66) and in that way provides protection from
ROS generated at complex III (117) (Section III).

The above observations are consistent with our recent
studies showing that blocking complex I with the reversible
inhibitor amobarbital protected the heart, and its mitochon-
dria in particular, from I/R injury when the blocker was
present only during ischemia. Amobarbital, a short-acting
barbiturate, inhibits complex I at the rotenone site at concen-
trations of 1-3mM. At higher concentrations (5 mM), amo-
barbital also inhibits succinate respiration and complex V
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(113, 116). We have furnished recent additional data for the
specificity of amobarbital treatment in intact isolated hearts
that gives further insight into its mechanism of protection (9).
This mechanism of protection was similar to that of ranola-
zine, a late sodium channel blocker and anti-angina drug
that is also known to block complex I (82) and to inhibit
p-oxidation enzymes (68, 538).

In a preliminary study, guinea pig hearts were perfused
with either ranolazine (5 uM) or vehicle for 1min up to the
onset of 30min no flow global ischemia; ischemia was fol-
lowed by 120min reperfusion without ranolazine. Mi-
tochondrial NADH and FAD, ROS, and Ca?" were monitored
online continuously using a fiberoptic probe placed against
the left ventricular (LV) free wall and connected to a fluores-
cence spectrophotometry (9). Ranolazine was present only
during the 1 min period prior to ischemia and during ische-
mia, and was completely absent during reperfusion, and so
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did not contribute to reperfusion function. We found that
ranolazine treatment resulted in a more normalized mito-
chondrial redox state (NADH, FAD) (Figs. 7A and 7B), less
O, production during I/R, a higher phasic LV pressure
(Figs. 7C and 7D), and a reduction in the incidence of ven-
tricular fibrillation (data not shown) (8). Mitochondria iso-
lated from hearts treated with ranolazine just before the index
ischemia showed a greater propensity for Ca®* retention than
the control untreated hearts when challenged with pulses of
increasing concentrations buffer CaCl, (Camara AKS and
Stowe DF, unpublished observations). In a related study
(324), we showed that a limitation of electron transfer by the
irreversible complex I inhibitor rotenone did not provide as
much protection as when the drug was given before ischemia
and was present during the ischemic episode. Thus, blockade
of ETC during ischemia preserves respiratory function in
isolated mitochondria (116) and in the intact heart (9, 117); this
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FIG. 7. Differencesin NADH/FAD (in arbitrary fluorescence units, afu) (A and B), ROS (in afu) (C), and LVP (in mmHg)
(D), at baseline (BL), 30 min global ischemia, and at 5 and 60 min reperfusion with or without ranolazine, a putative
respiratory complex I inhibitor. Ranolazine or vehicle (control) was infused for only 1min just before ischemia. Ranolazine
was not infused on reperfusion, but was present during ischemia. Note the improved redox state, reduced O, levels, and
improved cardiac function after ranolazine treatment. All data are expressed as means +s. e. m. and statistical differences
(between groups and within groups) were determined by two-way ANOVA. Differences between means were considered
significant when p < 0.05 (two-tailed). If F tests were significant, appropriate post hoc analyses (Student-Newman-Keuls or
Duncan) were used to compare means. For p < 0.05: *Vehicle (control) vs. ranolazine. Preliminary data from Aldakkak ef al. (8).
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is accompanied by decreased mCa”" overload and less O,"~
generation in the isolated beating heart (9).

Alleviating mitochondrial dysfunction is not limited to
targeting complex I of the ETC. Hanley et al. (243-245) re-
ported that the putative mKsrp channel opener diazoxide
inhibited complex II of the ETC and suggested this could
provide protection in part by inhibiting electron transfer to
complex III and in the process minimize O,"~ generation. The
benefit of targeting mitochondrial ETC is that it provides an
alternative approach to cardioprotection against I/R injury
when ischemic or pharmacological preconditioning is im-
paired (113, 396). The structural integrity of the IMM is
equally important in preserving the mitochondrion for nor-
mal and efficient OXPHOS. The IMM contains cardiolipin, a
special phospholipid that is rich in linoleic acyl-groups that
are highly susceptible to ROS produced during oxidative
stress (29). Preservation of IMM was also observed with ro-
tenone (113, 324). Loss of cardiolipin results in dysfunction of
complex V, impaired ATP levels, and subsequent derange-
ment of cellular ion homeostasis and cell death. Overall, these
results highlight an emerging paradigm that reversible met-
abolic inhibition may be a common pathway leading to cel-
lular protection and that the ETC regulates apoptosis.

Mitochondrial ETC function is modulated by several trans-
matrix ions that enter and exit via several mitochondrial ion
channels, exchangers, and symports (Sections IIB and IIC). In
the mitochondrion, a principal cation uptake pathway is via
K* channels. There is a concerted interplay between K* up-
take, via one or more K channels, and the primary K efflux
route via the K* /H" exchanger (KHE), which controls mito-
chondrial volume homeostasis (200, 202). The existence of
regulated pathways for both K™ uptake and K* efflux may
allow for a very fine-tuning of mitochondrial volume, and
thus the rate of respiration. Changes in mitochondrial vol-
ume regulate mitochondrial energy metabolism through their
effects on the TCA cycle enzymes and respiratory chain (356,
555). During the steady state, respiration is balanced by K*
influx into mitochondria through K" channels and efflux
through the KHE. An imbalance in this dynamic relation
could lead to matrix swelling and on to cellular damage by
apoptosis or necrosis.

Indeed, ischemic damage has been associated with de-
rangements in mitochondrial ion flux regulation and matrix
volume (9, 10, 90, 173, 201, 307, 474, 475). Decreased Ay,
during ischemia may lead to a contraction of matrix volume
and result in decreased and less efficient OXPHOS. Increased
K™ flux via the putative mitochondrial Karp (mKatp) channel
may counteract this effect with a concomitant increase in
volume that may improve the mitochondrial redox state (173,
201, 307, 474, 475) and allow for more efficient ATP synthesis
(201) and cellular preservation. However, Shalbuyeva et al.
(514) reported that Ca*"-sensitive K* channel (Kc,) and Ka1p
channel blockers (e.g. charybdotoxin and 5-HD, respectively)
did not suppress Ca”*'-induced swelling in mitochondria
isolated from brain cells, and inhibitors of the mitochondrial
KHE (e.g., quinine, dicyclohexylcarbodimiide) inhibited the
recovery phase of the reversible mitochondrial swelling. In
addition, CsA supplemented with cytochrome c did not re-
verse mitochondrial swelling in both liver and heart mito-
chondria (503, 514). It was proposed that Ca®"-induced K*
influx leading to swelling causes activation of KHE to extrude
K" and thus reduce mitochondrial swelling.
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We have recently provided novel evidence for a regulatory
role of the putative mKc, on Auy. We inferred that open-
ing mKc, channel allows a small H" influx (“leak”) via the
KHE (253). When the leak is small (instigated with <30 uM
NS1619), H" pumping may increase to drive respiration and
ATP synthesis without changing the Ay,,. If the leak is large
(instigated with >30 uM NS1619), Ay, will decrease and ul-
timately dissipate Ay, (253). This scenario is supported by
our recent experiments showing that NS1619-induced matrix
K" uptake and mitochondrial swelling were observed only
when quinine (KHE inhibition) was present in the buffer (7).
The implications of these channels and/or exchangers in
mitochondria-mediated cellular damage have been proposed
in numerous studies and their potential therapeutic utility at
the mitochondrial level is currently being pursued.

IV. Mitochondrial ROS and RNS
A. Mitochondria and reactive oxygen species

In this and the subsequent section, ROS (O,"~, H,O, and
OH’, etc) and RNS (NO® and ONOQ;, etc) generation and
scavengers will be discussed. Even though ROS and RNS are
discussed separately, the two subjects are tightly intertwined
and as such, the discussions will overlap in several sections.
ROS scavengers and antioxidants are used interchangeably.

In excitable tissue, especially cardiac and neuronal, mito-
chondria represent a major source of O,"" as a consequence of
mitochondrial respiration, which generates unpaired elec-
trons that interact with molecular O, to produce O, (20, 84,
85). These O," anions are readily interconverted to other
radical species, such as H,O, and ferryl radicals (Fe(VI) = O")
and perhaps OH" (487, 488). H,O, is a relatively inactive
compound. However, if reduced iron (Fe’") is abundantly
present, as in I/R, as a result of increased release of Fe from
ferritin or aconitase (TCA cycle enzyme), the highly reactive
[Fe = O] radical will be formed (80, 137, 230). In support of
this it was found that the Fe chelator desferrioxamine, when
administered upon reperfusion, improved function following
I/R (169, 331, 343).

Beyond their roles in aerobic energy metabolism and
maintenance of ionic (e.g., Ca®") homeostasis, mitochondria
have other important physiological and pathophysiological
processes. Mitochondrial ROS are involved in cell signal
pathways as noted for ischemic and pharmacological pre- and
postconditioning (Sections X.D and X.E). ROS are also involved
in transcriptional regulation and normal cell proliferation. In-
deed, ROS are important in normal cellular development and a
limited amount of ROS in specific cells is necessary to mediate
the programmed cell death that is required for cell elimination
and mitochondrial autophagy during development and elim-
ination of injured mitochondria or poorly performing cells. So,
one would assume that teleologically mitochondria produce
some ROS that are important for normal cellular function and
survival despite the elaborate scavenging system (Section V).
Indeed, overexpression of matrix scavenger proteins (e.g.,
manganese superoxide dismutase (MnSOD), the mitochon-
drial variant of SOD), could provide effective scavenging, but
because O,"" plays an important physiological role, excess
scavenging may be deleterious.

Mice with overexpressed MnSOD exhibit reduced fertility
and abnormal development (338, 473, 478). On the other
hand, an MnSOD gene knockout was shown to be lethal
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(321, 340), whereas the CuZnSOD (extra-matrix SOD) gene
knockout was not, though lifespan was shortened (183) and
oxidative stress was elevated (389). These findings indicate
that the targeting of mitochondrial O,"" as a therapeutic goal
during I/R would require careful balancing of the “good”
(physiological) and “bad” (pathological) O,"". Deviation from
a tight regulation of ROS is likely to contribute to mitochon-
drial O, damage leading to numerous degenerative diseases
and promotion of the aging process (Sections IX and XII).

Under physiological conditions, a net amount of O,"™ is
produced (i.e., O,"" emission), as determined by the rate of
O, generated minus the rate of O," scavenged. To maintain
this delicate balance, mitochondria are equipped with a va-
riety of endogenous antioxidant defenses that regulate O,"~
within a physiological range. However, under pathological
conditions, as in cardiac I/R and in the aging process, the
delicate balance (generation—scavenging) that keeps the level
of O,"" to a minimum is altered so that the rate of O,"" gen-
eration exceeds the rate of scavenging. This can result in
further damage to mitochondria and may exacerbate ROS-
induced ROS damage (66, 657).

Superoxide anions are generated from numerous sources in
the mitochondrion. These include monoamine oxidase and
cytochrome b5 reductase in the OMM (85), in the IMM along
the ETC (63, 64, 316, 347, 536, 580, 656), in the TCA cycle from
o-ketoglutarate dehydrogenase and aconitase, and from non-
TCA cycle enzymes, pyruvate dehydrogenase and glycerol-
3-phosphate dehydrogenase (GPDH) (335). For example,
isolated mitochondria supplemented with GPDH can produce
O, from complex I to the matrix side and some from the
cytosolic side (20, 345) (Fig. 8). However, a majority of mito-
chondrial O, is generated within the IMM of the ETC, in
particular at complexes I and III (85, 113, 118, 581). The su-
peroxide anions are generated by the ETC directed vectorially
into the IMS and the matrix. O,"" generated in the OMM and
from the TCA cycle will not be discussed further in this review.

In metabolically active cells such as cardiomyocytes and
neurons, mitochondrial ETC is a key contributor in cellular
O,"" production under normal and pathophysiological con-
ditions. In the absence of electron transport through the ETC,
these cells cannot consume O, or generate O,"" from mito-
chondria (235, 578). But the specific sites and mechanisms of
O;"" generation along the ETC remain controversial (14, 34,
118, 580). For example, the precise site for ROS production
from complex I is uncertain. It is believed that FMN in NADH
dehydrogenase (220, 580), Fe-S cluster N2, and the two tightly
bound ubiquinones located distal in the path of electron
transfer through complex I (206, 316), are all potential sites for
O, generation.

It is widely acknowledged that complex III is the dominant
site for the net production of ROS from intact mitochondria in
the baseline state (118, 240, 407, 536). Experiments show that
complex III generates O,"" through the oxidation of ubise-
miquinone, a radical intermediate formed through the Q-
cycle of the complex, particularly at the Q, site which faces
the IMS, while complex I-mediated ROS is directed mostly
toward the matrix side (113, 117, 118). Inhibition of forward
electron flow at upstream or downstream sites of complex I
(NADH dehydrogenase) decreased and increased O," gen-
eration from complex I, respectively, whereas inhibition of
reverse electron flow at the upstream site of complex I en-
hanced O,""; this suggested that the site for O,"~ generation in
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complex I is distal to the FMN center at the FeS cluster N2
(418, 512). However, many inhibitors of complex I may share
common binding domains (422).

In normal healthy aerobic cells, oxidation and the gen-
eration of O,"" occur at a controlled rate. But under high
stress conditions or in disease states including cancer, ner-
vous system disorders such as Parkinson’s disease (PD) and
Alzheimer’s disease (AD), or cardiovascular disorders, ROS
production is greatly increased, causing peroxidative changes
of many proteins and lipids (421, 638, 639). Mitochondrial
DNA is also one of the main cellular targets of ROS-induced
oxidative damage due to their lack of histone protein protec-
tion (334) (Section VII). Increased mitochondrial ROS pro-
duction, for example during hyperglycemia, may be a major
factor in the pathology of diabetes. Glucose-stimulated insulin
secretion by isolated islet cells can be used as an index for
oxidative stress and/or impaired oxidative metabolism (51).

In cardiac I/R injury, impaired complex I (113, 327) can en-
hance O,"~ formation as a result of increased electron leak as
electron transfer is impeded. When FADH,-related substrates
are used and electrons enter the ETC at complexII, O," may be
generated by reverse electron transfer to the FMN site of
complex I (113, 543, 656). Although complex I is a site for O,"~
generation in cardiac cells under ischemic conditions, complex
III is also a major site for ROS production (117). Ischemia
damages complex III by a functional alteration in the Fe-S
protein subunit (113). Regardless of the source of O, pro-
duction, the mechanism and quantity of O," produced in vitro
is dependent on the experimental substrate, the energetic
conditions, and the trans-matrix pH gradient (316, 317).

An increase in O,"" production under pathological condi-
tions can also occur as a consequence of depletion or a defect
in the mitochondrial antioxidant system. Increased ROS pro-
duction under such conditions has been ascribed to a self-
regenerating ROS production facilitated by ROS-induced
ROS release (66, 543, 657). This increase in oxidative stress
results in further damage of OMM, IMM, and matrix proteins
that are highly sensitive to oxidative stress. A point is reached
where the scavenging system almost completely collapses
and generation of ROS is perpetuated in a vicious cycle. The
association of ROS generation and various pathological con-
ditions has made development of the ideal antioxidant ther-
apy to target the mitochondrion a pre-eminent goal. The
therapeutic strategy to limit mitochondrial O,"" production
during hyperglycemia, for example, counteracts their dam-
aging effects and may be a useful complement to conventional
therapies designed to normalize blood glucose (218).

However, targeting O,"” emission during I/R could be
problematic because recent evidence shows that O," pro-
duction occurs in heart cells not only during reperfusion but
also during ischemia with a surge during late ischemia (9, 10,
90, 289, 290, 591, 592). Thus during ischemia, O,"" generation
sets the stage for an increase in O,"" emission during re-
perfusion as a mechanism of cellular injury (9, 113, 117).
Clinically, this is a relevant area of research because patients
with active myocardial ischemia could theoretically receive
pharmacologic therapies that target the spatial and temporal
aspects of ROS generation. Pharmaceutical agents that pro-
vide ROS scavenging systems are most effective if they ad-
dress the problem at its source, in this case in the IMM (262).

Overall, a better understanding of the sources and direc-
tion of O,"" generation from the mitochondrion is crucial to
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FIG.8. Mitochondrial O,"" generation (white stars) and antioxidant defense system (red stars). Mitochondria are primary
consumers of O, and are endowed with redox enzymes capable of transferring a single electron to O, to generate O,"". The
sources of O,"” in mitochondria are discussed in detail in Section IV and the scavenging systems are presented in Section V.
The sources of O,"" include MAO (monoamine oxidase) and cytochrome b5 reductase of the OMM; the ETC complexes and
glycerol-3-phosphate dehydrogenase (GPDH) and pyruvate dehydrogenase (PDH) of the IMM; the TCA cycle enzymes,
aconitase (Aco) and a-ketogluterate dehydrogenase (xKGDH). The transfer of electrons to O, to generate O,"" is more likely
when the redox carriers are fully reduced and AY,, is high. To minimize the level of O,"" within physiological range,
mitochondria are replete with an elaborate antioxidant system to detoxify the O," generated by the reactions shown. In
structurally intact mitochondria, a large scavenging capacity balances O,"" generation, and consequently, there is little net
ROS production. The scavenging system consists of both nonenzymatic and enzymatic components. The nonenzymatic aspect
includes cytochrome c (C), coenzyme Qo (Q), and glutathione (GSH), and the enzymatic components include manganese
superoxide dismutase (MnSOD), the so-called SOD2, catalase (Cat), glutathione peroxidase (GPX), glutathione reductase (GR),
peroxiredoxins (PRX3/5), glutaredoxin (GRX2), thioredoxin (TRX2), and thioredoxin reductase (TrxR2). The regeneration of
GSH (through GR) and reduced TRX2 (through TrxR2) depends on NADPH, which is derived from substrates or the mem-
brane potential (through nicotinamide nucleotide transhydrogenase, TH). The antioxidant is also tied to the redox and
energetic state of the mitochondrion (GSSG, glutathione disulphide, o, oxidized state; r, reduced state). The interplay between
these redox systems (O,"~ generation and scavenging) is vital for normal cellular function. Reproduced and modified from Lin
and Beal (345). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article at www liebertonline.com/ars).
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an understanding of the potential of particular antioxidants
used to mitigate oxidative stress and cellular damage. How-
ever, effective delivery of these antioxidants into the cytosol or
matrix as a therapy is quite problematic. Attempts to boost
antioxidants by dietary supplements do not help, probably
because they cannot permeate the mitochondrial membrane
into the matrix where some free radicals are produced. To
address these physical limitations, therapeutic antioxidants
have been reformulated based on the strong negativity of the
matrix membrane potential (Table 1). This will be addressed
further in Sections X and XI.

B. Mitochondria and reactive nitrogen species

The free radical NO® is an endogenous mediator of nu-
merous vital physiological processes, including cytoprotec-
tion. NO® can also mediate cell injury (533). NO® has emerged
as a crucial and potential player in the control of mitochon-
drial function: it modulates mitochondrial activity at complex
IV; it generates peroxynitrite (ONOO’) when it reacts with
O," (Fig. 9; and it regulates mitochondrial biogenesis via
activation of guanylate cyclase. NO" is a major target for nu-

FIG. 9. Mitochondrial ROS and RNS production and
targets of oxidative and nitrosative damage on mitochon-
drial proteins. Mitochondrial NO* activity most likely arises
from extramitochondrial NOS. Mitochondria-derived NOS
(mNOS) may also play a role, but this remains unresolved.
The ONOO™ (NO®+0O,"") arising from the extramitochon-
drial sources or formed intramitochondrially undergoes re-
actions in the different mitochondrial compartments and
small amounts may escape to the cytosol. As shown, ONOO
targets several mitochondrial proteins important for normal
physiological activity of the organelle. These include the ETC
complexes, TCA cycle enzymes, and the scavenging system.
The actions of RNS on these proteins could lead to mPTP
opening and release of cytochrome ¢, or direct modulation of
VDAC (voltage-dependent anion channel) and ANT (ade-
nine nucleotide translocase) to release AIF (apoptosis in-
ducing factor) and cytochrome c. S-nitrosation (SNO) play
some regulatory role while nitration (NO,) reactions appear
to be more permanent modifications and strictly linked to
oxidative damage (Sox). Reproduced and modified from
Radi et al. (461). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version
of this article at www liebertonline.com/ars).
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merous signaling pathways, and it in turn can trigger the
release of factors/proteins that initiate cellular events critical
in cell survival or death. These roles of NO* are determined by
a delicate balance between physiologically relevant levels and
pathological concentrations (298).

The source of mitochondrial NO* may be vascular endo-
thelium, nerve terminals, or other cytosolic sources, as the
activity of mitochondrial NO* is low (533) or nonexistent.
Some have proposed that mitochondria contain nitric oxide
synthase (NOS), which can be source of mitochondrial NO*
(44, 209). However, the notion of mitochondrial NOS remains
controversial with major contentions surrounding the purity
of mitochondria and several experimental artifacts in NO*-
measuring systems (81). For example, in a recent study,
Venkatakrishnan et al. (596), using HPLC-mass spectroscopy,
found no evidence for NOS derived peptides, calmodulin
(needed for NOS activity), or NOS activity measured as con-
version of arginine to citrulline in highly purified liver mi-
tochondria. The controversy over this subject will not be
discussed any further in this review.

NO" has multiple targets in mitochondria including he-
moproteins such as cytochrome oxidase, proteins, and lipid
thiols. The role of NO® and its products in the cell is akin to a
double-edged sword. NO" can act both as a scavenger and as a
facilitator of cellular injury depending on the concentration
and the conditions of the lipid environment (81). NO* can act
directly on mitochondria to protect tissue/organs, or it can
provide protection by way of a NO*-mediated signaling cas-
cade. Recent data support strongly the role of NO" as a key
mitochondrial regulator. Mitochondria can be considered a
cellular “hub” for NO* signaling, as evidenced by the presence
of many metal clusters and thiols; mitochondria also generate
secondary intermediates crucial for other NO® mediated
functions (81). One of the most important functions of NO® in
mitochondria, and its most characterized effect, is the com-
petitive reversible inhibition of O, binding at the binuclear
site of complex IV, the terminal component of the ETC where
electrons are transferred to O,. NO" inhibition of O, binding is
reversible as this depends on the concentration of the two
gases in the mitochondrion. Thus the relative concentration of
NO’ is crucial in the mechanism for controlling respiration,
and if ONOO' is produced, in cell death (71, 298).

At a low concentration, NO® provides protection against
I/R injury, but at higher concentrations, or in the presence of
increased matrix Ca”", NO" increases the apoptotogenic effect
of O,"" (391). Inhibition of complex IV by NO" is thought to
elicit cardioprotection by preserving the limited supply of O,.
By binding to complex IV, NO® may provide protection to
mitochondria by indirectly reducing mCa®" overload. Some
of these effects are sensitive to the NO® inhibitor cPTIO. A
study on the interaction of NO* with complex IV suggested
that NO® interacts with either oxidized Fe*" or Cu*" so that
NO" is reduced to nitrite. Nitrites have been used to treat
angina in patients for a very long time (576). In isolated rat
heart experiments it was shown that reduction of nitrite to
NO® during ischemia protects against myocardial damage
(611). In addition, NO" is strongly implicated in the mecha-
nisms underlying IPC, including nitroalkanes such as nitro-
linoleate and S-nitrosation of complex I (395). NO" is also
known to preserve cardiolipin, which helps maintain IMM
integrity and complex IV activity, and to minimize the release
of cytochrome c release and other apoptotic factors (215, 425,
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601). NO" may decrease mCa>* overload by binding to com-
plex I and this appears to cause a decrease in Ay, (81, 533). It
is possible that some of the protective effects of NO* can be
attributed to a coordinated series of responses by modest
levels of NO®, which indirectly enhances mitochondrial func-
tion by increasing local blood supply to enhance O, and
substrate delivery to mitochondria.

The effects of NO® are mediated in part via signaling mol-
ecules including a guanylate cyclase-dependent pathway.
NO* also appear to be involved in regulation of mitochondrial
biogenesis. The cGMP-dependent pathways are thought to
activate PGC-1a and PGC-1$, which lead to expression of the
nuclear respiration factors NRF-1 and NRF-2. The transcrip-
tion factors transcribe the nuclear genes that encode subunits
of the ETC complexes and the mitochondrial transcription
factor A (496) resulting in increased mitochondrial biogenesis.

At higher rates of NO® production, NO* overwhelms the
cellular protective mechanisms and shifts the balance towards
apoptosis. In mitochondria, NO® is present at fairly high
concentrations under pathological conditions such as ische-
mia and displays a broad chemical reactivity with oxidative
inflammatory mediators. In this way higher concentrations of
NO" could induce cell death by necrosis and apoptosis via
mPTP opening (533). Under disease conditions the excess NO*
in the presence of diminished O, tension may inhibit mito-
chondrial respiration and lead to increased O," production.
The O,"" in turn reacts with the NO* to produce the potent
ONOO'" compound, a highly reactive non-free radical (Fig. 9).
The reaction between NO* and O,"" is limited by the diffusion
rate of NO® (630), with NO® being much more permeable
than O,

Like NO*, ONOO' has been reported to be cytoprotective
when administered in small concentrations (81). However, at
higher concentrations ONOQO' is highly toxic to mitochondrial
membrane and proteins. It is believed that the most damaging
effects of NO" activity on mitochondria are attributed in large
part to ONOO" (177). ONOO™ may reduce the NO* half-life
under conditions in which mitochondrial O,*~ formation is
stimulated, reducing the effects of NO® on complex IV activ-
ity, and reducing NO"-dependent mitochondrial signaling.
ONOQO'" can be derived from extra- or intra-mitochondria
sources (Fig. 9). Extra-mitochondrial ONOO™ might diffuse
into mitochondria to exert its effect but intra-mitochondrial
ONOQO' has a short half-life due to large abundance of me-
talloproteins and fast acting thiols (461). Cardiolipin is most
susceptible to ONOO™ damage (113) and lipid peroxidation
can damage mitochondria and lead to apoptosis.

It is important to note that while NO® mainly reacts re-
versibly at complex IV, ONOO" is known to block complexes
I, II, and V by irreversible nitration of the tyrosine residues
and transition metal centers in these proteins (177). ONOO
also nitrates VDAC, ANT, MnSOD, and aconitase, and it is
also involved in oxidative damage of other complexes (Fig. 9).
ONOQO' is not believed to exert effects at Complex IV, how-
ever, because of its remarkable resistant to oxidative damage
(648). Thus, conditions leading to excess ONOO™ will promote
enhanced mitochondrial lipid/protein oxidation, swelling,
and rupture of mitochondrial membranes, Ca%* loading, and
cytochrome c release.

Ubiquinol, which can reduce ONOO’, has been proposed to
protect mitochondria against damage (64, 85, 584). Expansion
of the ubiquinol pool either by pharmacological manipula-
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tion of the ETC or its exogenous addition, correlates signifi-
cantly with decreased mitochondprial nitration and attenuated
ONOO'-dependent damage (461). Glutathione, reduced cy-
tochrome ¢ oxidase, and perhaps NADH also minimize
ONOO levels (462). Given that ONOO' is formed from NO*
and O,"", inhibition of either O,"" or NO* generation will
attenuate the levels of ONOO™ and minimize mitochondrial
damage. For example, overexpression of MnSOD has been
shown to protect neuronal-like cells against NO*-dependent
cell injury, tyrosine nitration, and lipid peroxidation. In ad-
dition, overexpression of nNOS instigates NO*-dependent
neuronal cell death, which is alleviated in cells enriched in
MnSOD (462). However, the chemical reaction between NO*
and O,"" is faster than the reaction with MnSOD (187) and
ONOQO™ mediated inactivation of the enzyme serves to am-
plify NO® and ONOO™-dependent mitochondrial oxidative
stress (462). Therefore attempts to scavenge O,"" to reduce
ONOO™ might not be a feasible approach in mitigating
ONOO'-induced damage. However, targeted approach to-
ward excess ONOO™ and NO" or use of “small” concentrations
of the NO" as a signaling mediator for cytoprotection appears
as a novel and important potential strategy against cell injury.

V. Mitochondrial ROS Scavenging
and Its Potential Therapeutic Value

ROS and RNS are clearly involved in normal cellular func-
tions because they act as signaling agents in cellular protec-
tion, such as in cardiac preconditioning (135, 289, 377, 408,
409, 428, 429, 476, 477, 649), postconditioning (135, 223, 382,
429, 431), and cold preservation (90, 475). But ROS and RNS,
as described above, can induce cell damage if their levels are
not controlled within acceptable physiological limits. With
this dual role, can modulation of ROS be an effective thera-
peutic tool? To address this question, the need to effectively
detoxify pathologic ROS has to be balanced with the need to
maintain physiological ROS. It is this delicate balance that is
used to control and manage cancer. Increased generation of
ROS, which challenges ROS scavenging systems, can lead to
increased apoptosis of tumor cells, or alternatively increase
the scavenging capability to reduce ROS needed for tumor
growth, in this case a desirable effect (193).

During pathological stress with a sustained increase in ROS
levels, an ideal strategy would be to boost O,"~ scavenging by
using nontoxic catalytic antioxidants that are either delivered
tissue-specifically or produced where needed from inactive
precursors. Another strategy would be to decrease the pri-
mary O,"" production by preventing the over-reduction of
intra-mitochondrial NADH (556) or by using mild uncouplers,
that is, decrease A¥,, (529, 556) (Section VI), or to pharma-
cologically stimulate the expression of endogenous mito-
chondrial and intracellular antioxidant systems (20). But these
strategies are limited in their capability to mitigate ROS-
induced damage if ROS inflicted damage results in further
mitochondrial damage andleads toadditional activation of O,"~
generation in a vicious positive feedback loop that results in
increased ROS production. In this case, the most efficient way
to reduce mitochondrial O,"~ production may be to prevent
O,"" generation rather than to scavenge the emitted O," (20).

The endogenous scavenging system of mitochondria has
been widely covered by others (20, 23, 258, 259, 450, 543, 625).
So only a brief discussion will be presented here. Discussion
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on the use of antioxidants is only presented where they are
relevant in ameliorating mitochondrial related diseases. These
antioxidants are mainly synthetic agents, for example MitoQ,
o-tocopherol, vitamin-based antioxidants, and genetic ma-
neuvers, such as overexpression of MnSOD.

Mitochondria possess an elaborate and well-defined
multileveled antioxidant defense system of enzymes and
nonenzymes to scavenge mitochondrial O,"" (345). The
scavenging system includes the matrix MnSOD and the glu-
tathione (GSH) (Fig. 8) (20, 543) and thioredoxin (TRXSH,)
(266, 571) systems, cytochrome ¢, peroxidase, and catalase
(543). The counterpart to the matrix-bound MnSOD is the Cu-
Zn SOD (SOD1) found predominantly in the cytosol, although
recent studies have reported the presence of SOD1 in the IMS
(337); extracellular SOD is also found in interstitial fluid,
plasma, lymph, and synovial fluid (285).

A. Manganese superoxide dismutase

MnSOD (SOD2) is a metallo-enzyme located primarily in
the mitochondrial matrix at levels of 10-20 uM (461) (Fig. 8)
that does not require co-factors to detoxify O,"~ radicals.
MnSOD plays an essential role in protecting against oxidative
stress and the assembly of this tetrameric peptide into the
active manganese-based enzyme is key for survival. Its only
known function is to detoxify O,"~ to H,O,, thereby protect-
ing mitochondrial Fe-S cluster containing enzymes from ox-
idative damage (20, 199, 543). A defect in genes encoding
SOD1 or SOD3 (extracellular Cu/Zn SOD) results in a mild,
nonlethal phenotypic enzyme expression (98, 470). In marked
contrast, a SOD2 (MnSOD) knockout results in neonatal le-
thality (263, 264) due to dilated ventricular cardiomyopathy,
fibrosis, and other complications (20, 145, 262-264). Over-
expression of the MnSOD gene on the other hand has been
associated with protection against oxidative stress-mediated
cell death and cellular injury (145). For example, overex-
pression of MnSOD has been shown to ameliorate the ex-
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pression of proteins implicated in retinal impairment in a
mouse diabetic model (498).

A number of studies show that cells respond to oxidative
stress, like lipopolysaccharide treatment, by increasing the
level of MnSOD (142, 479). In contrast, in neoplastic cells
where MnSOD is normally low, induction of the scavenger
has been implicated in the suppression of tumor growth. This
suppressive effect in tumor cells is believed to be due to
changes in the activity and expression of transcription factors
including NF-«xB (nuclear factor kappa of activated B cells)
and NFAT (nuclear factor activated-T cells) (415).

Mitochondrial SOD mimetics (nonprotein) have been de-
veloped to allow uptake into the mitochondrion to scavenge
ROS. The mitochondrial superoxide dismutase mimetics
MnTBAP, and Mn(III) meso-tetrakis (N-methylpryidinium-
2-yl) porphyrin (MnTE-2-Py°") are permeable to the IMM.
MnTE-2-Py”" was shown to accumulate in heart mitochon-
dria following intraperitoneal injection and MnTBAP was
reported to improve survival in MnSOD knockout mice (49).
Since O,"" is involved in signal transduction of IPC, we
showed that MnTBAP given alone abolished the cardiopro-
tection afforded by preconditioning (289) (Fig. 10). MnTBAP
was also shown to scavenge ROS generated during cold
perfusion (91), which confirms uptake into mitochondria.
Genetically altered mice deficient in the sod2 gene die with
heart failure in conjunction with other severe complications
(264, 340, 369). Treating mice with MnTBAP ameliorated the
complications and greatly increased lifespan (370).

Another cell permeable SOD2 mimetic, Mn(II)tetrakis[(1-
methyl-4-pyridyl)-porphyrin] (MnTPyP), has both MnSOD
and catalase mimetic effects (607). We observed that MnTPyP,
given before prolonged cold ischemia, protected the isolated
heart from cold-induced ROS damage during ischemia better
than MnTBAP (Camara and Stowe, unpublished observa-
tion). The protection afforded by MnTPyP was similar to that
provided by an MnTBAP, catalase, glutathione cocktail (90).
These actions of MnTPyP may be similar to the actions of a
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Time (min) mission of Kevin et al. (289).
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class of small molecular weight catalytic scavengers of ROS,
the salen-manganese complexes. These scavengers act as SOD
and catalase mimetics, catalytically eliminating O,"" and
H,0, (45, 170). They have also been found effective against
some mouse models of Parkinson’s disease (PD) as they
protect the dopaminergic neurons of the substantia nigra from
damage induced by mitochondrial-targeted toxins (Section
IX,E,2) or 6-hydroxydopamine; they have also shown effi-
ciency against the cytotoxicity of f-amyloid peptide associ-
ated with Alzheimer’s disease (AD) (76) (Section IX,E,1).

Ischemia and reperfusion injury is not infrequent as a result
of vascular surgery, organ procurement, or transplantation.
For example, renal ischemia is an unavoidable complication of
cross-clamping the donor kidney for removal during trans-
plant (492). Human heart allografts show oxidative stress that
is associated with time-dependent changes in endogenous
SOD levels (500). Previous attempts to improve organ graft
survival by means of exogenous administration of SOD pro-
teins have proven ineffective (403). Studies have shown that
oxidative stress resulting from I/R during coronary and lower
limb arterial reconstruction can cause endothelial dysfunction
in the vein graft with the possibility of graft failure. The ad-
dition of MnTBAP was shown to improve endothelium-
dependent vasorelaxation in harvested saphenous vein (516).
In another study, Nilakantan ef al. (403) showed that contin-
uous treatment with MnTPyP had beneficial effects on graft
function in a rat model of acute cardiac transplantation. The
improvement of function in the allografts by MnTPyP was
attributed to attenuated ROS in cardiac allografts, reduction
of genes involved in early stages of organ rejection, and de-
creased apoptosis. MnTPyP was reported also to potentially
counteract nitration of MnSOD in allografts by prevent-
ing ONOO' levels via scavenging of O," . Similarly, Mn-
containing metalloporphyrin can attenuate liver damage,
lipid peroxidation, and protein nitration from I/R injury in
isolated perfused rat liver (629).

These studies clearly demonstrate the potential beneficial
role for these antioxidants in organ and tissue transplantation.
However, attempts to incorporate these therapies in the realm
of clinical translation for human organ transplantation remain
unresolved. To date, only experimental studies in animals
have been attempted and there are no known recent clinical
trials on ROS scavenging during organ transplantation. One
would hope in time that with increased oxidative stress due to
reduction in endogenous scavengers in allografts (500), the
potential beneficial role of synthetic MnSOD mimetics would
become clinically applicable.

B. Glutathione thioredoxin, and peroxiredoxin systems

Redox homeostasis in mitochondria is regulated by the
coordinated activity of various antioxidant mechanisms in-
cluding GSH, thioredoxin (TRX) and peroxiredoxins (PRX).
These thiol-reducing agents are critically involved in defense
against large increases in O," production as well as in redox
regulation of signaling processes ranging from cell division to
cell death by apoptosis (345, 510, 543, 582). Cellular antioxi-
dant defenses also depend on the reduction potential of the
electron carriers and the reducing capacity of linked redox
couples in the matrix NADH/NAD™" and FADH,/FAD) and
cytoplasm that are required to restore the antioxidant activity
of the redox systems (25) (Fig. 8).
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GSH is a tripeptide with the thiol (-SH) residue of cysteine
as its active site. It provides protection for mitochondria
against endogenous ROS. Matrix GSH, at 5-10mM (461), is
highly regulated by cytosolic redox state and it is rapidly
taken up from the cytosol via the decarboxylate and 2-
oxoglutarate transporters (20, 25, 430). In this way it effec-
tively links changes in the cellular redox state (25). Indeed,
one defense against I/R-induced ROS accumulation and
damage may involve preservation of the NAD(P)H pool.
The NADH/NAD" level through the NADH kinase and
transhydrogenase-dependent mechanism (248, 426) main-
tains the mitochondrial NAD(P)H pool required to maintain
the redox status necessary for effective scavenging. This
NADH is generated from the TCA cycle and during f-
oxidation; thus an increase in NADH would correlate with
increased NAD(P)H dependent redox scavenging. The IMM
nicotinamide nucleotide transhydrogenase, with binding
domains for both NADH and NADP(H), uses the trans-
membrane proton gradient in the presence of NADH and
NADP™ to generate NADPH (461). Cytosolic NAD(P)H is
derived mainly from the pentose pathway (20, 543). The en-
zyme glutathione reductase (GR) uses NAD(P)H as its source
of electrons to regenerate GSH. Hence an increased concen-
tration of NAD(P)H relative to NADP" promotes the pro-
duction of GSH, which is a substrate for peroxidase (Fig. 8).

GSH, as an abundant source of reducing equivalents, pro-
vides the substrates necessary for the proper functioning
of mitochondrial proteins containing critical sulphydryl resi-
dues, such as the dehydrogenases and ATPase. GSH provides
the substrate for glutathione-S-transferase and glutathione
reductase to scavenge H,0O,. In so doing, GSH protects mi-
tochondria from lipid peroxidation by reducing phospholipid
hydroperoxides (PHP) and H,O,, among other peroxides, via
PHP GSH-peroxidase, an enzyme essential for life (20). GSH
protects mitochondria from extra-mitochondrial ROS and
detoxifies O,"~ and Fe=0" in a nonenzymatic fashion. The
high reducing power of GSH makes it a major contributor to
the recycling of other oxidants that have become oxidized and
could be a basis by which GSH helps conserve lipid-phase
antioxidants like a-tocopherol (vitamin E) (367).

Mitochondria appear to be the most susceptible foci in the
GSH-depleted state. Changes in mitochondrial GSH status
have been associated with activation of signaling pathways
and expression of genes that regulate apoptosis, cell death,
and differentiation (430). In recent studies, Aon and col-
leagues (25) reported that GSH depletion may be the ultimate
factor determining the vulnerability to oxidant attack. Indeed,
depletion of GSH has been associated with many degenera-
tive diseases. This is evident by high levels of ROS production
and activation of the mPTP that is independent of CsA, but is
sensitive to CDZ, the PBR antagonist (25). These findings
suggest the involvement of OMM proteins mediating the GSH
depleted cellular damage, and highlight the significance of
targeting the OMM as a way to mitigate mitochondria-related
cellular injury. Inhibition of GSH transport with butyl mal-
onate led to substantial depletion of mitochondrial GSH levels
and could therefore render the mitochondrion more suscep-
tible to oxidative stress (25) and subsequent cellular injury if
there is an imbalance in the rate of ROS scavenging to the rate
of O,"" generation.

GSH deficiency has been linked to widespread mitochon-
drial damage, which is lethal in neonatal rats and guinea pigs
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deficient in ascorbate (368). The combination of GSH and
ascorbate to remedy these defects is ascribed to the evidence
that they spare one another. Ascorbate increases mitochon-
drial GSH in GSH-deficient animals and GSH delays the onset
of ascorbate deficiency-related pathologies such as scurvy. In
this way, GSH and ascorbate function together to protect
against oxidative stress. Diabetic nephropathy is another ex-
ample of the importance of GSH. The disease is characterized
by mitochondrial dysfunction and decreased rates of GSH
transport. In this case, a potential remedy is overexpression of
mitochondrial GSH carriers to revert the phenotype to normal
(149, 318). Specifically, overexpression of the GSH carrier in
renal proximal tubular cells from diabetic rats improved mi-
tochondrial function and redox state and resulted in normal
mitochondrial function and reversal of diabetic nephropathy
and other models of renal injury (318).

TRX has multiple actions; it is a small redox protein con-
taining a thioredoxin active site localized in mitochondria and
encoded by the nuclear genome (252, 575). Mitochondrial
thioredoxin reductase-2 (TrxR-2) is ubiquitously expressed, but
is present in larger concentrations in the brain, heart, and liver
(491). TRX is reduced by TrxR-2, which utilizes the mitochon-
drial NADH/NAD redox state, similar to GR, as a source of
reducing equivalents (Fig. 8). TrxR-2 protects against H,O,-
induced cytotoxicity and regulates hemeoxygenase, a protein
that prevents accumulation of heme and thus reduces oxidative
stress associated with heme buildup. The mitochondrial TRX
system appears essential during development because dis-
ruption of the Trx2 gene in the mouse results in massive apo-
ptosis during early embryogenesis and embryonic lethality.
Overexpression of cardiac TRX has been associated with im-
proved post-ischemic ventricular recovery and reduced infarct
size when compared to hearts from wild-type mice (180, 181).
The TRX system has also been shown to have a potential
therapeutic value against cardiac hypertrophy and cardiac
failure, and as an antioxidant; it can also protect cells from
oxidative stress by inducing MnSOD (19, 147, 294). Induction
of MnSOD leads to increase H,O, generation, which is con-
verted by H,O, detoxifying enzymes to H,O, and hence
maintains oxidative stress within the physiological range.

Peroxiredoxins (PRX) are the recently discovered
thioredoxin-dependent peroxide reductases, which reduce
H,0; and lipid hydroperoxides (102, 103, 345, 625). There are
various isoforms of PRX in mammalian mitochondria in-
cluding Prx3 and Prx5. A part of the mitochondrial TRX
system is involved in maintaining the PRX proteins. Indeed, it
has been reported that overexpression of CypD, a strategy
targeting the mPTP, increases cells” resistance to oxidative
stress-induced damage. This paradoxical effect can be ex-
plained in part by the fact that CypD can be an activator of
TRX-mediated conversion of H,O, via peroxidase (236).

The contribution to scavenging potential of mitochon-
dria by these redox proteins is therefore dependent on the
mitochondrial bioenergetic function. If the redox balance is
compromised, increased ROS production could lead to det-
rimental oxidative injury to proteins and lipids, which are
highly susceptible to oxidative damage. Thus, maintaining a
large pool of reductants like GSH and TRX requires mito-
chondria to regenerate the reduced state via the NADH/
NAD™" redox pair after detoxifying the ROS. Hence, supply-
ing exogenous GSH or TRX-2 may be protective, but only if
there are also sufficient reducing equivalents.
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It is also important to note that, under certain pathological
conditions, understanding the balance between the O,""
producing side and its scavenging side is crucial for an ef-
fective therapy. In ischemia the excess O," appears to be
confined to the production side and less to the detoxifying
side. This is evidenced by the apparent intactness of the
scavenging capability of glutaredoxin or glutathione peroxi-
dase (GPx) and MnSOD in isolated mitochondria during the
ischemic insult (275, 541). Thus, targeting the ETC to attenuate
electron transfer, and consequently to decrease the electron
leak, may represent a better strategy than changing the matrix
antioxidant capacity during ischemia.

C. Catalase and glutathione peroxidase

Catalase is present in cardiac cell mitochondria where it is
thought to comprise about 0.025% of the total mitochondrial
protein (20). Mitochondrial fractionation studies and quanti-
tative electron microscopic immunocytochemistry showed
that most of the catalase is located in the matrix. In myocar-
dial tissue, catalase activity is lower and mitochondrial
H,0O, production/g tissue is greater than in most organs
(463). Catalase protects the organelle against intra- and extra-
mitochondrial generated H,O, (20). GPx, ubiquitously
expressed in mammalian tissues and present in the mito-
chondrial matrix, seems to be the predominant H,O, detoxi-
fying agent in the heart. Catalase or GPx coupled to GR
converts H,O, to H,O (193) (Fig. 8). It is noteworthy that in
mice, an increase in lifespan was found to be due to decreased
mitochondrial ROS via greater expression of catalase in mi-
tochondria (504). Recent studies have shown that targeting
catalase to the mitochondria can reduce cardiac pathology
(e.g., cardiomyopathy with age, and cardiac amyloidosis) con-
sistent with the effect of endogenous ROS to decrease heart
functional capacity with aging (577).

D. Cytochrome c

Cytochrome c is present at high concentrations in the IMS
(>1mM) (461) and it is one of the mediators of apoptosis.
Cytochrome ¢ can accept or donate an electron depending on
the redox state of its heme (Fe). Thus, it is also a scavenger of
O, through its capacity to be reduced alternatively by the
transfer of electrons or by O,'", thereby reducing ROS emis-
sion (20, 543). The reduced cytochrome c is reinstituted by
donating its electron to cytochrome c¢ oxidase. In I/R and
neurodegenerative diseases, loss of cytochrome c inhibits
respiration, which leads to increased electron leak (337, 652);
the outcome is more O, production and more cell damage.
Another possible reason for an increase in O," after mPTP
opening is the loss of cytochrome c. It was shown that addi-
tion of exogenous cytochrome ¢ to cytochrome c-depleted
mitochondria reduced O, levels by 7-8-fold (609, 652). In
the cytochrome c-deficient Keilin-Hartree heart muscle
model, Zhao et al. (652) showed that electron transfer through
the ETC was attenuated and O, generation was significantly
greater in the mutant than in the wild type. Reconstituting
cytochrome c in the cytochrome c-depleted hearts resulted in
less O,"~ accumulation. Therefore, an adequate concentration
of cytochrome c in the ETC is necessary to maintain ROS at
physiological levels (652). In the I/R model, blocking electron
transfer prevents O, formation and preserves the integrity
of the mitochondrial membrane including cardiolipin that
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functions to retain cytochrome c content (114, 115, 262, 324).
Hence, maintaining the integrity of cytochrome ¢ could rep-
resent a potential strategy for mitigating mitochondria-
related cellular injury.

E. Mitochondria as scavengers of cytosolic O>"~

Mitochondria are major scavengers of O," produced from
extra-mitochondrial sources. Mitochondria scavenge cyto-
solic O,"" radicals by maintaining a polarized IMM that is
positively charged during respiration. The [H] in the IMS
attracts the cellular O,"". Here, O," " radicals are protonated to
form hydroperoxyl radicals (224, 495), which can diffuse into
the matrix and become deprotonated so that the O,"" is dis-
mutated by matrix MnSOD. Net O,"~ consumption in mito-
chondria creates a gradient for O,", which favors diffusion
from the cytosol to the IMS. Therefore, increased MnSOD in
mitochondria augments O,"” removal from the cytosol as well
as from the mitochondria. In this regard, it may not be a co-
incidence that mitochondria play a central role in cell death
and that a lack of MnSOD in the mitochondria leads to cardiac
and neuronal lethality.

VI. Uncoupling Proteins in Modulation
of Mitochondrial Function:
Physiological and Pharmacologic Relevance

Mitochondrial uncoupling is an important physiological
regulator of its function and redox potential and thus, is also a
regulator of O,"~ production. One of the control systems that
regulate mitochondrial function and the flux of protons back
across the IMM to maintain a suitable Ay, (379) is a group of
uncoupling proteins (UCPs). The UCPs (1-4) and fatty acids
are believed to induce an inward H* “leak” in energized mi-
tochondria (70, 274, 543, 544). A key role for UCPs in regu-
lating mitochondrial metabolism is supported by the presence
of different isoforms in various mammalian tissues. UCPs
prevent excessive ROS accumulation by maximizing respi-
ration rate (401). The obscure roles of UCPs in normal phys-
iology, and their emerging role in pathology, provide exciting
potential for further investigation. However, neither the exact
physiological nor biochemical roles of UCP homologues are
well understood (342, 626).

Natural uncouplers like fatty acids and proteins, and arti-
ficial uncouplers like carbonyl cyanide m-chlorophenylhy-
drazone (CCCP), inhibit ROS production by decreasing Ay,
(253, 536). UCPs are IMM proteins that dissipate the mito-
chondrial H" gradient. Other biological effects of UCPs are
their ability to attenuate mitochondrial ROS production (537)
and to reduce the damaging effects of ROS during cardiac I/R
or hypoxia injury (42, 188). In IPC and PPC, activation of
putative mK,rp channels may lead to mild uncoupling of
mitochondrial respiration via mild “proton leak” with a con-
comitant increase in O,"~ generation that provides the signal
for protection against ischemic damage (261). This form of
“proton leak” is attenuated by GDP, a UCP inhibitor, sug-
gesting that the H leak is mediated via UCPs.

In a recent study (253), we showed thata H* leak instigated
by the putative mitochondrial big K, (mBKc,) channel in
cardiomyocytes opening led to ROS production without dis-
turbing Ay, This is possible because the small H' leak and
the concomitant small increase in H* pumping by ETC
complexes increases the respiration rate without decreasing
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Ay, while increasing the rate of H,O, production (253). It
is possible that this “mild” uncoupling may contribute to the
protection of the heart against I/R injury as shown by the
BKc, channel agonist NS1619 (542). We showed that NS51619-
induced protection was mediated by preservation of mito-
chondrial redox state, reduced mCa?" loading, and better
functional recovery; this protection was abolished when
hearts were treated with MnTBAP and paxilline, the BKc,
channel antagonist.

It has also been reported that overexpression of UCP2
protein in mice protects brain from severe infarction in I/R
(154). UCP2 is thought to mediate such protection, possibly by
causing mild mitochondrial depolarization that could limit
mCa®" uptake, reduce ROS production, and so protect cells
from damage (177). It is feasible that UCPs could alleviate
damage from I/R injury if they could be activated or stimu-
lated before the insult to reduce Ay, and before the redox
increases because of inhibited electron transfer (543). More-
over, it is possible that shifting from state 4 to state 3 respi-
ration could be sufficient to lower Ay, enough to have the
same effects as uncoupling agents on ROS production. Thus
maintaining a depolarized Ay, state is crucial in mitigating
ROS-mediated injury.

Recent studies have shown that UCPs play an important
role in the pathogenesis of obesity, type-2 diabetes, aging, and
tumor progression (626). It was reported that the expression
of UCPs increased in response to increased mitochondrial
oxidative stress and that they serve as the link between dia-
betes and mitochondrial ROS (449). In endothelial cells, high
glucose levels increase mitochondrial ROS, and the normali-
zation of mitochondrial ROS production by inhibitors of mi-
tochondrial metabolism, or by the overexpression of UCP-1,
prevent the glucose-induced formation of advanced glycation
end products that are believed to underlie major molecular
diabetic complications (405). In contrast, in ob/ob mice that
lack a functional UCP-2 gene, or when UCP-2-deficient mice
were fed high fatty diets, glucose stimulated insulin secretion
was enhanced compared to the wild type (342). These studies
imply that UCPs may be important in insulin-glucose ho-
meostasis and may contribute to impaired glucose-stimulated
insulin secretion in diabetes. In human islet cells, chronic
glucose or free fatty acid concentrations increase UCP-2 ex-
pression (342). These results are consistent with the finding
that UCP-2 overexpression impairs f-cell function (342). Thus,
minimizing UCP-2 activity in pancreatic fi-cells could repre-
sent a valid and viable approach to improve f-cell function
and to treat diabetes. However, such a conclusion is consid-
ered tenuous or “precocious” according to Anetor et al. (22),
who reported an absence of significant oxidative stress in
mitochondria, so that it was thought less likely that the UCP-
2-superoxide pathway was involved in the inhibition of
glucose-stimulated insulin release.

Another possible alternative approach to ameliorate ROS
production is to modulate mitochondrial bioenergetics with
low doses of artificial uncouplers. As discussed previously
(543), ROS production is more likely when the Ay, is highly
polarized. Therefore, any slight decrease in Ay, as has been
reported by most studies (309,317,543), or trans-matrix ApH
(317), results in a marked reduction or cessation of ROS pro-
duction. In this case, temporary partial uncoupling of respi-
ration from phosphorylation by inducing a mild H" “leak”
has potential therapeutic benefit. For example, the use of
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dinitrophenol (DNP), which increases permeability of the
IMM to protons, has been proposed and even attempted in
treating obesity. However DNP has a low therapeutic index
(narrow concentration difference between therapeutic po-
tential and toxicity) that limits its utility as a viable therapeutic
option (Section VI) (58). An alternative approach to using
artificial uncouplers is the use of endogenous uncouplers that
induce H" leak (449). However, the development of this ap-
proach is dependent on unraveling the mechanisms involved
in activating the uncoupling proteins.

Some lipid peroxidation products, such as 4-hydroxy-
trans-2-noneal (HNE) may induce partial uncoupling of
mitochondria through UCPs and are thought to initiate pro-
tective mechanisms (60, 182). HNE can also induce un-
coupling of OXPHOS by enhancing H" leak through other
membrane proteins such as ANT if Ay, is high (32). It has
been proposed recently by Brookes (69, 70) that ROS and H"
leak comprise a loop not requiring UCPs to operate, but rather
is dependent on Ay, alone. A high Ay, would generate ROS
and the ROS would, in turn, cause a H" leak to reduce the
Ay, in a feedback manner. The ROS so generated could in-
duce H* leak in part by lipid peroxidation or possibly by
protonation of O," in the acidic IMS to HO," (346, 543), which
is membrane permeable and is deprotonated by the alkaline
pH in the matrix (153, 543). A decrease in OXPHOS as a result
of uncoupling and the less efficient metabolic rate associated
witha H" leak may be linked to the aging process (70) (Section
XII). Taken together, these findings suggest a better under-
standing of the physiological roles and molecular mecha-
nisms of uncoupling proteins and the consequence of H* leak
or H" “slip” (70) to better understand the role of this phe-
nomenon in mitochondrial function and dysfunction (449). A
better knowledge of the mechanism of H" leak by UCPs and
synthetic uncouplers could provide the basis for better design
of drugs that target this aspect of mitochondrial biology in-
volving compromised mitochondrial function in the disease
state.

VII. Mitochondrial DNA-Related Pathologies
and a Potential Therapeutic Target

Mitochondria are inherited through the maternal lineage,
though some recent evidence suggests that in rare instances
mitochondria may also be inherited via a paternal route (506).
Mitochondrial DNA (mtDNA) exists in hundreds of identical
copies/cell (homoplasmy) but can also exist in multiple non-
identical copies within individual cells (heteroplasmy). Un-
like nuclear DNA (nDNA), mitochondrial nonchromosomal
DNA (mtDNA) does not get shuffled every generation, so it is
presumed to change at a much slower rate (75). It is believed
that mtDNA, organized in nucleoprotein complex (nucle-
oids), are particularly sensitive to oxidative stress due to its
proximity to the ETC and the lack of histones (521, 634). Mi-
tochondrial DNA also lacks introns, and as a result, mutations
in the genome occur primarily in the coding sequence, con-
sistent with the notion that mtDNA has a higher mutation rate
(10-20 times) than nDNA (50, 221). For these reasons, accu-
mulation of mtDNA damage plays a causative role in various
disorders that are associated with aging, cancer, neurode-
generative diseases, and other diseases (634).

However, based on the organization of mtDNA into nu-
cleoids and their proximity to the ETC, nucleoids may have an
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integrated antioxidant system to protect mtDNA from oxi-
dative stress (293). Indeed, Kienhofer et al. (293) recently
confirmed the presence of SOD2 in the nucleoid and noted
that it binds directly to mtDNA through ionic binding forces.
This mtDNA-SOD2 interaction in the nucleoid protected
against oxidative damage as evidenced by the increased
vulnerability of free mtDNA to X-ray and H,O, than mtDNA
in a nucleoid complex. The mtDNA-SOD?2 interaction may
also explain in part the enhanced ROS levels, the increased
mtDNA damage, the reduced activities of the ETC complexes
and TCA cycle enzymes, and endothelial dysfunction ob-
served in MnSOD*/~ mice (614).

Much of the mtDNA is used to code the manufacture
of proteins that are key components of the energy produc-
tion system. All 13 proteins encoded by mtDNA contribute
subunit components to most of the respiratory complexes.
mtDNA encodes 7 subunits of complex I, 1 subunit of com-
plex III, 3 subunits of complex IV, and 2 subunits of complex
V. Cells depleted of mtDNA, pO—cells, lack some of the critical
subunits of the ETC complexes, which result in a defective
respiratory system evidenced by a reduced Ayy,,. These cells
are resistant to anoxia-induced cell death (lack of ROS) and
they are dependent exclusively on anaerobic energy produc-
tion via glycolysis (312, 524), much like tumor cells.

Most mitochondrial proteins that regulate replication and
repair are encoded by the nuclear genome (540). Complex I,
the largest holoenzyme in the ETC, has 45 nuclear-encoded
and 7 mitochondria-derived subunits (438). Complex II con-
sists only of nuclear-encoded subunits, and complex III
consists of 10 nuclear-encoded and 1 mitochondria-derived
subunits. Complex IV has 7-11 nuclear-encoded subunits,
depending on the tissue type, and 3 subunits are mitochon-
dria derived (323, 598) as noted above.

Currently, it is believed that various mutations are re-
sponsible for more than 120 syndromes associated with mi-
tochondrial proteins (357, 433) (Section IX). There are also a
number of mitochondrial diseases associated with specific
mutations in mtDNA or in nDNA coding for mitochondrial
proteins (165, 176, 515) (Table 2). In other diseases like PD,
type 2 diabetes, and cancer, the disease process is more
complex and involves multiple genetic and environmental
causes (178, 423, 439, 458). In all these diseases, the genetic
mutations lead to impaired mitochondrial energy-generating
machinery. In this scenario, disabled mitochondria with im-
paired ETC would cause electron leak and increased O,"~
production. Indeed, the most common source of somatic
mutation of mtDNA is O," generated from the ETC. The
O,"" produced in the mitochondrion can continue in a self-
perpetuating process leading to even more damage and more
O, generation (Section IV,A). It is likely that gene replace-
ment has potential to be used to correct a mutant mitochon-
drial genome similar to classical gene transfer therapies that
have replaced defective nuclear genes (509). Indeed, genetic
maneuvers of different sorts have been employed to reverse
mitochondrial related diseases. These include, but are by no
means limited to: a) DNA coupled covalently to mitochon-
drial leader peptides (chimeras) that enter mitochondria
through protein import pathways; b) manipulating mtDNA
replication by import into mitochondria endonucleases that
might selectively destroy a specific mutant sequence; and c)
suppression of mutant mtDNA expansion to alternatively
salvage OXPHOS (498, 655).
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Mitochondrial DNA has the capacity to form a mixture of
both wild-type and mutant DNA genotypes within a cell
(heteroplasmy). Cellular dysfunction usually occurs when the
ratio of mutated to wild-type mtDNA exceeds a threshold level
(56). Mitochondrial disorders of the heteroplasmic type and the
associated disease could be remedied by selectively blocking
the replication of mutant DNA molecules to allow repopu-
lation of the wild-type mtDNA (567). On the other hand, a
potential therapeutic maneuver for destroying fast growing
tumor cells involves the use of ethidium bromide to deplete
mtDNA and the antibiotic ciprofloxacin to block OXPHOS
and deplete ATP needed for cell proliferation (28, 29, 100, 320).

Mitochondria have developed a complex system to import
proteins. The import of nuclear encoded mitochondrial pro-
teins is based on specific targeting sequences (498) that could
be altered by mutation of the nucleotide base in the nuclear
genome. The protein import pathway has been used to direct
the import of chimeric proteins into mitochondria. It could
also be used to direct the appropriate mitochondrial gene
sequences to mitochondria to correct for a defective protein
(28, 29). In this case, the use of mitochondrial protein impor-
tation machinery may lead to novel mtDNA delivery strate-
gies (Section VIII). A number of mitochondria-related diseases
could be linked to faults in the transcription-translational
process, in the mitochondrial importation of proteins fol-
lowing post-translational modification, or simply due to
mutation of the mitochondrial genome. Defects in the import
system are rare, but mutations of genes involved in the mi-
tochondrial import machinery have been shown to be the
cause of several maladies, including the Mohr-Tranebjaerg
syndrome (sensorineural deafness, dystonia, dysphagia, cor-
tical blindness, and paranoia) (498). Abnormalities in mito-
chondrial protein import have also been implicated in
neurological disorders such as AD (159). A detailed descrip-
tion of mitochondrial and nuclear genomic related diseases
is provided in the literature and will not be described here
beyond cursory observations.

VIIl. Mitochondrial Interaction with Other Organelles:
Therapeutic Implications

Mitochondria often form a 3-D branching network inside
cells along the cytoskeleton with tight connections to other
organelles. This association with the cytoskeleton determines
mitochondrial shape and function (466) and ultimately proper
cellular function (21, 26). This anatomical connection provides
for a dynamic feature in mitochondrial biology. Mitochondria
in the cell tend to have anatomical and functional connectivity
with each other and with other organelles such as the nucleus
and the endoplasmic reticulum (ER). These dynamic func-
tional interconnections are essential for normal function of
mitochondria and play a vital role in preserving cellular
function and integrity. It is therefore anticipated that de-
rangement of this link could be involved in pathologic states
associated with mitochondrial dysfunction. Thus, exploita-
tion of this dynamic anatomic relationship could represent a
new target for potential therapy in altering mitochondrial-
mediated cell death.

A. Mitochondrion—mitochondrion interaction

Mitochondrial shape, size, and number vary from organ to
organ, tissue-to-tissue, and cell-to-cell, and they vary under
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physiological and pathological conditions. In vivo, mito-
chondria often merge to form a reticulated network that
under physiological conditions are governed by the dynamic
equilibrium between fusion and fission. Indeed, the entire
mitochondrial population is in constant flux and the identity
of an individual mitochondrion is influenced by a nearby
mitochondrion with its potentially different mitochondrial
genome (heteroplasmy) (105). Interestingly, proteins such
as GTPases, kinases, and phosphatases are involved in bi-
directional communication between the mitochondrial retic-
ular network and other organelles and the rest of the cell (365).

In recent years this new emerging concept has provided
increased molecular definition to the mitochondrial network
as a central platform in the execution of diverse cellular
functions (i.e., from maintaining normal cell function to ini-
tiating cell damage). With this comes a new concept focused
on the idea that mitochondrial dynamics (membrane fusion/
fission) is a potential target in mitigating mitochondrial re-
lated diseases. The AY,, is essential in preserving and main-
taining the dynamic process involved in establishing the
mitochondrial network, which in turn is important for uni-
fying function and responses to intracellular signals (314).
This dynamic relationship is maintained by specific proteins
whose presence is important in maintaining and regulating
the integrity of the IMM and cytochrome ¢, both of which are
necessary to maintain mitochondrial respiration by genera-
tion of the H" gradient necessary to establish A¥ ..

Mitochondrial fusion and fission genes have been de-
scribed recently (105). The mitochondrial fusion proteins,
encoded by mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), help
to regulate mitochondrial function and to maintain OMM and
IMM fusion between mitochondria. To achieve fusion, the
proton gradient of the IMM, but not the A¥,,, is required for
the connection of the OMM and to achieve IMM fusion; a
large AV, and GTP must be available (29, 105). The dynamins
mitofusin and optic atrophy 1 (OPA-1) are GTPase proteins
associated with the OMM and IMM, respectively, and are
essential for mitochondrial fusion (562). The morphological
orientation of mitochondria is relevant in regulating cellular
apoptosis with increased fragmentation of the network lead-
ing to an increased tendency for cell death (365, 562). In nor-
mal cells where AY,, is maintained, mitochondrial fusion in a
tubular network is maintained. In cells derived from disease
states that show compromise in the A, as a result of a defect
in the ETC complexes and reduced respiration, the cells show
a degree of mitochondrial network disintegration with in-
creased fragmentation leading to increased cell death (365,
562). Loss of function of Mfn2 results in decreased substrate
oxidation and AY,, as a result of repression of nuclear en-
coded proteins involved in OXPHOS. Thus, the machinery
that governs mitochondrial dynamics also participates in the
temporal regulation of metabolism (365).

Defects in mitochondrial fusion proteins and subsequent
fragmentation of the mitochondrial tubular network are im-
plicated in numerous mitochondrial myopathies, including
neurodegenerative diseases (314) and I/R injury (24, 65). For
example, a set of mutations in Mfn2 leads to Charcot-Marie—
Tooth type 2A, a peripheral neuropathy characterized by
axonal degeneration (372-374). In mouse embryonic fibro-
blasts, a deficiency in Mfnl or 2 leads to accumulation of
fragmented mitochondria and embryonic lethality, whereas
overexpression of either one of the mitofusins restores the
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mitochondrial tubular network (151, 152, 373). In another
study it was shown that a muscle-specific knockdown of the
Drosophila homologue of Mfn (Marf) or OPA-1 results in
significant mitochondrial fragmentation and damaged cristae
(155). In all these abnormalities, the common denominator is
alteration of A¥,, because of reduced activity of the com-
plexes. The process is reversed by OPA-1, which prevents
release of cytochrome c and maintains IMM integrity.

Mitochondrial fission (fragmentation) depends on the mi-
tochondrial fission proteins (Fis1) and another GTPase dy-
namin family protein, DRP-1. These mitochondrial membrane
proteins, when present, mark the spot where fragmentation is
initiated. Overexpression of Fis1 proteins in normal wild-type
cells resulted in increased fragmentation and increased apo-
ptosis as a result of increased Bax and Bak on the OMM and
subsequent cytochrome c release (105, 314, 498). Overexpres-
sion of DRP-1 has been associated with significant fragmen-
tation and disruption of IMM and matrix cristae (155). These
proteins provide an intriguing link between pro- and anti-
apoptotic proteins and permeabilization of the OMM. Mi-
tochondrial fission also plays an important role in normal
mitochondrial function. For example, it has been reported that
disruption of fission proteins might lead to abnormal mito-
chondrial function (105, 314, 498). Clearly, normal Ay, and
electron transfer have local effects on mitochondrial structure,
networking design, and normal function. Thus, membrane
dynamic proteins of the IMM are also intimately involved in
apoptotic regulation and represent potentially novel targets
for therapeutic intervention.

In many diseases, in which a less polarized Ay, may
contribute to mitochondrial integrity, a strategy to maintain
integrity of the ETC with normal electron flux is a therapeutic
option. Moreover, the site within the ETC where the defect lies
may be critical in the design of drugs to target mitochondria.
For example, in PD defects in complexes I and III are associ-
ated with compromised Ay, and may contribute to subse-
quent fragmentation of mitochondrial connectivity (40, 304,
497, 557). On the other hand, a defect in complex V in the
disease NARP (neuropathy, ataxia, and retinitis pigmentosa)
does not alter Ay/y,. Impaired levels of Bcl-2 anti-apoptotic
proteins are also characteristic of NARP (314). A possible
therapeutic approach in the situation, where Ay, instability is
a contributing factor in mitochondrial fission, is to provide
substrates like N,N,N’,N’-tetramethyl p-phenylenediamine to
restore electron flux and thereby reestablish membrane
functional integrity and Ay,. A note of caution is that this
type of pharmacological maneuver may not be suitable for
diseases that are not linked to specific defects in the ETC. It is
therefore essential to understand the specific underlying
cause of the defect to properly design the appropriate therapy.
Another approach to reduce cytotoxicity involves overex-
pression of the fusion genes and inhibition of the fission genes
in a replicative cell line (606). However, this approach will not
likely work in mature post mitotic cells.

B. Mitochondrion—nucleus interaction

The existence of two spatially separated genomes, each
contributing, albeit asymmetrically, to the biogenesis of mi-
tochondria, has led to the suggestion that the two organelles
interact to provide a coordinated cellular response to intra-
cellular changes. How the nucleus and mitochondria interact,
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how mtDNA and nDNA gene expression is coordinated, or
how mtDNA is maintained within the cell (a process strictly
driven by nuclear factors), are key factors necessary for un-
derstanding the molecular mechanisms underlying many
disease states. The nucleus regulates numerous mitochondrial
functions because a majority of mitochondrial proteins are
encoded by the nuclear genome. Thus, disruption in the line of
communication between the two organelles can lead to initi-
ation of adaptive responses to reorganize cellular metabolism.
The mitochondrial proteins encoded by the nuclear genome
are synthesized on cytoplasmic ribosomes and the peptides
are imported into the matrix after specific post-translational
modifications. Import of nuclear encoded proteins or pre-
cursor peptides relies on a proper function of the mitochon-
drial protein uptake machinery, including chaperones and
transmembrane peptide import systems.

Mitochondrial oxidative stress that leads to the accumula-
tion of unfolded proteins in the matrix subsequently leads to
the upregulation of nuclear-encoded chaperone genes that are
transcribed and imported into the mitochondria. Mitochon-
drial chaperones, chaperonin 60 and chaperonin 10, are up-
regulated via activation of the transcription factor CHOP, a
CEBP-$ analogue (650). The mitochondrial factor that leads to
CHOP transcription remains unclear. The response is specific
since chaperonin 10 and 60 are induced, but HSP70, another
mitochondrial chaperone is not. Thus, mitochondria can sig-
nal the nucleus in a specific fashion in order to mount a stress
response that is specific to the mitochondrial compartment.

The transmembrane peptide import systems (i.e., the outer
and inner membrane translocases (TOM and TIM, respec-
tively)), import proteins determined by the amino terminal
sequences of the pre-protein. The direction of proteins to
specific mitochondrial compartments contributes to regula-
tion of mitochondrial metabolism (305, 330, 392). Thus, a co-
ordinated protein import system is essential for mitochondrial
maintenance and biogenesis; a disturbance of this commu-
nication between these organelles may underlie a disease
process.

Mitochondria—nuclear communication has been implicated
in modulating mitochondrial biogenesis and intra-mCa®"
distribution and swelling (550). A nuclear encoded pro-
tein, the peroxisome proliferator-activated receptor-gamma
coactivator-la (PGC-1a), is a transcriptional co-activator that
modulates mitochondrial biogenesis and in this way regulates
cellular metabolism. One of many functions of PGC-1« is
regulation of nuclear transcription factors, NRF-1 and -2 and
mitochondrial transcription factor-1, a protein that transfers
from the nucleus to the mitochondria where it promotes an
increased production of mitochondrially encoded proteins
and the replication of mtDNA (177, 589). PGC-1« also en-
hances the activity of mitochondrial specific scavengers, in-
cluding MnSOD and GPx1, during oxidative stress (537, 589).
Indeed, increasing PGC-1la levels markedly enhances cell
survival from oxidative stress. St-Pierre et al. (537) showed
that PGC-1a levels are regulated by mitochondrial ROS which
in turn activates the complex and multifaceted ROS scav-
enging system. The implication of PGC-1« in regulating mi-
tochondrial function, while at the same time minimizing ROS
production, makes it an ideal protein to control or to limit
mitochondrial damage. A deficiency in PGC-1a in the brain
renders it susceptible to neurodegeneration with apoptotic
cell death and increased oxidative injury (537). On the other
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hand, endothelial cells with overexpressed PGC1-x exhibit
reduced accumulation of ROS, increased Ay/,,, and reduced
cell death (589). The role of PGC-1 as a regulatory function in
lipid metabolism also makes the protein a target for phar-
macological intervention in the treatment of type-2 diabetes
(Section IX,C).

PGC-1o regulates nuclear gene transcription through a
mCa®" signal to the nucleus and conversely, PGC-1« levels
are partly regulated by cytosolic Ca®" (94, 550). This suggests
that a feedback regulation operates between mitochondria
and the nucleus through cellular and mCa*" signaling. In
addition, the release of cytochrome c, and the subsequent
activation of caspase activity, ultimately lead to nuclear
fragmentation, chromatin condensation, and the formation of
apoptotic bodies and programmed cell death. Another sig-
naling agent between mitochondria and the nucleus is H,O,,
which can diffuse to the nucleus where it acts as a mitogen at
low concentrations (602). Therefore a strategy involving
overexpression of PGC-1u that is modulated by Ca*" and
other signaling pathways suggests a multifaceted therapeutic
approach in managing cell death under oxidative stress.
Targeting the mitochondria by inducing PGC-1u to increase
ETC activity, and at the same time minimizing net ROS pro-
duction, makes it an ideal protein to reduce damage in PD and
AD. This strategy could be more relevant to the brain where
increasing the levels of a specific protein is a challenge (537).

C. Mitochondria—endoplasmic/sarcoplasmic
reticulum interaction

Mitochondria—endoplasmic reticulum (ER) communica-
tion is a vital component in the structure and function of the
mitochondria. For example, many of the lipids of the IMM
and OMM are not synthesized in the mitochondria but rather
are imported from the ER to the OMM. Since mitochondria
are not connected to other organelles through vesicular traf-
ficking pathways, mitochondria-ER communication is via
discrete sites of close apposition that would facilitate lipid and
Ca”" exchange between the organelles (308). A complex mo-
lecular tether that associates the OMM with the ER mediates
the interorganelle communication. In a recent study, Korn-
mann et al. (308) developed an elegant genetic screen that
identified the Mmm1/Mdm10/Mdm12/Mdm34 complex as
the tether between ER and mitochondria. The Mmm1 (main-
tenance of mitochondrial morphology protein 1) of the com-
plex connects the ER to mitochondria and the other core
molecules maintain mitochondrial shape and structural
framework to connect the two organelles. It is postulated that
the ER-mitochondria junction may also influence the struc-
tural organization of the IMM, mtDNA, and the regulation of
mitochondrial protein import (308, 617, 618).

Mitochondrial Ca®* dynamics as well as generation of ROS
are important events during the course of cellular injury and
cell death. Mehrotra et al. (366) reported that oxidative stress
potentiates membrane damage induced by Ca”". The ana-
tomical proximity between mitochondria and ER creates a
local microdomain in which the local mitochondrial [ATP]
within the microdomain is required for ER Ca*" signaling
(177, 550). This proximity of mitochondria to Ca®" release
sites has functional consequences for intracellular Ca*" sig-
naling. Mitochondrial uncouplers and the complex V blocker
oligomycin are known to blunt ER Ca®" uptake. In reverse
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order, ER supplies Ca®" to mitochondria as needed for con-
trol of mitochondrial metabolism or to instigate apoptosis/
necrosis (167, 550), depending on ER Ca®t content. This
“dynamic duo” is critical in preserving the functional integrity
of the cell.

Despite the physiological significance of ER-mitochondria
microdomain, little is known about the molecules that regu-
late Ca®" dynamics between the two organelles. It has been
proposed that these interactions are modulated in part by
locally generated mitochondrial ROS, which are believed to
act as the trigger to regulate the Ca®" flux between the or-
ganelles (605, 610). It is believed that ROS increases the
probability of Ca®" release from the ER, probably through
modulation of thiol groups on ryanodine, or via the ER IP3
receptor (IP3R) (177). Other possible molecules that regulate
the mitochondria-ER contacts include the “sorting” protein,
phosphofurin acidic cluster sorting protein-2 (PACS-2).
PACS-2 helps mitochondria to maintain their membrane in-
tegrity and to translocate Bid from the cytosol to mitochondria
in response to apoptotic inducers (526). A defect in PACS-2
results in uncoupling of mitochondria from ER and mito-
chondrial fragmentation (Section VIILB). Recent studies also
reveal that the mitochondrial VDAC, mitofusins, and the
IP3R, provide specific interactions between the organelles
(151, 152, 373, 550). Indeed, it was reported that after IP3-
triggered Ca®" release from the ER, the uptake into Mfn2-
deficient mitochondria was markedly diminished (151, 152,
373).

ER-mitochondria apposition ultimately affects Ca®" sig-
naling and amplification of apoptotic signals (151). In the
early apoptotic process, it is believed that Ca>" release from
the ER activates the mPTP and causes cytochrome c release;
the cytochrome c then binds to the IP3R resulting in an un-
restrained increase in cytosolic [Ca®']; the subsequent in-
crease in cytosolic [Ca®'] leads to mCa®" uptake (151, 152,
550), which would lead to a further increase in cytochrome c
release (204) and ultimately cell damage. It is therefore con-
ceivable that interrupting this interaction between mito-
chondria and the ER could mitigate mitochondrial-mediated
cell injury.

As an example, it has been shown that Bcl family of pro-
teins, which localize to the ER, interact with the IP3R to
modulate its phosphorylation state (204); this action could
reduce the feed-forward system that amplifies the release of
cytochrome c and mCa®" load (167, 168). In this case, over-
expression of anti-apoptotic Bcl-2 or Bcl-xl, or ablation of pro-
apoptotic Bax and Bak, reduced ER calcium content by
increasing the leak of Ca®" through IP3 receptors and pro-
tected against cell death in vitro (615). Recent studies have
shown that anti-apoptotic Bcl-2 and Bcl-X1 reduced ER Ca**
content by binding to and sensitizing IP3 receptors (615). The
increased Ca*" leak may not alter m[Ca®"] but could lead to a
moderate elevation in cytosolic [Ca?"], which unlike excessive
cytosolic [Ca®"] may protect against cell injury. Conversely,
Bax and Bak overexpression enhances the ER-mitochondria
Ca" transfer and lowers the threshold for mitochondrial
apoptosis (413). The chaperone protein HSP 70 appears to
have a cytoprotective function by inhibiting the apoptosis
induced by various insults. One possible anti-apoptotic
mechanism suggests that it blocks Bax translocation (204) to
the ER and reduces the initial cytochrome ¢ -mediated Ca**
release.
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In a recent study, de Brito and Scorrano (151, 152) showed
complementary mechanisms for the Bcl family protein
NIX-mediated cardiac cell death that involve direct ER-
mitochondrial disruption. Since it is believed that an impor-
tant mechanism of apoptotic cell death involves the mPTP
(167, 168), a strategy of combined protection of mitochondria
and ER may represent an innovative therapeutic approach
to enhance organ viability and functional integrity (176). This
approach will likely involve pharmacological modulation
and or genetic manipulation of anti-apoptotic proteins.

IX. Mitochondria-Related Diseases and Cell Injury

Studies in the past decade have identified a host of common
maladies with apparent links to mitochondria. These diseases
have been linked to defects in nuclear genes, mitochondrial
genes, or potentially a combination of the two (121, 502). The
mitochondrion is essential for ATP production; hence, when
the production of ATP is impaired through mutation of a gene
encoding a specific polypeptide involved in OXPHOS, tissues
that rely heavily on high levels of ATP, such as the brain and
heart, are most affected. Other organs beside the heart are
highly susceptible to mitochondria-related dysfunction; these
include liver, skeletal muscle, kidney, and the endocrine and
respiratory systems. In the brain, this can be phenotypically
observed as degeneration of motor neurons [e.g., amyo-
trophic lateral sclerosis (ALS) and Friedreich’s ataxia (FA)],
tremor [e.g., Parkinson’s disease (PD)], and progressive de-
mentia [e.g., Alzheimer’s disease (AD)] (6, 39, 166, 225, 247,
254,384, 502, 634) (Section IX,E). In heart failure, defects have
been purported to occur in ETC complexes or in components
of the OXPHOS machinery. These alterations are usually
manifested frequently as cardiomyopathy (481). Concomitant
with impaired OXPHOS is increased O,"" generation and
mCa®" overload, which lead to the “vicious cycle” hypothesis
of mitochondrial dysfunction (348) that may underlie the
maladies associated with mitochondrial related disorders.

Mitochondrial metabolism and the OXPHOS cascade are
emerging as key features in the generation of ROS associated
with a large number of diseases. Thus, the basic role of mi-
tochondria in sustaining the normal cellular function in every
tissue and organ has made dysfunction of this organelle a
central feature of numerous diseases in any organ system at
any stage of life (391). In fact the term “mitochondrial medi-
cine” has emerged recently as an active field of research and
clinical trials (531). Derangement of mitochondrial function
and loss of mitochondprial cell volume are now associated with
several human disorders categorized as mitochondrial cyto-
pathies (440, 501), of which mitochondrial encephalopathy,
caused in part by a point mutation manifested as a defect in
cytochrome c oxidase function, is a notable example. The
phenotypic presentation of mitochondrial diseases includes a
wide range of clinical manifestations that can affect all body
tissues and the onset of these ailments varies from early in-
fancy to senescence. However, the mystery remains as to how
tissue or cell type specificity occurs, and how a systemic dis-
order of one mitochondrial complex can cause a selective
disease phenotype while leaving other tissues intact. For ex-
ample, why do only voluntary motor neurons die in ALS, or
only basal ganglia neurons in PD?

It is believed that many of the mitochondria-related dis-
eases might actually be an expression of progressive organ
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system failure due to disruption of specific aspects of mito-
chondrial function (391). Mitochondrial DNA is a particularly
vulnerable target because of its proximity to the ETC and
ROS. Thus, in most cases mitochondria-related diseases result
from mutations in mtDNA (Section VII) due to oxidative
stress. Most mitochondrial diseases manifest themselves pri-
marily in young children, but the impaired metabolic function
of mitochondria in adult onset diabetes has become much
more commonly appreciated (232). In other mitochondrial
diseases, the underlying mitochondrial mutations accumulate
over time and the dysfunction that becomes evident correlate
with the increasing fraction of mutated mtDNA (391). These
diseases appear to be more prominent during later life in
brain, skeletal muscle, and heart where defects accumulate
more extensively than in rapidly dividing cells (391). In these
postmitotic cells, mitochondria must remain in steady state,
by either not replicating, or by at least maintaining a balance
between degradation and replication.

Rare mutations in mitochondrial proteins can cause severe
multisystem failure (540). A single mutation can lead to dif-
ferent syndromes, whereas the same phenotype can be caused
by different mutations, so many aspects of mitochondrial
diseases remain a mystery to date (540). Duchen (177) argues
that the challenge facing experts engaged in the study of mi-
tochondria-related diseases is to fully appreciate and under-
stand the extent to which changes in mitochondrial function
represent primary vs. secondary components of the patho-
logical process, and to fully understand the processes that
lead to manifestation of the disease. Each disease (e.g., cancer,
type 2 diabetes, ischemic heart disease, and even aging) has
unique triggers and symptoms, and establishing the causal
link with mitochondria is still in its infancy. However, at-
tempts to unravel this link, even though tenuous, have led to
some drug designs that target the mitochondrion.

It suffices to say that the subject of mitochondrial diseases
has been discussed extensively in the literature. In this review,
we offer only a brief discussion of a few selected mitochon-
dria-related diseases. Table 2 summarizes some of these dis-
eases and their possible etiologies. Even though dysfunctional
mitochondria appear to be a common underlying problem
for all these diseases, they each exhibit unique triggers and
symptoms. Some of the diseases to be discussed further in this
review include cardiac I/R injury, heart failure, hypertension,
neurodegenerative diseases (PD, AD, and ALS), diabetes,
psychiatric disorders, and migraine headache; potential ther-
apeutic approaches targeting mitochondria will also be dis-
cussed.

A. Mitochondria and cardiac ischemia
and reperfusion injury

Mitochondria are crucial regulators of life and death in a
variety of cells and play a pivotal role in cardiomyocyte death
in response to cardiac I/R injury. During ischemia, ETC
complex activity is depressed as a result of damage to cardi-
olipin, ETC complexes, and increased H* leak in the IMM,
thereby compromising its ability to maintain A¥,, and to
provide a sustained energy supply. This leads to impaired
ATP-dependent ion pumps required to maintain ion homeo-
stasis. Intracellular acidosis produced during ischemia
quickly recovers on reperfusion and this leads to increases in
intracellular [Na*] and [Ca®*] (Section ILB). The alteration of
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cytosolic Na* and Ca®* eventually predisposes mitochondria
to dysregulation of ion homeostasis and increased mCa®"
load. A large increase in matrix [Ca®"] (Section IL.B) and re-
covery of matrix pH (less acidic) might alter both the function
and structure of mitochondria and contribute to opening of
the mPTP (Section II.C) and subsequent loss of A¥y,. Other
alterations of mitochondrial function observed during I/R
include changes in mitochondrial ROS production and redox
state.

As noted in Section IV.A, ROS are a normal byproduct of
mitochondrial respiration. Mitochondria generate cytotoxic
amounts of ROS during cardiac ischemia mainly through the
ETC (Section III), as shown by damage to the respiratory
complexes (117, 327, 332, 407) and the use of mitochondrial
inhibitors (83, 91, 113, 118). Extra-mitochondrial sources of
ROS including NAD(P)H oxidase (219, 299, 624) and xanthine
oxidase in vasculature (46, 571) are other likely sources of
ROS. However, our recent experiments using MnTBAP
(SOD2 mimetic) in isolated hearts indicates that cardiomyo-
cyte mitochondria are likely the main source of ROS during
cardiac ischemia (289). This subject is discussed in greater
detail in our recent review article (543), and by others (14, 591,
592), and will not be covered in any more detail here.

It is often stressed that excess ROS and mCa”" overload are
the two major factors that are intertwined in the pathology of
I/R injury. But how they are interrelated or how they influ-
ence each other is a subject of intense debate. It suffices to state
here that mCa®" overload leads to inhibition of the major
matrix scavenging enzymes and in this way may increase net
ROS production. Mitochondrial Ca*" overload could also
lead to mPTP opening and loss of GSH with dissipation of
AY ., and NADH; these are all key factors involved in main-
taining the redox balance in the GSH/GSSG system and effi-
cient scavenging capacity (20, 391) (Fig. 8).

The association of O, generation with I/R injury has
made the development of antioxidants as therapeutic targets a
pre-eminent goal (Section X). For example, it has been pro-
posed that an ideal strategy would be to boost ROS scav-
enging by using nontoxic catalytic antioxidants that are
delivered tissue-specifically or produced from inactive pre-
cursors (391) (Sections X and XI). Enhancing the endogenous
levels of the GSH pool is a viable strategy to protect against
mitochondria-related cellular injury. Indeed, we showed
that administering a cocktail of mitochondrial scavengers
(MnTBAP + glutathione + catalase) prior to 2h cold cardiac
ischemia followed by 2h warm reperfusion provided better
protection against mCa>" overload and ROS production and
better preservation of cardiac function than did MnTBAP
alone, which only dismutates O," to H>O, (90). Other po-
tentially beneficial strategies may involve decreasing the
primary ROS production by preventing the overproduction of
NADH, which could help minimize ROS production by the
use of mild uncouplers (Section VI) (20); or, pharmacologi-
cally directed attempts could be made to stimulate the ex-
pression of endogenous mitochondrial and intracellular
antioxidants.

The limited O, availability during ischemia or hypoxia
leads to a shift of glucose metabolism from OXPHOS to sub-
strate level phosphorylation (glycolysis), and prolonged is-
chemia leads to accumulation of lactic acid and depletion of
NAD™". An insufficient O, supply also results in decreased
NADH dehydrogenase (160, 162), which appears to be asso-
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ciated with inhibited electron transfer at the mitochondrial
cytochrome a,a; complex of the ETC. This could lead to an
increase in NADH and a decrease in FAD; that is, during
cardiac ischemia, mitochondria are in a relatively reduced
state. Consistent with this notion, we observed that during
ischemia NADH increases (reduced mitochondria) but on
reperfusion, we observed that NADH and FAD fluorescence
signals pointed to more mitochondrial oxidation (9, 10, 90,
475, 542). The implications of our results are that a reduced
redox state in the cardiac cell could be an important condition
for efficient resumption of the H™ gradient for ATP synthesis
and hence for better functional return. Prevention of ATP
hydrolysis to maintain AY¥,, during ischemia is therefore a
valid goal for preserving function.

B. Mitochondria and the failing heart

Substrate metabolism is dysfunctional in the failing heart.
ATP synthesis in the healthy mammalian heart is primarily
oxidative with greater than 95% of ATP synthesized in the
mitochondria via OXPHOS (416, 539, 645). The major sources
of mitochondrial fuel are illustrated in Figure 11; acetyl-CoA
that supplies the TCA cycle is derived from f-oxidation of
fatty acids and from dehydrogenation of pyruvate that is
supplied by glycolysis, glycogenolysis, and lactate oxidation.
Under normal conditions, between approximately 60% and
90% of the acetyl-CoA consumed by the heart is derived from
fatty acids, with the remainder derived primarily from pyru-
vate (208, 538, 539). Under different stressful conditions, in-
cluding ischemia and hypoxia, the heart switches from a
dependence on fatty acid metabolism toward utilization of
glycolytic metabolism (Fig. 11). This substrate switch makes
adaptive sense because under stressful conditions, the limited
O, supply makes oxidation of glucose yielding glycolytic ATP
more efficient than fat oxidation. The ability to switch sub-
strate utilization by a number of regulatory mechanisms is a
hallmark of a healthy heart (557).

In contrast, remodeling in failing hearts results in impaired
ability to oxidize both fatty acids and glucose (539). This is due
to a downregulation of enzymes involved in -oxidation (469,
493, 539), along with an impaired ability to utilize glucose due
to suppression of glycolytic activity, and to decreased ability
of the cardiomyocytes to take up glucose (559). In the extreme,
the work capacity of the heart is limited not by the availability
of metabolic substrates or O,, but by the impaired ability to
consume the available substrates (267, 539). As Taegtmeyer
noted it, “.. . the heart fails in the midst of plenty” (558). The
acute and chronic maladaptation of certain metabolic en-
zymes in the disease state occurs on a background of normal
physiological metabolic regulation.

The mitochondrial content and hence oxidative capacity of
both skeletal and cardiac muscle cells are diminished in heart
failure (203). This results in limited work in the failing heart
due to limited free mitochondrial energy (214, 416). Indeed
mitochondria isolated from explanted human hearts exhibit-
ing severe cardiomyopathies show significant depression of
state 3 respiration and lower respiratory control indices (517).
Thus, the altered metabolic pattern observed in heart failure
has a clear impact on the energetic state of the heart. The
potential consequences of a diminished energetic state include
an impaired ability of the heart to work and respond to acute
and chronic stresses. Metabolic dysfunction can precede and



THERAPEUTIC STRATEGIES DIRECTED TO MITOCHONDRIA

Normal
metabolism

lactate
NAD+
> LDH
NADH
pyruvate

+ glucose
netabolism

TFatty acid

fatty acyl- B Oxidation
-CoA

(s a2+

FIG. 11.

Oxidative stress

ROS Production

307
T lactate
NAD+
> LDH
NADH

/ pyruvate
Glllose and

Ischemia

+ Fattyacid
metabolism

APOPTOSIS

Cardiac mitochondrial metabolism of different substrates in the normal state and in the pathological state

(ischemia). In normal cardiomyocytes, cellular metabolism derives mostly from fatty acid metabolism. The transport of
fatty acyl-CoA into mitochondria is accomplished via CPT 1. Once inside mitochondria, the fatty-CoA is a substrate for
p-oxidation. During ischemia, substrate utilization is derived mostly from glucose and is less dependent on fatty acid
metabolism. Ca*" uptake through the Ca?t uniporter (CaU) is thought to regulate TCA cycle enzyme activity. In the ischemic
condition, Ca>" uptake may occur via mPTP opening and other nonphysiological means (e.g., OMM permeabilization).
Reproduced with permission and modified from Stark and Roden (540).

may play a role in initiating structural remodeling and me-
chanical malfunction (191, 561). For example, evidence exists
that metabolic remodeling precedes and contributes to in-
ducing functional and structural remodeling of the heart in
diabetes (560, 640). Thus, therapeutic strategies for metabolic
modulation are potentially of great value.

An important treatment goal is attenuation or reversal of
postinfarction remodeling and heart failure. Interestingly,
drugs that inhibit NHE appear to provide benefit via a mi-
tochondrial mechanism. Rats subjected to coronary artery
ligation exhibited, 12 or 18 weeks later, cardiac hypertrophy,
and increased mPTP opening and decreased state 2 and 3
respiration with complex I and II substrates in mitochondria
isolated from these hearts (271). Daily postligation oral treat-
ment with a NHE-1 inhibitor largely attenuated the decreases
in respiration and reduced mPTP opening. The mechanism of
mitochondrial protection by NHE-1 inhibitors in this model
(272) appears due in part to attenuation of the down-
regulation (lower mRNA levels) of mitochondrial transcrip-
tion factors that accompany hypertrophy and remodeling
(i.e., nuclear respiratory factor 1 and 2, transcription factor A,

mitochondrial encoded cytochrome c oxidase subunit 1, nu-
clear encoded cytochrome c oxidase subunit IV, and PGC-1«).

Although the idea of treating metabolic cardiac dysfunc-
tion is not new, the targeting of mitochondria in cardiomyo-
cytes has gained an unprecedented degree of interest lately. A
variety of metabolically targeted therapies have already been
applied to improve cardiac metabolic function clinically.
These include, but are not limited to, stimulation of pyruvate
dehydrogenase (PDH) by inhibiting pyruvate kinase (54) with
dichloroacetate (DCA). This approach has been shown to in-
crease lactate uptake in the heart and to increase mechanical
work and efficiency in heart failure patients (54). Whereas the
use of DCA is very effective in stimulating pyruvate oxida-
tion, its use is limited by its low potency (blood levels in mM
range) and short half-life (538).

Several drugs that inhibit fatty acid oxidation have shown
promise for a number of cardiac disorders. For example, eto-
moxir (inhibitor of the fatty acid transporter carnitine palmi-
toyl-transferase 1 (CPT 1) has been tried clinically to treat
chronic heart failure (288, 623). However, long-term usage of
this drug is associated with toxicity and heart failure (538).
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Other drugs, such as trimetazidine, commonly prescribed as
an anti-angina drug (68, 171), and ranolazine (currently being
tested for its effect on heart failure) directly inhibit f-oxidation
enzymes and potentially other metabolic enzymes (68, 538).
Irrespective of their individual mechanism of action, these
drugs have two fundamental effects in common. They all in-
duce a substrate switch from fatty acid to glucose and they
improve the efficiency of ATP production (171).

In the larger context, metabolic dysfunction of mitochon-
dria plays a role in the initiation and progression of a number
of health concerns. Therefore, targeting metabolic dysfunction
by enhancing glucose utilization and pyruvate oxidation at
the expense of fatty acid oxidation, as in cardiac ischemia,
appears to be a valid therapeutic approach (Section IX,C).
Some of the therapeutic approaches may also be applicable in
other organs or tissues. The intense research into developing
more sophisticated techniques for assessing and treating mi-
tochondrial disorders in a wide range of human diseases
should be based on rational approaches in order to under-
stand the underlying mechanisms of mitochondrial dysfunc-
tion by which to develop new pharmacological therapies.

C. Mitochondria and diabetes

Peripheral insulin resistance characterizes diabetes mellitus
with a defect in insulin secretion by pancreatic f-cells. Alle-
viating the metabolic disorder can reduce or prevent the de-
velopment and progression of diabetes (27). Intense studies
are currently underway to identify novel therapies for a dis-
ease that is responsible for the deaths of millions worldwide
and has caused crippling disabilities in millions more. The
etiology of diabetes has both genetic and environmental
components (27). Disruption of mitochondrial function is also
implicated in the etiology of the disease. For example, mito-
chondria of type 2 diabetic patients have reduced ETC capa-
cities (401). The ability of pancreatic f-cells to regulate blood
glucose levels is dependent on mitochondrial ATP production.
Indeed, the impairment in glucose homeostasis is associated
with a severe ETC defect caused by a deficiency in the mtDNA-
encoded cytochrome ¢ oxidase. Therefore, defective mtDNA
can result in mitochondrial dysfunction that could lead to the
development of diabetes as a result of impaired insulin release.
Patients with “mitochondrial diabetes” (352) and mitochon-
drial dysfunction have reduced glucose-stimulated insulin
secretion, a finding that underscores the importance of normal
mitochondrial function in f-cells (50,51).

Whether mitochondrial dysfunction is at the center in
the etiology of insulin resistance in type 2 diabetes, or the
underlying cause of impaired fS-cells function in type 1 dia-
betes, remains unresolved. Nonetheless, insulin action results
from a cascade of events from insulin-induced conformational
change of insulin receptor subunits on the sarcolemma to
autophosphorylation of tyrosine residues. The insulin recep-
tor then acquires tyrosine kinase activity to phosphorylate the
intracellular insulin receptor substrate (IRS) family of mole-
cules (528). These events lead to activation of downstream
PI3K and activation of Akt, which mediates most of the
metabolic actions of insulin. Phosphorylation of the IRS by
GSK3- inhibits the tyrosine phosphorylation of IRS catalyzed
by the insulin receptor.

Akt induces translocation of GLUT4 to the cell membrane
resulting in increased glucose uptake. Mitochondrial dys-
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function or reduced mitochondrial number could impair the
insulin signaling cascade. For example, impaired mitochon-
drial function and subsequent impediment of fatty acid oxi-
dation could lead to increased intracellular fatty acyl-coA and
diaylglycerol content and consequently to activation of PKC.
PKC is thought to trigger a serine kinase cascade that phos-
phorylates serine residues of the IRS, consequently blocking
the insulin signaling pathway (528). Activation of insulin re-
ceptors also leads to translocation of activated Akt to mito-
chondria in cardiac muscle (635). Akt translocation to
mitochondria is thought to represent a link between insulin
receptor signaling and mitochondrial dysfunction in diabetic
myocardium. Insulin action likely plays a major role in the
regulation of myocardial OXPHOS because insulin receptor
KO mice showed decreased OXPHOS and exacerbated ven-
tricular dysfunction (511). Indeed, in a recent study, Yang et al.
(635) reported that insulin modulates myocardial OXPHOS
by the PI3K-Akt pathway in diabetic myocardium. Further-
more, insulin was shown to increase complex V activity in
control mice; this was blunted in mice with a high fat/high
fructose diet, but was increased in the streptocozin diabetic
model (528).

Increased mitochondrial ROS production during hyper-
glycemia may be another way mitochondrial dysfunction
contributes in the pathology of diabetes. Undeniably, mito-
chondrial ROS production and the concomitant oxidative
damage may contribute to the onset and progression of both
types 1 and 2 diabetes (280, 627). This is because elevated
glucose and/or fatty acids may lead to greater O, consump-
tion, and coupled with the higher A¥,,, to more ROS pro-
duction (528). The mechanisms by which ROS may contribute
to the pathophysiology of diabetes have been discussed ex-
tensively (265, 281, 405). Excess mitochondrial ROS in f-cells
inhibits OXPHOS leading to a decrease in ATP for glucoki-
nase (expressed in f-cells) and the low ATP/ADP ratio will
result in inactivated Karp channels and impaired insulin
secretion. Chronic oxidative stress on peripheral tissues ulti-
mately leads to organ damage. Indeed, evidence for a con-
nection between elevated blood glucose and oxidative stress
has been obtained from experiments on endothelial cells,
wherein increasing the glucose level was found to increase net
cytosolic ROS levels (184, 651). The ROS generated in re-
sponse to hyperglycemia may represent the proximal defect
that eventually leads to other pathological consequences of
the disease. This suggests that therapeutic strategies to limit
mitochondrial ROS production or to increase the rate of ROS
scavenging may be useful adjuvants to conventional therapies
designed to normalize blood glucose (643).

When administered to mice, mitochondrial-targeted ROS
scavengers, such as ubiquinone and vitamin E, have shown
great efficacy against cell damage associated with high glu-
cose (494). However, clinical trials using o-tocopherol (vita-
min E), ascorbate (vitamin C), coenzyme Q, and o-lipoic acid
have yielded ambiguous results. Artificial antioxidants such
as SOD mimetics may be more potent than their natural
counterparts, but their usefulness in clinical trials has not
been determined (391, 498). In addition to detoxifying ROS
with mitochondria-designed antioxidants, another possible
approach is to target the A¥,,,. In this case, one could lower the
state of depolarization (mild) by overexpressing UCPs or by
titrating the dose of DNP, which has been shown to improve
serum glucose, triglycerides and insulin levels in mice (88).
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Type 2 diabetes results in an elevation of plasma free fatty
acid levels, an increase in f-oxidation in the heart, inhibition
of PDH activity, and impaired glucose oxidation (353). The
suggestion that diabetics would benefit from therapies that
suppress fatty acid uptake and oxidation and increase pyru-
vate oxidation has been entertained in recent attempts to
mitigate the disease. Indeed, PGC-10, a member of a family of
transcription co-activators that modulates cellular energy,
mitochondrial biogenesis (344), and regulates ROS (242, 589),
is intimately involved in disorders such as obesity, diabetes,
and cardiomyopathy. In particular, its regulatory function in
lipid metabolism makes it an inviting target for pharmaco-
logical intervention for treating obesity and type 2 diabetes.
Overexpression of PGC-1o in mouse skeletal muscle increased
glucose as well as the expression of proteins that are involved
in fat oxidation and glucose transport (52). Thiazolidine-
diones (e.g., rosiglitazone) are a class of antidiabetic drugs
that increase myocardial glucose utilization while lowering
serum triglycerides (319). In skeletal muscle biopsy studies, it
was shown that PGC-1a is reduced in patients with type 2
diabetes (446). Moreover, thiazolidinediones mediate their
effect in part through the ability of PGC-1a to activate mito-
chondrial biogenesis and increase mitochondrial function
(344). Consistent with this notion is the observation that mice
deficient in PGC-1a were found to be defective in contractile
protein function in skeletal and heart muscle. Further evi-
dence show impaired ATP levels because the protein levels of
ATP synthase and creatine kinase B were reduced in the di-
abetic patients (260). The PGC-1o signaling cascade may also
alleviate diabetes in part by the induction of MnSOD (27).

D. Mitochondria and hypertension

The contribution of mitochondria in kidney disease and
hypertension has gained attention recently. Loss of redox
homeostasis and generation of ROS appear to play a critical
role in the etiology of renal diseases and hypertension (406).
Mitochondrial ROS may contribute to this pathogenesis and
therefore mitochondria may be a target in the disease process.
The kidney is intimately involved in the disease process of
hypertension and the effects of ROS ultimately depend on the
pro- and antioxidant pathways (406). In the kidney, the renin—
angiotensin—aldosterone-system (RAAS) is key in the control
of arterial blood pressure (ABP) and the pathogenesis of hy-
pertension. Angiotensin II (All), an oligopeptide, is a potent
hypertensive hormone that causes peripheral vasoconstric-
tion and also stimulates aldosterone release. Aldosterone, in
turn, increases renal salt retention by acting on the distal tu-
bule. All these actions can lead to increased ABP.

Recent landmark studies concluded that augmented O3~
production underlies the pathogenesis of hypertension, and
this was attributed primarily to AII (406, 410). For example,
All infusion in rats led to increased ABP and this effect was
reversed by SOD treatment. In an in vivo model, Nozoe et al.
(410) reported that mitochondria-derived ROS induced by
AIl mediated sympathoexcitation in the rostral ventrolateral
medulla (RVLM), a brainstem site that maintains sympathetic
vasomotor tone, resulted in a pressor response. Overexpres-
sion of MnSOD and administration of rotenone inhibited
the All-induced ROS production and attenuated the pressor
response (410). In addition, the authors reported that deple-
tion of extracellular Ca*" with EGTA and blocking mCa>"
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uptake with carbonyl cyanide p-(trifluoromethoxy) phe-
nylhydrazone (FCCP), an uncoupler, also blocked All-elicited
mitochondrial ROS production (410). It was concluded that
AlI increases mCa”" uptake, which leads to mitochondrial
ROS production. The effect of rotenone to reduce ROS and to
reduce ABP may be attributed to its effect on the ETC. This
suggests that rotenone prevents forward electron transfer
from complex I to complex III, a source of O,"" generation.
This is analogous to the effects of rotenone observed by others
(18, 324) and to our recent study showing that amobarbital
attenuated O,"~ generation during cardiac I/R injury (9).

Spontaneously hypertensive rats (SHR) exhibit ETC defects
in complex I and II activities compared to normotensive
Wistar-Kyoto rats (107). In a recent study, Kung et al. (313)
demonstrated the importance of complex I in maintaining the
high ABP in the SHR model. In their study, it was reported
that in the SHR, microinjection of the adenovirus vector to
overexpress eNOS in the RVLM reduced complex I activ-
ity and increased O,"~ and ONOO’, which were reversed
with MnSOD transfection or decomposition of ONOO'. Co-
transfection of MnSOD with eNOS prevented the rebound
in ABP induced by eNOS overexpression in the SHR. Other
studies reported an alteration in mCa®" handling in brain
mitochondria during hypertension (89). These studies dem-
onstrate the contribution of RNS, ROS, and mCa®* in regu-
lating ABP through their actions on ETC complexes. A better
understanding of the role of mitochondria in the etiology or
progression of hypertension may lead to better design of
drugs that target the root cause of the disease. One possible
strategy would be the use of gene transfer (186) that would
target mitochondria in the kidney, vascular endothelium, and
in the sympathoexcitatory neurons of the RVLM. In support
of this strategy, overexpression of SOD or catalase in the SHR
by gene transfer reversed mitochondrial impairment, blunted
ROS in RVLM, and mitigated sympathetic vasomotor tone
(107).

AIl also mediates cardiovascular dysfunction via ROS-
induced ROS generation that culminates in cardiovascular
pathology including hypertension. Ricci ef al. (472) showed
that increased All initiates a signaling cascade involving PKC
to generate NADPH oxidase (Nox) dependent ROS and RNS
in the cytosol. Studies show that hypoxia-triggered mito-
chondrial ROS activate Nox-dependent ROS formation in
pulmonary artery smooth muscle cells, resulting in more
ROS/RNS production (467). Indeed cytosolic ROS/RNS do
not directly mediate cell damage, rather they trigger mito-
chondrial ROS/RNS, which in turn leads to cell damage or
death (174, 472). Apocynin and chelerythrine dramatically
attenuate mitochondrial O,"" generation in response to All
(174). Furthermore, All stimulated Nox-dependent O,"" acts
on mitoKp channels, or with NO* to form ONOO’, which
damages ETC, leading to a feed-forward loop of more
ROS/RNS generation and to further activation of Nox and
more intracellular ROS production (174), thereby progressing
to cardiovascular disease.

Other studies have reported similar crosstalk between mi-
tochondria and Nox in All-induced endothelial dysfunction
and hypertension (174, 613). Blocking complex I, or prevent-
ing mPTP opening (613), or blocking the mitoKsrp channel,
could attenuate vascular dysfunction and ameliorate patho-
logical conditions (174, 613). The actions of 5HD strongly
support the role of mitoKarp channels in the dynamic duo
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between these two distinct sources of oxidative stress with
distinct mechanisms (613). Interestingly, chronic nitroglyc-
erin treatment results in the development of nitrate tolerance
associated with vascular dysfunction; this might involve
similar crosstalk, but in reverse order, between mitochondrial
ROS and cytosolic Nox-dependent O,"" generation. Specifi-
cally, mitochondrial ROS/RNS exit into the cytosol where
they may activate vascular Nox in a PKC-dependent process
(613).

Although it is generally understood that vascular Nox is a
main source of ROS in cardiovascular diseases, the concept of
mitochondrial-triggered activation of Nox is novel and is
becoming attractive in other research areas. Mitochondrial
control of Nox1 redox is implicated in breast and ovarian
cancer (158). Therefore, strategies to target mitochondria as
well as Nox-dependent oxidative stress or interfere with the
crosstalk of ROS between mitochondria and Nox (613) rep-
resents a potential approach for use of targeted antioxidants
in mitigating mitochondrial-related diseases that include
hypertension.

E. Mitochondria and neurodegenerative diseases

The neurodegenerative diseases are a key health issue be-
cause they are profoundly debilitating (177). Mitochondrial
dysfunction and the mechanisms that favor apoptosis and
necrosis are believed to play a significant role in many neu-
rodegenerative diseases (391). The central nervous system is
particularly vulnerable to oxidative stress due to its high O,
demand and energy expenditure. Mitochondrial dysfunction
leads to oxidative damage that is well documented in many
of these diseases. Oxidative damage to mitochondrial mem-
branes, enzymes, and the ETC components, culminate in im-
paired mitochondrial ATP production and facilitated mPTP
opening (602). Recent studies have also implicated mito-
chondrial fission and fusion proteins (Section VIII.A) during
the onset and progression of neurodegeneration. Specifically,
Knott et al. (304) proposed that an imbalance in mitochondrial
fission and fusion proteins might be the underlying common-
thread that links most of these diseases to mitochondria. For
example, hereditary mutations in the mitochondrial OPA-1
and mitofusin-2 proteins have been implicated in neurode-
generative diseases (304).

The neurodegenerative diseases include, but are by no
means limited to, Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), Friedrich ataxia (FA), multiple sclerosis (MS),
amyotrophic lateral sclerosis (ALS), and the rare Huntington’s
disease (HD). Interested readers are referred to the following
citations for more information (28, 398, 399). In addition, Ta-
ble 2 summarizes some of the neurological diseases related to
mitochondria disorders. Only a brief discussion of some se-
lected diseases will be presented in this review. One salient
observation in all these diseases is that even though the fun-
damental pathological mechanisms remain unclear, it is sug-
gested from the evidence that mitochondrial dysfunction is a
contributing factor at some level of the pathogenic process
(177). These diseases are commonly associated with muta-
tions in mtDNA, impaired bioenergetics, increased ROS
production, and abnormal protein dynamics, including the
mitochondrial accumulation of disease specific proteins (e.g.,
amyloid-f for AD, parkin in PD, mutant SOD1 for ALS, and
frataxin for FD) (28, 133, 310, 362).
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1. Alzheimer's disease. Alzheimer’s disease (AD), the
most common neurodegenerative disease, is characterized by
accumulation of plaques in brain tissue and progressive ce-
rebral neurodegeneration with advanced age (177). It is the
most common form of dementia and is a complex neurolog-
ical affliction that is characterized clinically by loss of memory
and progressive deficits in cognitive ability (482). The un-
derpinnings of the disease are mutations in the genes pro-
ducing presenilin, the so-called amyloid precursor proteins
(APP) (262, 296, 498). A mutation in the genes for the APPs is
associated with expression of amyloid-f (A-f) (177). A-f is
taken up into mitochondria with its mitochondrial targeting
sequences via the TIM and TOM import machinery (247).
After uptake, it becomes localized in the cristae of the matrix
(247). Accumulation of A-f occurs in transgenic mice over-
expressing mutant A-f peptide precursor protein, and is
present in autopsied brains from AD patients (112). It is
noteworthy that at an early stage of AD there is already a
reduced number of mitochondria (247, 257), brain glucose
metabolism is decreased (247, 287), and the activities of TCA
cycle enzymes (79, 520) and cytochrome c oxidase are reduced
(97, 247, 441) while there is enhanced cytochrome c release
(177, 296), mPTP opening (384), and inhibition of OXPHOS
(498).

AD and its association with mitochondria have been re-
ported extensively in the literature (79, 112, 247, 257, 520). The
mitochondrial dysfunction in AD is thought to be secondary
to an increase in oxidative stress (498, 548) and or mCa®"
overload (384). The ROS generation increases the amyloido-
genic process and sets up conditions conducive for further cell
damage so that a destructive cycle of oxidative stress and
mitochondrial damage ensues (177). Using brain mitochon-
dria from 20-month-old diabetic Goto—Kakizaki rats, Moreira
et al. (384) reported that treatment with CoQ;, a natural an-
tioxidant and a highly mobile electron carrier between com-
plexes I and III or complexes II and III, counteracts brain
mitochondrial dysfunction induced by A-f neurotoxic amino
acid sequences. Cyclosporine A or EGTA also reversed the
adverse effects of A-f neurotoxicity on brain mitochondria
(385). The use of chloroquinol, an antimalarial drug, has
shown some effectiveness in ameliorating symptoms of AD in
part by reducing Ca®>" accumulation and oxidative stress
(177); mitochondrial A-f amyloidosis is also known to pro-
mote mitochondrial fission which may contribute to pro-
gression of the disease.

A detailed description of the etiology of AD and the con-
troversy over the different proposals to reduce its incidence
and severity is well discussed by Duchen (177). Our review
addresses only the targeting of mitochondria as a possible
therapeutic option in the treatment of AD. In AD as well as in
PD the disease is propagated by its spreading to neighboring
cells. It is therefore crucial that the root cause of the diseases be
preemptively targeted if control of either of these diseases is
to be achieved. A growing body of evidence suggests that
a greater understanding of mitochondrial dynamics (fission/
fusion), and the regulatory factors involved, may lead to
novel therapeutic strategies for improving treatments and
containment of the disease (155, 304).

2. Parkinson’s disease. Parkinson’s disease (PD) is the
second most frequent neurodegenerative disorder after AD in
the elderly (638). The etiology of the disease is not clearly
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defined. Present evidence suggests that PD is a multifactorial
disorder probably caused by a combination of age, genetics,
and environmental factors. The environmental link between
mitochondria and PD was suggested nearly 2 decades ago
when it was reported that a toxic byproduct of meperi-
dine, 1-methyl-4-phenyl-1,2, 3,6-tetra-hydropyridine (MPTH),
blocked mitochondrial ETC and produced symptoms similar
to those seen in late stage PD (638). MPTH effects on mito-
chondria were energy depletion and increased ROS produc-
tion (638). Chronic exposure to rotenone also reproduced a
PD- like syndrome in rats that was associated with selective
loss of dopaminergic neurons (254, 304). Studies have shown
that mitochondrial genetic alteration, as in a missense muta-
tion in the ND4 subunit of complex I, can lead to an atypical
PD like disorder and loss of nigrostriatal neurons (254) as a
consequence of oxidative stress.

Selective damage to mitochondrial complex I, with a con-
comitant increase in ROS within the dopaminergic neurons in
the substantia nigra and an increase in cell death, is believed
to be a major causative event in PD (254, 394, 497, 498). Some
patients with PD have a high frequency of single nucleotide
polymorphisms in the gene for MnSOD (216, 522). This al-
teration may contribute to an increase in ROS that can be
reversed by treatment with tempol, a O,"" scavenger that was
reported to diminish the severity of PD syndrome (337). In
patients with PD, administration of CoQ;o both enhanced the
ETC function and reduced ROS. A large phase III clinical trial
is underway to examine if high-dose oral CoQ;( will slow the
progression of the disease (254).

Several recent lines of evidence have also implicated reac-
tive nitrogen species (RNS) in neurodegeneration (638) lead-
ing to PD. There is growing evidence indicating that RNS are a
major contributor to the pathogenesis and progression of PD.
The association of NO® with PD is strengthened by studies
that show induction of iNOS in glial cells contributes to the
degeneration of dopaminergic neurons in a mice model of PD
(638). NO® may contribute to the deterioration of dopami-
nergic neurons in part via ONOO™. ONOO" can block complex
I function (Section IV,B), mainly by forming 3-nitrotyrosine
and nitrosothiol (394, 638), and by increasing oxidation of
cardiolipin (453). Other prevailing conditions in PD are the
depletion of GSH (122, 453) and the susceptibility of complex
IV to RNS and ROS (254, 453, 498). This may lead to a further
increase in ROS levels and possibly to a vicious cycle of
functional and anatomical deterioration.

The use of antioxidants to treat PD suggests that the pri-
mary mechanism of injury is via oxidative stress; metabolic
therapies may not be effective since metabolic insufficiency
appears to play no role in the disease (177). Recent data seem
to support this contention. Trolox and GSH are both capable
of slowing down the ONOO™-mediated damage to these do-
paminergic neurons (453). In this experimental setting, the
NO" scavenger cPTIO only partially attenuated inhibition of
complex I, whereas FeTPPS, a selective blocker of ONOO™ and
MnTBAP, completely blocked the inhibitory affects on com-
plex I. Other approaches are to use molecules such as MitoQ
and MitoVit E (ubiquinone and vitE homologues, respec-
tively), which target and accumulate in the mitochondria
and could both enhance ETC function and scavenging of
ROS and prevent oxidation of cardiolipin, all of which may
result in better functioning of the mitochondrial complexes
(453, 498).

311

Recent evidence implicates a derangement of the
mitochondrial-reticular network (Section VIIL.A) in the
etiology and progression of PD. Rotenone also initiates mi-
tochondrial fission (304). Deng et al. (155) have proposed a
direct genetic link of PD to mitochondrial dynamics. They
showed that the pinkl (PTEN-induced kinase 1) gene of D.
melanogaster interacts with the mitochondrial fusion/fission
machinery. The PINK-1 protein is a serine-threonine kinase
localized to the mitochondrial membrane via an 18-KDa
amino-terminal in the mitochondrial targeting sequence (254).
A pinkl deficiency in D. melanogaster resulted in a disorga-
nized morphology similar to the parkin mutation and loss of
dopaminergic neurons (254). The morphological changes
could result from a dependency on OXPHOS for maintaining
AP, and an intact mitochondrial network (254). A knock-
down of opal, or overexpression of drpl, rescued the phe-
notype of muscle disintegration, mitochondrial abnormalities,
and cell death in pinkl mutants. These studies demonstrate
that pinkl promotes mitochondrial fission and/or inhibits
fusion by negatively regulating opal function, and/or posi-
tively regulating drpl (155). Rasagiline, an MAO inhibitor,
has multiple effects on mitochondrial function, including
stabilization of A¥,,, which is necessary for maintaining the
mitochondrial network, and has a PD-modifying effect (254).
Thus, maintenance of the mitochondrial AY,,, a prerequisite
for organizing the mitochondrial reticular network, is an es-
sential feature in the strategy to alleviate PD.

3. Amyotrophic lateral sclerosis. Amyotrophic lateral
sclerosis (ALS; Lou Gehrig's disease) is the most common
adult-onset motor neuron disorder. It is characterized by se-
lective neuronal (lower motor neurons in the spinal cord,
brainstem, and motor cortex) degeneration (39, 586) and cell
death. ALS can be fatal due to respiratory muscle weakness
and complications of paralysis. The final stage of the disease
ends with the patient’s inability to initiate and control any
voluntary movement. In the vast majority of affected people,
the disease (90%) has no known cause and is termed “spo-
radic” ALS. In only a few victims is it inherited (familial ALS)
(586, 634). The most common defects are in cytochrome ¢
oxidase activity and in a mutation of sod1 (498, 634). Some
investigators believe that mitochondrial dysfunction may be
downstream of a primary disease process such as accumula-
tion of a pathogenic protein. However, other recent studies
have suggested that mtDNA damage plays a crucial role in
the etiology of neurodegenerative diseases (634).

One potential consequence of mitochondrial dysfunction in
ALS, as in other neurodegenerative diseases, is impaired en-
ergy metabolism and an increase in ROS emission. Indeed,
impaired ETC function has been detected in muscle and spi-
nal cord cells of ALS patients, and there is a significantly
higher level of point mutations in spinal cord neuronal
mtDNA. For example, there was observed an increase in 8-
oxoguanine, a common marker of DNA lesion resulting from
ROS, in the motor cortex, spinal cord, and plasma of these
patients (222, 634). Of the small number of familial ALS pa-
tients, about 20% of the defects are mapped to the sod1 gene
(586). The autosomal dominant nature of SOD1-associated
ALS suggests a toxic gain of function for mutant SOD1 (586).

It is now firmly established that in the fraction of familial
ALS linked to the sod1 gene, the expression of ALS-mutant
SOD1 proteins is the ultimate cause of motor neuron death
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(586). Itis reported that the mutant sod1 gene in mice leads to a
high molecular weight, oligomerized species of SOD1 protein,
which is toxic and accumulates in motor neurons (586) and
could be involved in ROS formation (587). Studies showed
that expression of mutant sod1 in cultured neuroblastoma cells
resulted in increased levels of mitochondrial O,"~ production
that was counteracted by MnSOD scavenging (189, 654).
Other studies show a disturbance in mCa*" homeostasis (99,
634). Overexpression of the mutant human sod1 gene in mice
caused abnormal mitochondrial morphology [i.e., damage to
IMM cristae in spinal cord motor neurons (302), disrupted
cytochrome ¢, and decreased respiration (99)]. The altered
SOD1 protein may interact with the pro-survival protein Bcl-2
which compromises its cell survival-promoting function.
Indeed, increased levels of the pro-apoptotic proteins Bax
and Bid, and decreased anti-apoptotic proteins Bcl-2 and
Bcl-X1, were found in spinal cord tissue of ALS patients
(256, 442).

Other proposed mechanisms for oxidative damage in ALS
include increased NO* production and decreased GSH levels.
Increased NO* and O," facilitates ONOO" production (Sec-
tion IV,B), which can damage key mitochondrial enzymes (81,
99). Treating transgenic mice with L-NAME or preincubation
with Mito-Q better preserved ETC function and improved
respiration in transgenic, but not in nontransgenic mice. In
addition, the antioxidant MnTE-2-Pyp (contains oxidized
Mn‘”) restored mitochondrial respiration, in part by the re-
duction of Mn®* by complexes I and II to Mn®" which de-
grades ONOO™ (81, 99). Further studies are needed to
understand why mutant expression of SOD1 and “sporadic”
incidents cause motor neuron disease and until this mecha-
nism is elucidated, the therapeutic approach targeting ALS
via motor neuron mitochondria is very limited.

4. Friedreich’s ataxia. Friedreich’s ataxia (FA) is a clear
example of a disease in which there are hallmarks of mito-
chondrial oxidative stress (362, 435). FA is an autosomal re-
cessive disease that is the most common of the hereditary
ataxias and is characterized by progressive damage with rel-
atively early onset (435). The disease is characterized by high
levels of iron (Fe) (362, 616) due to decrease frataxin, a mito-
chondrial Fe chaperone protein involved in regulating Fe
within mitochondria (310, 362). Mutation of the genes en-
coding frataxin frequently leads to loss of activity by the
protein (435), impairment of ETC complexes, and OXPHOS,
and reduced levels of aconitase and other TCA cycle enzymes.
These defects contribute to ROS production and a higher ox-
idative load in the cell (17, 484).

Therapeutic remedies for FA include idebenone, a CoQ1g
analog and inhibitor of lipoperoxide, or the combination of
idebenone and CoQ;o, which improved neurological coordi-
nation (489, 490). The accumulation of Fe in the mitochondria
suggests the potential for chelation therapy. Indeed, Fe che-
lators have been used to mitigate mitochondrial Fe load and to
improve mitochondrial and cellular conditions. For example,
recent studies show that Fe accumulates in the mitochondria
of a mouse FA model, and that development and use of the
mitochondrial permeable Fe chelator, desferrioxamine, re-
duced Fe load and prevents generation of OH" driven by the
Fenton reaction or direct scavenging of O," . In a D. melano-
gaster FA model, ectopic overexpression of scavenging en-
zymes restored the activity of aconitase (17); this is indicative
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and supportive of the theory that ROS are a salient feature in
the pathogenesis of FA.

F. Neoplastic diseases

Mitochondrial involvement in the etiology of neoplastic
diseases (ND) has been hypothesized since the 1930s, when
the Nobel prize-winning German physician and scientist,
Otto Heinrich Warburg, discovered that mitochondria in
cancer cells do not efficiently generate energy (464). Unlike the
neurodegenerative and ischemia-induced diseases discussed
above, mitochondrial dysfunction in tumor cells tends to lead
to cell survival and resistance to chemotherapy; hence, the
term the “Warburg effect” (212, 485). In marked contrast to the
therapeutic strategy for neurodegenerative and ischemic
diseases, which is prevention of cell death, in ND the main
goal of targeting the mitochondria is to kill malignant cells by
inducing apoptosis (212). A growing body of evidence sug-
gests that tumor cells exhibit increased intrinsic ROS stress
due in part to oncogenic stimulation, increased metabolic
activity, and mitochondrial dysfunction (56). Despite their
variability, almost all neoplastic cells demonstrate enhanced
uptake and utilization of glucose for glycolysis to generate
ATP (212). The most glycolytic tumor cells were found to be
most resistant to therapy and most aggressive in metastasis
(212, 364).

A pivotal player in the switch from OXPHOS to glycolysis
may be the HKII binding at the VDAC (Section IILA). As in-
dicated previously, tumor cells adopt this phenotype for their
survival. This includes most neoplastic cells that metastasize
(364). HKII binding to VDAC prevents the pro-apoptotic
proteins Bad and Bax from binding to the OMM, and so help
immortalize these cells by gaining preferential access to newly
synthesized ATP for phosphorylating glucose (136, 212, 364).
Tumor cells are also better able to withstand an adverse mi-
croenvironment (hypoxia, acidosis, and shortage of growth
factors) by virtue of their metabolic adaptation. Considering
the key role of mitochondria in cell death, it appears that the
relative mitochondrial “silencing” in neoplastic cells can, at
least in part, explain resistance of most tumors to treatment.

Emerging insights from the Korsmeyer laboratory (101,
156) group identified a novel key intermediate phenotype that
appears to be the lynchpin in the dynamic role of mitochon-
drial OMM permeability in apoptosis, and provided an im-
portant insight into the dysregulation of apoptosis in the
neoplastic cell. Cancer cell (e.g., Hela and non-small cell lung)
mitochondria are more resistant to OMM permeability be-
cause of overexpression of the Bcl protein family (195, 197,
386). Generation of sensitizer and activator pro-apoptotic
peptides is robust in many neoplastic cells as disorganized
metabolism and intracellular signaling generate robust stim-
uli for the activation of apoptosis. However, many of these
cells also dramatically express Bcl-2 that in turn sequesters the
pro-apoptotic peptides and blocks activation of apoptosis.
Vigorous apoptosis ensues when Bcl-2 is inhibited by small
molecule antagonists, such as ABT-737 (156, 212) or by short
peptide antagonists (101), resulting in OMM permeabiliza-
tion. This led Korsmeyer and Letai to propose the "primed to
die" mitochondrial phenotype (333). The response of isolated
mitochondria from neoplastic cells can functionally identify
the anti-apoptotic peptide that is in fact preserving cell sur-
vival, based upon the small molecules or peptides that elicit
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cytochrome c release from their isolated mitochondria, so
called “BH3 profiling” (156, 333). These findings have en-
hanced the understanding of the regulation of blockade of
apoptosis, and have substantially increased an understanding
beyond the relatively simple "dead or alive" Bax/Bcl-2 ratio
concept that previously dominated the field. Identifying these
tumor-specific changes responsible for the resistance to cell
death is crucial for developing targeted chemotherapeutic
agents (195, 197) based on a strategic approach to ensure
normal cell survival.

The actual etiologies of ND are highly sought after. It is
believed that apoptosis-regulatory genes (e.g., those encoding
p53, PTEN and Bcl-2) are involved in the pathogenesis of
many human cancers (136). PTEN is a phosphatase that in-
hibits Akt activation by reducing PIP; levels (448). The mPTP
whose constituents are different between normal and malig-
nant cells play a role in this pathological process (136). Also it
is postulated that this difference may explain resistance to
apoptosis and the cancer-specific metabolic alterations (136)
in these cells. For instance, HKII-VDAC interaction prevents
binding of pro-apoptotic proteins binding to VDAC and
thereby the induction of apoptosis (212,364). Consequently,
a variety of compounds including avicins, which are pro-
apoptotic, anti-inflammatory molecules with antioxidant
properties, perturb mitochondrial function and initiate apo-
ptosis in tumor cells (212, 364). Colon cancer cells HCT 116
express a small amount of Bak (383). Cisplatin, an anti-
neoplastic drug kills colon cancer cells in part by activating
Bak (276, 359, 563).

Another strategy used by neoplastic cells to confer protec-
tion is the overexpression of PBR (Section II), and Bcl-2 on the
OMM (136, 194). Synthetic PBR ligands (e.g., melphalan)
display increased cytotoxicity in a variety of rat and human
brain tumor cell lines (194). Melphalan is considered a Smac
mimetic and is used in the treatment of multiple myeloma (57,
110, 434); it induces apoptosis even in the presence of over-
expressed Bcl-2 anti-apoptotic proteins in some of these tumor
cells (205). Recent evidence indicates that the tumor sup-
pressor protein p53 has extra-nuclear effects that contribute to
its cell cycle-arresting and pro-apoptotic functions (195, 197).
Smac/DIABLO can abrogate the protective function of IAPs
(175, 597, 628), which confers chemoresistance in various cell
types (109, 196, 231, 335). Cytoplasmic p53 can induce OMM
permeabilization in part by direct interaction with the Bcl
family proteins located on the OMM. Thus, since OMM per-
meabilization is impaired in tumor cells, its pharmacological
induction constitutes a therapeutic strategy. In this case, the
ultimate strategy would be to minimize the sequestration of
large amounts of BH3-only proteins such as Bim in complexes
with anti-apoptotic Bcl-2 proteins. In the absence of Bcl-2, Bim
is not sequestered, apoptosis is triggered (315), and cell death
is initiated.

Other strategies applied in mitochondria-directed thera-
pies include increasing p53 and Bax, decreasing Bcl-XI, and
enhancing the activation of caspase 3. It was reported that the
chemotherapeutic agent CD437 exerts its therapeutic effect by
these mechanisms (136). It has been postulated that VDACs
and ANT (ANT2 variant) are highly expressed in neoplastic
cells when compared to normal cells because of the high
glycolytic phenotype in tumor cells (525). The VDAC-ANT-
HKII complex was shown to be a requirement for ATP
transport in neoplastic cells (67). These studies support the
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notion that VDAC and ANT could be possible pharmacologic
targets, or at least could be subjected to metabolic alteration
in neutralizing neoplastic cells. Indeed, the upregulation of
VDAC in tumor cells makes them susceptible to the anti-
tumor effects of furanonapthoquinones, whose apoptotic ac-
tivity is via NADH-dependent O,"~ generation (525). Another
strategy involves the use of 3-BPR (Section II,A) that selec-
tively enters and destroys tumor cells by targeting the HKII
and the mitochondrial synthasome. This leads to rapid de-
pletion of ATP and tumor cell destruction without harm to
normal cells (364).

As an adaptation to an increase in size with limited nutri-
ents and diminished O,, tumor cells are known to adapt to
hypoxia by inducing the transcription of multiple genes via
activation of the transcription factor hypoxia-inducible factor
(HIF-1a). The proteins induced by HIF-1a are involved in
regulation of glycolytic metabolism as well as tumor growth
and angiogenesis. Therefore, preventing HIF activation may
act to suppress tumor growth and cell proliferation. An O,
sensor may be central in this dynamic process that also clearly
involves mitochondrial ROS (48). It is proposed that ROS,
specifically HyO,, produced from complex IIl is a likely sensor
for initiating and stabilization of HIF-1o during hypoxia (108).
Therefore, a better understanding of how mitochondria func-
tion to initiate a hypoxic response will lead to development of
therapies that target O, consumption, ROS production, or
alter key metabolite concentrations in mitochondria (48).

In recent studies, PGC-lo levels were downregulated
in hepatic, breast, colon, and epithelial ovarian tumor cells
(33, 647), while overexpression induced apoptosis occurred
in epithelial ovarian tumor cells (Ho-841¢), but not in CHO
(Chinese Hamster Ovary) cells. It was suggested that the in-
creased expression of PGC-lx results in upregulation of
the pro-apoptotic gene Bax and downregulation of the anti-
apoptotic gene Bcl-2 (33, 647). Moreover, PGC-lo-induced
apoptosis was proposed to be mediated by a decreasing ratio
of Bcl-2/Bax, which can lead to destabilization of mitochon-
dria and release of cytochrome ¢ (647). The finding that PGC-
la expression decreased in ovarian tumor cells and that
increased expression promoted apoptosis suggests that PGC-
1o might be involved in the pathogenesis of some cancers. The
strategy of increased expression of the PGC-lu gene may
be useful for cancer therapy; this again belies mitochondria as
the epicenter of this strategy.

G. Other mitochondria-related diseases

1. Mitochondria and psychiatric disorders. Several stud-
ies have reported a role for mitochondria in the pathophysi-
ology of bipolar disease (BD), major depressive disorders
(MDD), including post-traumatic stress disorder (PTSD) and
schizophrenia (S5Z) (278, 480, 545). The features of mitochon-
drial abnormalities include deficiencies in OXPHOS and
mtDNA deletion in the brain, and associations with mtDNA
mutations/polymorphisms or nuclear-encoded mitochon-
drial genes (278, 545). It is suggested that the high rates of
maternal offsprings with SZ and BD compared to paternal
rates support the notion that increased risk for these diseases
might be related to mitochondrial impairment (480). In SZ it
is reported that there is an increased number of synony-
mous base substitution in mtDNA in the dorsolateral pre-
frontal cortex (DLPFC; Brodmann area 9/46) (480). In PTSD,
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decreased activity in the DLPFC, a brain area involved in the
regulation of memory and preparation and selection of fear
responses (545), was reported and it was proposed that mi-
tochondrial dysfunction is a factor in the etiology of the dis-
order. Su ef al. (545) studied dysregulation of mitochondrial
genes in these brain areas (Brodmann) from postmortem pa-
tients with and without PTSD using human mitochondria-
focused ¢cDNA microarrays. The study revealed that a
majority of the dysregulated genes were associated with mi-
tochondrial dysfunction and neurological diseases. Some of
the dysregulated genes appear confined in areas involved in
neuronal function—survival and thus may be targets for neu-
ropsychiatric drugs. The authors concluded that mitochon-
drial dysfunction is involved in PTSD “and provide the
expression fingerprints that may ultimately serve as a bio-
marker for PTSD diagnosis and the drugs and molecular
targets that may prove useful for the development of reme-
dies for prevention and treatment of PTSD” (545).

Preliminary studies have shown that lower levels of brain
energy metabolism are associated with MDD. Impaired en-
ergy metabolism in the brain detected by magnetic resonance
spectroscopy suggests that mitochondrial dysfunction is an
important component in MDD. A salient feature is that glu-
cose is metabolized very slowly. It has also been proposed
that altered mitochondrial OXPHOS malfunction is involved
in psychiatric disorders and that brain mitochondria of SZ
patients exhibit reduced complex IV activity in the frontal
cortex; in other studies, low complex IV activity was highly
associated with increased emotional and intellectual impair-
ment, but not motor impairment. Other studies have reported
reduced complexes II and III activities in frontal and temporal
cortex of SZ patients (278, 480). A reduction in the activity of
the complexes affects electron transfer and therefore may
potentially interfere with mitochondrial metabolism and ATP
production. In the brain this could lead to cell death as a
consequence of disturbance in the regulation of intracellular
homeostasis. Gerich et al. (207) showed a correlation between
the spread of hypoxia-induced depression in rat CA1 region
of hippocampal slices and A¥,, depolarization. The author
presented two basic questions to these findings: could it be
mitochondrial depolarization that triggers the depression
spread? If it is the mitochondria, how can the depolariza-
tion be transmitted to the cell membrane? A likely scenario
according to the authors is that mitochondrial depolariza-
tion may reduce sequestration of Ca>" by mitochondria and
Ca®" release from malfunctioning mitochondria; subsequent
changes in intracellular ionic conditions and pH would be
considered as putative signaling mechanisms.

However, a note of caution is that it remains to be resolved
whether the occurrence of psychiatric symptoms in patients is
just a coincidence or is more directly related to mitochondrial
dysfunction, itself. The answer to this question requires fur-
ther investigation. To date, dietary supplements, have been
used to “fuel” mitochondprial function and in so doing mitigate
the symptoms of psychiatric disorders. Some of these nutri-
tional maneuvers are discussed below (Section XI,E).

2. Mitochondria and migraine headache. Initial studies
have also raise the question that mitochondrial dysfunction
may contribute to migraine headaches, at least in selected
patients. Migraine headache is a neurological disorder be-
lieved to be a manifested in individuals with mtDNA
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sequence-related mitochondrial dysfunction (163). Indeed,
epidemiologic evidence for frequent maternal transmission
has implicated a role for a mitochondrial genetic background.
The link of mitochondria and migraine headache is supported
by the observation that it is frequently associated with a
deficit in energy metabolism and in MELAS, the classic mi-
tochondriopathies (163, 306). This is consistent with the ob-
servation that OXPHOS is impaired in migraineurs and
increased numbers of sequence variants were detected in the
noncoding control regions of mtDNA in migraineurs with
occipital stroke (163). It is also conceivable that migraine
headache may also be associated with mutation of nuclear
genes that encode the ETC complex because it has been noted
that other studies failed to show the connection between the
headaches and mtDNA abnormalities (306). Regardless of
the source of mitochondrial protein defect, the consequence
of mitochondrial dysfunction when coupled with loss of in-
tracellular Mngr in the brain, an occurrence in migraineurs,
culminates in a metabolic shift that cause instability of neu-
ronal function, which then enhances the development of a
migraine attack (612). Disruption in mitochondrial metabo-
lism may thus provide future pharmacologic targets for novel
therapies against migraine headaches. Therapeutic strategies
are briefly discussed in Section XIE below.

X. Mitochondrial Pharmacology
and Therapeutic Potential

The primary cause of most of the mitochondria-related
diseases discussed in our review have multifaceted etiologies;
hence efforts to develop effective drugs should be devoted to
the design of individual new compounds that work in syn-
ergy to protect the mitochondrion. Current mitochondria-
targeted drugs cover a wide range of pharmacological agents
(556) (Table 3; Fig. 12). Some of these drugs target mito-
chondria directly, whereas others affect mitochondria as a
secondary or side effect. Nonetheless, identification of the
mitochondrion as a target of a drug may assist in better un-
derstanding of a drug’s mechanisms of action and allow new
perspectives for its application (556). Only selected aspects of
targeting mitochondria for therapeutic benefit have been
covered in all the sections discussed above. This is inevitable
considering the broad nature of the subject and how mito-
chondrial function lies at the center of cell viability and cell
death. This section will discuss briefly a) strategies for mito-
chondrial drug delivery, b) mitochondria-targeted drugs, c)
maneuvers to protect against I/R injury, and d) other mito-
chondrial therapeutic approaches

A. Strategies for drug delivery to mitochondria

As a first step in designing a mitochondria-specific therapy,
it is foremost important to develop a drug that can access the
mitochondrial matrix. In recent years the search for new
protective remedies against excess mitochondrial ROS has
taken on a new sense of urgency. Some well-known scaven-
gers like MnSOD have proved ineffective at preventing oxi-
dative damage in animal disease models, presumably because
they are unable to permeate the cell membranes. One general
solution is to utilize the large A¥,, and to attach a molecule,
for example, one with antioxidant properties, onto a lipoid
vehicle that can penetrate membranes (262). With AY,, ap-
proaching —180mV in the nonphosphorylating state, for
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mitochondria-targeted drugs to work effectively consider-
ation of the difference between the sarcolemmal and mito-
chondrial electrical gradients should be central to drug
design. Specific delivery of mitochondria-targeted drugs di-
rectly into the mitochondrion appear pivotal for targeting
mitochondria-related pathologies, including neurodegenera-
tive diseases, cardiovascular diseases, and cancer (28).

To this end, numerous approaches have been attempted to
increase the access of drugs into mitochondria. For example,
rhodamine-123, a lipophilic cation, has the ability to penetrate
the mitochondrion by using the negative potential gradient of
the organelle as a driving force (Table 1) (28, 262). It has been
used successfully to chaperone tethered compounds into mi-
tochondria for cancer therapy, such as the anti-cancer drugs
cisplatin and mastoparan. Some of these drugs display se-
lectivity to mitochondria because of the high A¥,, in cancer
cells compared to normal cells (28, 262).

Other mitochondria-targeted drugs have utilized the lipo-
philic agent TPP", which has been used by a majority of the
nonpeptidic mitochondrial targeting agents. TPP" has been
used frequently to increase the incorporation of antioxidants
into mitochondria. Examples include MitoQ and MitoVit E
(Table 1) (28, 262). These compounds have been shown to
effectively minimize oxidative damage in several experi-

mental models (262). Indeed antioxidants that accumulate
within the matrix provide better protection from oxidative
injury than untargeted antioxidants (375). A mitochondria-
targeted derivative of a-tocopherol (MitoVit E) and mito-
chondria-targeted ubiquinone selectively accumulate in the
matrix when complexed with TPP" (619) and this accumu-
lation is associated with a more effective detoxification of
ROS (375).

Tempol, a cell membrane amphilite, is broadly effective in
dismutating O," catalytically and it facilitates H,O, metabo-
lism by a catalase-like action to limit toxic OH" formation (619).
The mitochondrial variant is termed mitotempol and it is the
result of coupling tempol to TPP*. Mitotempol has been
shown to be an effective scavenger of mitochondrial ROS;
however, Wilcox et al. (619) have argued that it is no more
effective than tempol itself in preventing O," accumulation in
mitochondria. A major fraction of cellular tempol is distributed
to the mitochondria, which are the primary site for reducing
tempol (619). Indeed, damage to mitochondrial respiration
following incubation with 3-morpholinosydnonimine, which
generates ONOO, has been shown to be prevented by co-
incubation with tempol (527). This raises questions concerning
the rationale for using a mitochondria-targeting strategy for
this particular drug. On the other hand, the cationic SOD2



THERAPEUTIC STRATEGIES DIRECTED TO MITOCHONDRIA

mimetics MnTBAP and MnIIITE-2-PyP°" accumulate in car-
diac mitochondria after systemic injection (534). We reported
that MnTBAP coupled with scavengers of H,O, reduce mito-
chondrial ROS in a cardiac I/R model (90) and during hypo-
thermia-induced ROS or RNS production (104).

Other strategies involve the use of specific precursor pro-
teins that are synthesized in the cytosol; these often require
sequence recognition by the import pathway to allow access
into mitochondria (262). A novel class of cell-permeable an-
tioxidant peptides that are selectively partitioned into the
IMM independent of the AY,, has been reported recently
(Table 1). These peptides, known as Szeto-Schiller (SS) pep-
tides, have an aromatic-cationic motif that makes them cell
permeable, so that they can selectively target the IMM in an
energy-independent and nonsaturable manner. The best
characterized member of the SS peptides is the S5-31, which
can scavenge matrix H,O, and ONOO’, due to its dimethyl-
Tyr moiety, and it can also inhibit lipid peroxidation, reduce
cytochrome c release, and reduce mitochondrial swelling. The
S5-31 has demonstrated remarkable in vivo efficacy in reduc-
ing cardiac and brain I/R injury in animal models (123, 551,
553, 554, 574). Figure 13 shows that SS-31 peptide preserved
cellular GSH levels and reduced infarction in mice subjected
to 30 min middle cerebral artery occlusion (123). The variant
55-20, which inhibits mitochondrial ROS production, was
effective against the MPTTH model of PD (553, 554). Their
selectivity and specificity was designed to interact with mi-
tochondria while minimizing undesirable side effects. It is
noteworthy that both mitochondria-targeted catalase and
SS-31 preserved insulin sensitivity by preventing mitochon-
drial oxidative stress induced by high fat diet in rodents (15).

In a recent review, Armstrong (28) proposed the potential
therapeutic application of mitochondrial targeting to include:
a) delivery of antioxidants to prevent I/R injury, diabetes, and
neurodegenerative diseases; b) delivery of apoptotic drugs
that target Bcl-2 proteins or deliver toxic drugs to neutralize
cancer cells; c) targeting of the mPTP in I/R and stroke; and d)
use of uncoupling proteins or activation of endogenous un-
coupling proteins in diabetes and obese patients. In addition
to these approaches, other recent approaches include the use
of techniques in molecular biology involving mitochondrial
and nuclear genes, siRNA, and targeting of the mitochondrial
reticular network and mitochondrial interactions with the
nucleus and the ER. These new approaches include targeting
the mitochondrial fusion and fission proteins, targeting the
communication between ER and mitochondria via the IP3R
response to cytochrome c release, and targeting oxidative
stress and mitochondrial modulation of nuclear transcription
factors (Section VIII). For interested readers, more informa-
tion on strategies for delivering drugs to mitochondria can be
gleaned from the literature, including the following references
(28, 29, 262, 551-554, 556, 574).

B. Mitochondria-targeted drugs

Mitochondria are ideal targets for therapeutic modification
because they are key regulators of energy production, ROS
production, and apoptosis. Mitochondria-targeted drugs are
therapeutic agents that can directly target mitochondria to
instigate apoptosis in cells (neoplastic cells) or protect against
apoptosis (all other normal cells). For example, amiodarone, a
class III anti-arrhythmic drug can be used to target mito-
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FIG. 13. Effect of SS-peptides on ischemia-induced GSH
changes (A) and of S31 peptide on ischemia-induced
infarct volume (Inf Vol) in C57BL/6 mice (B). (A) Mice
were subjected to 30min middle cerebral artery occlusion
(MCAO) and treated with saline (Veh), SS31, or SS20 pep-
tides immediately after reperfusion. Mice were sacrificed at
6h post-ischemia. Values are expressed as GSH percent de-
pletion in ipsilateral (Ipsil) compared with contralateral
(Contral) cerebral hemispheres. Note that a difference was
observed in %GSH depletion only in the SS31-treated cere-
bral cortex. (B) Mice were subjected to 30 min of MCAO and
treated with saline/vehicle (Veh) or two different doses of
5531 immediately after reperfusion and at 6, 24, and 48h
reperfusion. Infarct volumes were estimated at 72h post-
ischemia from 12 serial sections (600 um apart) per animal.
SS31 reduced infarct size. Error bars indicate S.D. *p < 0.05 vs.
Veh group, one-way ANOVA with post-hoc Newman-Keuls
test. Reproduced with permission from Cho et al. (123).

chondria for reducing cardiac I/R injury. It can do this in part
by preserving energy metabolism in the post-ischemic heart
by inhibiting mitochondrial swelling induced by cytosolic
Ca®" overload (594, 595); however, other studies report that
the drug worsens the damage to mitochondrial energy me-
tabolism caused by I/R injury (594, 595). Amiodarone is also
reported to exert inhibitory effects on complexes I and II and
to reduce the activity of F;FyATP synthase. It is thus important
that these effects of amiodarone are tissue specific and con-
centration dependent (594, 595). These conditions complicate
the targeting of mitochondria from one type of tissue to the
next, since one type of tissue’s mitochondria will likely
respond differently to the drug (594, 595). This subject is
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discussed further in the Section XIII, Caveats and Limitations
to Targeting Mitochondria.

Some antidiabetic drugs can accumulate in mitochondria as
a result of the highly negative AV, that favors preferential
uptake into mitochondria. For example, metformin (N1, NL-
dimethylbiguanide), an antidiabetic drug, blocks complex I
of the ETC because it accumulates in the matrix (427). These
drugs are more effective in intact mitochondria than in sub-
mitochondrial particles. The positive charges on these drugs
coupled with the A¥,, in energized mitochondria makes
it favorable for their accumulation in the matrix (427). Met-
formin has a broad spectrum of effects, which include fat
breakdown, reduction of circulating free fatty acids with a
modest inhibition of fatty acid oxidation, and an increase in
glucose transport and glucose utilization (655). In other
studies, metformin was shown to block mPTP opening as a
possible mechanism of action to preserve cellular function.
In the nondiabetic state, metformin alleviated some patho-
logical conditions (e.g., inflammatory conditions in lung in-
jury), in part by inhibiting complex I activity (77, 655). It is
debatable if these actions of metformin also alter mitochon-
drial ATP production which would impair mitochondrial
energy conservation as a mechanism of action. However,
Zmijewski et al. (655) reported that the actions of metformin
are not ATP dependent, whereas Brunmair ef al. (77) reported
that metformin not only blocks complex I, but also uncouples
OXPHOS.

There are recent advances in understanding the complex
interaction between mitochondria within a reticular network
of mitochondria and mitochondrial interaction with other
organelles (Section VIII.BC). This has opened a new potential
therapeutic avenue for assessing and treating mitochondria-
related disorders. For example, resveratrol, a polyphenolic
compound abundant in grape skins, induces PGC-la to
express genes involved in mitochondrial biogenesis and
OXPHOS (564). Increased expression of PGC-1u has also been
shown to mitigate MPTH-induced cell injury in a PD model
(254). How resveratrol treats PD is unclear. Resveratrol also
reduces ischemic damage in brain (641) and cardiac cells (157).
The effects observed experimentally suggest quite a promis-
ing therapeutic approach.

Other interventions to reduce cellular damage during a
period of oxidative stress, as in post-ischemic injury, include
enhancement of endogenous scavenging enzymes and none-
nzymes. Pyruvate has been shown to be protective in various
in vivo and in vitro models of oxidative stress (608). Wang
et al. (608) showed that pyruvate can remarkably abrogate
peroxide-induced toxicity in SK-N-SH neuroblastoma cells
by a direct antioxidant protective effect on the mitochondrion,
as evidenced by its dampening of mitochondrial O,"" pro-
duction and its preservation of A¥,,. As a readily oxidizable
substrate, pyruvate can bolster the cytosolic energy state and
thereby provide the energy needed to maintain cellular
function in the face of a metabolic challenge (608).

Permeabilization of the OMM and the IMM via mPTP
opening (Section II) as a consequence of oxidative stress is an
important underlying factor in most of the neurodegenera-
tive diseases discussed above (Section IX,E). CsA treatment
has been shown to prolong the survival of ALS transgenic
mice compared to control (vehicle) treated mice (284). In PD
models, daily doses of CsA showed partial preservation of
striatal dopaminergic neurons and altered the progression
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of the disease in the ALS model (602). In the CNS, the effects
of CsA is limited because it does not cross the blood brain
barrier (284, 602). This restriction can be circumvented by
various methods including direct administration of the drugs
into the lateral ventricles of the CNS (284, 602).

Mitochondrial antioxidant systems are important in cancer
chemotherapy. Tamoxifen, a synthetic nonsteroidal anties-
trogen widely used to treat breast cancer, is known to have
antioxidant and cardioprotective effects in part by induction
of MnSOD (145). However, normal tissue injury is a major
problem that limits the success of cancer therapy in protocols
involving chemotherapeutic drugs (e.g., adriamycin). Gen-
eration of ROS is implicated in the toxicity of a large number
of these agents and the injury is manifested at the mitochon-
drial level (145). These potential side effects will be discussed
in Section XIV.

It is clear that the subject of mitochondrial pharmacology is
vast and the above discussion only represents some examples.
It is also clear that mitochondria are key factor in the etiology
of numerous human mitochondria-related and nonrelated
diseases, which can be mitigated by targeting the mitochon-
drion with specific drugs designed for uptake by the organ-
elle. Interested readers are urged to examine the review
literature for more information.

C. Approaches to improve mitochondrial function
during ischemia and reperfusion

Mitochondria play a central role in I/R injury and hence are
promising targets for novel anti-ischemic therapies. The im-
portance of mitochondria as both targets and mediators of I/R
is becoming increasingly recognized (113). Cardiac I/R result
in mitochondrial dysfunction as shown by a decrease in oxi-
dative capacity, loss of cytochrome ¢, and generation of ROS.
Recent studies show that increased ROS is especially evident
during late ischemia (9, 10, 90, 289, 475, 542, 591). Therefore,
protection of mitochondrial respiration during ischemia could
represent a new therapeutic approach in mitigating the del-
eterious effects of I/R injury.

A pioneering study by Ganote and colleagues (198) showed
that inhibition of mitochondrial respiration could decrease
contraction band formation and attenuate enzyme release
during reoxygenation; they suggested that resumption of
mitochondrial metabolism during reoxygenation can initially
lead to deleterious consequences. We discussed earlier how
a reperfusion-induced decline in cardiac function and accu-
mulation of oxidatively damaged lipids were diminished
when complex I was reversibly inhibited during early re-
perfusion with amobarbital (14), thus underlining the physi-
ologic significance of mitochondrial ROS production to
cardiac injury during reperfusion (113). We also discussed
how amobarbital, when administered briefly before ischemia,
preserved mitochondrial bioenergetics and improved cardiac
function upon reperfusion. In addition, we noted suggestions
on how rotenone preserved mitochondrial structural integrity
and improved function (324).

Thus, there is support for the concept that mitochondrial
function can be protected during global ischemia as well as
on reperfusion as shown by reduced levels of mCa”*" uptake
and O," generation, and improved redox state after pre-
conditioning (ischemic or pharmacological) (Section X,D-E)
(476, 477), inhibition of NHE (10), hypothermia (475), and
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ROS scavengers (90). In each of these mitochondrial protective
strategies, contractile function was improved and infarct size
was reduced. In a recent study (12), we reported novel find-
ings that hyperkalemic depolarizing cardioplegia was pro-
tective by means other than its effect on sparing high-energy
phosphates; in the same article we also showed that lidocaine,
a hyperpolarizing cardioplegic agent, also protected hearts in
part by a direct action on the mitochondria, a concept sup-
ported by other studies (111, 566). Lipid-soluble local anes-
thetics could exert their cytoprotection in part by direct effects
to attenuate complex I activity and to uncouple respiration
(556). We found that lidocaine blocked complex I as suggested
by an increased NADH without a change in FAD during li-
docaine perfusion just before ischemia. This situation was
similar to what we observed with the complex I inhibitor
amobarbital (9).

It has long been thought that most of the cellular injury
occurred during reperfusion because mPTP opening, mCa®"
uptake, and O,"" generation were more likely to occur after
ischemia. However, recent studies have reported that ische-
mic injury can lead to a persistent defect in OXPHOS during
early reperfusion (113, 115, 117). In an ex vivo reperfusion
study of guinea pig hearts, SS-peptide (Szeto-Schiller) was
reported to prevent myocardial stunning and to significantly
improve contractility (551, 554). Restriction of oxidative me-
tabolism during early reperfusion using a hypoxic reperfusate
attenuated mitochondrial and cardiac damage (282, 513).
Pharmacologic inhibition of mitochondrial respiration on re-
perfusion with amobarbital also decreased mitochondria-
driven myocardial injury (14). Thus, there are a variety of
strategies that can target mitochondria to interrupt the link
between ischemic damage to mitochondria and mitochon-
dria-mediated cellular damage during reperfusion.

D. Preconditioning

Preconditioning is a mechanism for reducing organ I/R
injury on return of blood flow to the tissue. It is mediated after
the removal of a protective stimulus (brief ischemia or a drug)
some time before the onset of index (longer, damaging) is-
chemia. The stimulus does not directly induce cytoprotection
but rather some downstream signaling factors are evoked to
provide a lasting protection (memory effect). Ischemic pre-
conditioning (IPC) and pharmacologic preconditioning (PPC)
of the heart decrease mitochondrial damage from subsequent
index ischemia (113, 350). IPC was identified as an endoge-
nous cytoprotective phenomenon, whereas PPC has the ad-
vantage of not requiring brief episodes of ischemia to elicit
cellular protection. The cellular and mitochondrial protection
elicited from IPC or PPC involves a coordinated interplay of
trigger and effector mechanisms (113). There is much cir-
cumstantial evidence that mitochondria-derived ROS play an
important role to initiate IPC and PPC (126, 143), which are
effected by intracellular protein kinase cascades, especially
PKCe (150, 283) and PKG (135, 241). The key effector signaling
pathways converge on mitochondria to modulate oxidative
metabolism before prolonged ischemia (113) or to prevent
mPTP opening on reperfusion (251, 261, 273). For example,
IPC, pre-ischemic diazoxide treatment, and post ischemic
CsA treatment were each found to reduce infarct size after I/R
injury in rat isolated hearts and this protective effect was
blocked by the mPTP opener atractyloside when given on
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reperfusion (319). However, protection by IPC against mPTP
opening after reperfusion injury appears to be better achieved
by blocking the factors that induce mPTP opening rather than
by inhibiting mPTP directly with drugs such as CsA (273). In
other examples, inhibition of apoptosis by PKCg involves the
mPTP, which might be a principal target of this kinase (38,
150). The protective targets in mitochondria also involve the
interaction of PKCe with complex IV of the ETC, resulting in
increased activity and increased mitochondrial ETC effi-
ciency, decreased loss of cytochrome c, preservation of AY,,,
and inhibition of mPTP opening due to decreased ROS pro-
duction (150). IPC also diminishes mitochondrial dysfunction
after ischemia and confers protection in the brain (150).

The mechanisms of cytoprotection afforded by PPC, for
example, anesthetic preconditioning (APC), has been in-
tensely investigated and discussed (290, 408, 409, 428, 429,
476, 477) and among other signaling factors common to
IPC, they also involve sarcolemmal and the putative mKarp
channels (55, 585). IPC and PPC are proposed to activate
mK,rp channels, which may lead to mild uncoupling of mi-
tochondrial respiration. The mild uncoupling is believed to
result in partial depolarization of the mitochondria, either as
a result of K™ entry or activation of KHE in response to K*
entry (Section IIB). It is suggested that this depolarization
may reduce mCa*" uptake, thereby reducing mCa** overload
and minimizing cellular damage. A mild uncoupling effect
without changing AY,, could also increase mitochondrial
ROS production (253), which can then lead to activation of
downstream end-effectors. The putative mKatp channel ag-
onist diazoxide was proposed to mediate cytoprotection in
part on the K" channel as well as by exerting a direct effect on
the mPTP (236). But diazoxide also attenuates complex II ac-
tivity and TCA cycle supported respiration, which appears to
result in O," production and hence may contribute to the
O,"" generation during PPC (236, 243-245). Interestingly, the
mitochondrial O,"" scavenger N-mercapto-propionyl-glycine
was shown to block protective effects of diazoxide (432). This
and other studies suggest that an indirect effect of diazoxide
on complex Il is to induce O,"" generation (243-245).

Recently, we reported that the putative mCa®*-dependent
K™ channel (Kc,) may also play a role in modulating mito-
chondrial bioenergetics and provide preconditioning cardio-
protection against I/R injury. Mitochondrial K¢, agonists,
such as Katp agonists, appear to mediate their cytoprotection
through ROS-dependent mechanisms as the mitochondrial
ROS scavenger MnTBAP blocked the protection (542). In this
study we reported that preconditioning with NS 1619, a well-
known K¢, channel agonist, protected the heart from ischemic
injury (542). NS 1619 markedly decreased the deleterious in-
creases in ROS and m[Ca*"] with I/R injury, better preserved
redox state (NADH and FAD), and improved cardiac func-
tion. Paxilline, an NS 1619 antagonist, and MnTBAP, both
abolished these effects (542).

It was also reported that preconditioning-mediated pro-
tection through mPTP opening with atractyloside abolished
the beneficial effects of IPC or NS 1619 in isolated rat hearts
and myocytes (95). Sedlic et al. (508) reported recently that
isoflurane, like DNP, protects cardiomyocytes in part via mild
decrease in A¥,, which attenuates ROS production under
stress and leads to a delay in mPTP opening. Other pre-
conditioning drugs have resulted in improved function along
with improved tissue redox state (NADH and FAD),
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decreased cytosolic and m[Ca®"], and reduced O,"~ and
ONOO" during I/R (106, 289, 409, 542). These studies support
the notion that modulation of mitochondrial bioenergetics by
preconditioning induces cytoprotective maneuvers that are
mediated by mitochondria.

Hypothermic preconditioning (HPC) has been reported to
exert an effect via mitochondria to protect against cardiac I/R
injury (291, 404, 653). Ning ef al. (404) showed that brief hy-
pothermia before global cardiac ischemia improved mRNA
levels encoding the mitochondrial proteins ANT1 and f-F1-
ATPase in hypothermia-treated hearts. This preservation of
mitochondrial proteins was associated with improved ATP
levels and better contractility after I/R. Kahliulin et al. (291)
reported that HPC preserved mitochondrial integrity by re-
ducing mPTP opening. Susceptibility to mPTP opening was
assessed by Ca®"-induced mitochondrial swelling, as deter-
mined by light scattering (291). They observed that HPC
protection was equivalent, or for some variables more effec-
tive, than the classical IPC in protecting the heart. We also
showed recently (unpublished data) that hypothermic expo-
sure increased resistance to Ca®"-induced mPTP opening
(250). To date, little is known about hypothermic postcon-
ditioning in preserving mitochondrial function in I/R injury.
We are currently examining this phenomenon because of
its enormous clinical utility.

E. Postconditioning

Preconditioning (ischemic or pharmacologic), as the name
implies, must be applied before an ischemic event to be pro-
tective; this limits its usefulness clinically since these proce-
dures are seldom instituted early enough to minimize
infarction (585, 636). Reperfusion necessarily contributes to
cellular injury as evidenced by the surge in ROS production,
mCa** overload due to activation of NHE and NCE, and
mPTP opening (600, 636). Postconditioning may protect
against I/R injury, at least in part by maintaining an acidic
pH during reperfusion, which may inhibit mPTP opening.
Interventions aimed at modifying reperfusion, or postcon-
ditioning, ischemic or pharmacologic, limit cell injury. Post-
conditioning has the advantage that it can be applied after the
ischemic insult has occurred (146, 236, 287, 300, 428, 547, 599,
600). Experimentally, ischemic postconditioning (IPoC) often
involves several brief occlusions of the lateral anterior des-
cending coronary artery in a regional cardiac ischemia model,
or brief intermittent occlusions and reperfusion of the aorta
in a global heart ischemic model. Pharmacological post-
conditioning (PPoC) is the intermittent administration and
washout of drug for one or several cycles immediately on
reperfusion to confer protection during the later reperfusion
period.

Administration of a wide variety of drugs [e.g., G protein-
linked receptor ligands, adenosine (355, 633), opioids (223,
428), insulin, and statins (428)] immediately on reperfusion
has been shown to provide protection as powerful as IPC.
Many of the signaling pathways invoked by IPC are also
implicated in PPoC (428). Consequently, as in IPC, the end
effector of PPoC may reside in the mitochondria (428). For
example, the cardioprotective effect of volatile anesthetics
given as a PPoC agent (anesthetic postconditioning (APoC))
appears to be mediated through the mPTP. Thus, cardiopro-
tection by PPoC, which depends on recovery of mitochon-
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drial function, might ultimately involve prevention of mPTP
opening. Whether similar signaling pathways in IPC and PPC
are involved in mediating IPoC and PPoC remains unsettled.
It appears that there exist protein kinase cascade that are
activated at the time of reperfusion by both IPC and PPoC
(428). However, it is unclear if activation of the reperfusion
injury signaling kinase (RISK) pathway and consequent in-
teraction with the mPTP is the ultimate step in pre- and post-
conditioning protection. Furthermore, Feng et al. (185) also
showed recently that both IPC and PPoC might provide
protection by reversing ischemia-induced ANT dephosphor-
ylation and improving ATP production. However, in PPoC, it
is unlikely that the pro-survival signaling pathways occur
rapidly enough to avert injury from the initial injury during
reperfusion. It is likely that other faster activated pro-survival
factors may be elicited during the initial phase of reperfusion.

In a recent study, Pravdic et al. (456) showed that mito-
chondrial function is critical for the protection afforded by
APoC. In their study it was shown that APoC with isoflurane
better preserved a more acidic matrix pH during reperfusion
(Fig. 14). Thus, exposure to volatile anesthetic during early
reperfusion/reoxygenation may delay opening of mPTP and
contribute to preservation of mitochondrial integrity. This
novel finding implies a direct preconditioning effect of vola-
tile anesthetics on mitochondrial bioenergetics independent
of mKs1p channels.

We also showed recently in a pilot study (593) that post-
conditioning with the K¢, channel agonist, NS 1619, admin-
istered for 10 min during initial reperfusion after 30 min of
global no flow ischemia reduced mitochondrial ROS, im-
proved cardiac function, and reduced infarction compared
to the untreated group. Interestingly, we also showed that
paxilline, a putative NS 1619 blocker, given for 10min on
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FIG. 14. Effect of anesthetic postconditioning (APoC) on
mitochondrial pH (pH,,,) in SNARF-1 loaded myocytes.
During hypoxia, pH,, decreased as evidenced by a decrease
in the SNARF-1 fluorescence ratio. Mitochondrial pH re-
covered immediately on reoxygenation. Treatment of cells
with isoflurane at the beginning of reoxygenation delayed
recovery of pHp, providing a more acidic matrix during
early reoxygenation compared to the control group. Data
are means £+ S.D. Preliminary evidence provided by Pravdic
et al. (456).
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reperfusion increased mCa”" overload and decreased mito-
chondrial redox state, when compared to untreated hearts
(Figs. 15A and 15B) and worsened functional return (593).
These results suggested that the putative mKc, channels
are opened during early reperfusion after ischemia and in-
trinsically contribute to reducing mitochondrial damage and
concomitant cellular injury. These kinds of studies could
eventually provide a better understanding of cytoprotection
after ischemia and lead to new therapeutic option to treat
ischemic heart disease.

XI. Other Mitochondrial Therapeutic Approaches
A. Lipid replacement therapy

Many lipophilic agents penetrate the IMM freely, including
fatty acids. Undissociated molecules of long-chain fatty acids
can easily penetrate the membrane (556). The integral struc-
ture of the mitochondrial membrane is an essential aspect of
this process. The role of lipids in regulating mitochondrial
function in health and disease was discussed above in Section
IX,B (Mitochondria and the failing heart). In this section the
focus is on re-establishing the lipid structure, lipid replace-
ment therapy (LRT), after damage due to oxidative stress.
LRT is not just the dietary substitution of certain lipids with
proposed health benefits, it is the actual replacement of
damaged lipids of cellular and organelle membranes (401,
402). Because mitochondria are a major source of ROS and
their membranes have a high susceptibility to oxidative dam-
age, this makes replacement of mitochondrial membrane
lipids a potential therapeutic strategy. Oxidative stress causes
major changes in ETC function as a result of direct lipid oxi-
dation (402), which induces important changes in membrane
properties. It is believed that these deleterious changes in
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mitochondrial lipid composition are involved in some of the
maladies associated with mitochondria and the toxic side ef-
fects of chemotherapeutic agents.

One example is doxorubicin treatment, which leads to
increased ROS and mitochondrial dysfunction (35, 455). The
common features include changes in mitochondrial mem-
brane fluidity, permeability, and ETC function (400, 454).
Such lipid derangements may necessitate treatments that
could prevent the occurrence of the condition, for example
with antioxidants, and once the lipid derangement has oc-
curred, LRT could be initiated to repair the damage. It has
been suggested that a combination treatment is more effective
than either treatment alone in alleviating symptoms associ-
ated with the mitochondrial structural damage (402, 460). LRT
has been used to mitigate damage to normal cells during
chemotherapy without a reduction in therapeutic results
(402).

Administration of NTFactor, a lipid oral replacement sup-
plement, with vitamin supplements to scavenge ROS, has
been reported to reduce unwanted effects associated with
oxidative stress during chemotherapy (402). Earlier studies
(460) also showed that use of sunflower or olive oil as lipid
dietary sources in combination with a-tocopherol lowered
mitochondrial hydroperoxide levels. These studies suggest
that LRT plus scavenging could represent a useful adjuvant
therapy in management of diseases where mitochondrial
function is impaired as a result of excess ROS and alteration of
lipid structure.

It is interesting that tumor cells adopt this strategy of LRT
to protect themselves from death (164, 360). Indeed phos-
photidylcholine remodeling results in an altered lipid profile
and it is a characteristic of colorectal cancer cells (360). It
was shown in these cells that HK binding to VDAC facilitated
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uptake of cholesterol and the elevated cholesterol content
amplified the binding of HK to VDAC. This adaptive re-
sponse, along with the observation that increased mito-
chondrial cholesterol blunts the ability of Bax to initiate
dysfunction in cancer cells, makes them refractory to injury
(443). It is evident that the therapeutic strategies adopted by
neoplastic cells for survival involve mitochondria and this may
pose yet another dilemma in the selective treatment of a spe-
cific disease by exclusively targeting cell specific mitochondria.

B. Transactivator of transcription proteins
and mitochondrial therapy

The mitochondrial protein import pathways, specifically
the mitochondria signal peptide-tagged cargo, have been
used to deliver DNA molecules to the matrix. Thus, the tar-
geting of covalently linked genetic information to mitochon-
drial peptide import machinery could potentially be used to
rectify a mutant mitochondrial genome similar to classical
gene replacement therapies that attempt to replace a cor-
rected copy of defective nuclear genome (28). However, it is
sometimes technically challenging to insert small DNAs to
introduce small peptides in cells. The transactivator of tran-
scription (TAT) protein-penetrating transduction system is
being used to introduce small peptides into living cells (86,
507), as these peptides are often unstable and susceptible to
cellular degradation. TAT-mediated protein transduction oc-
curs in a rapid fashion that is independent of receptors and
transporters (86, 238, 465, 507). Disorders of some mitochon-
drial proteins can be corrected by this system of uptake. The
technique has been utilized in the isolated cell (86, 465, 507)
and in the whole organ model where it has been shown to
facilitate peptide uptake in the isolated heart (238).

TAT proteins with their “cargo” rapidly cross the cell
membrane and enter mitochondria where they can replace
mutated endogenous peptides (465). Rapoport et al. (465)
showed recently that the TAT-mediated replacement ap-
proach could be used to correct for a mutated component of
a protein complex, in this case the E3 subunit shared by the
o-ketoacid dehydrogenases like pyruvate dehydrogenase
(PDH). That is, this approach was used to increase the activity
of the PDH complex, which before treatment showed low
activity due to mutations in E3. TAT approaches could pro-
vide a new treatment for enzyme deficiencies as well as for
other mitochondrial and metabolic disorders (465).

TAT-mediated transduction of the mutant form of Bnip3
(TAT-Bnip3ATM), a pro-apoptotic member of the Bcl family of
mitochondrial proteins expressed in the adult myocardium,
was also reported to reduce I/R-induced injury. The wild-type
Bnip3 induced apoptosis in part by increasing the fragmenta-
tion of mitochondrial connectivity and causing mitochondrial
dysfunction (i.e., loss of AY¥,,, increased cytochrome c and AIF
release, and disruption of energy production) (238). An in-
crease in our understanding of the role of these proteins and the
strategies to manipulate them in mitochondria could be im-
portant in the development of effective therapies.

C. Molecular genetic approaches

Genetic maneuvers of various types have been attempted
to reverse mtDNA-related diseases. These include suppres-
sion of mutant mtDNA expansion and manipulation of
mtDNA replication by import into the mitochondrion of en-
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donucleases that might selectively destroy a specific mutant
sequence. In a recent study, Alexander ef al. (13) showed that
in cells heteroplasmic for the T8993G mutation that causes
NARP (Section VIIILB), infection with an adenovirus, which
encodes the mitochondria-targeted restriction endonuclease,
led to selective destruction of mutant mtDNA. This led to
a significantly increased rate of O, consumption and ATP
production and concurrently, decreased rate of lactic acid
production in these cells, which is a marker of mitochondrial
dysfunction. The specificity of this mitochondrial approach
was demonstrated by the absence of nDNA damage (13).

Other potential therapeutic approaches involve overex-
pression of targeted proteins, for example CypD in cancer
therapy, or its selective inhibition using a siRNA approach
during I/R-related cellular injury (28). Other approaches are
designed to impede the action of Bcl-2 by use of antisense
technology to inhibit Bcl-X1 expression, or alternatively, to
target pro-apoptotic Bcl-2 peptides to mitochondria (28).
Other investigators have used similar approaches. For ex-
ample, gene therapy using adenoviral Bax-delivering vectors
has been successful in activating apoptosis (631) and a similar
approach has been used to induce apoptosis using stable
generated BH3 peptidomimetics designed to block Bcl-2 and
to activate Bax and Bak (603). In another study, Li et al. (339)
used a similar approach to develop Smac/DIABLO mimetics
to inhibit the action of IAPs.

The inter- and intra-organelle communication between
mitochondria as a group and mitochondria with ER and the
nucleus are important factors in maintaining normal cellular
function; disturbances in any of these complex systems or
their coordinated activity will generate disease. The Bcl
family of proteins is also believed to influence mitochondrial
fission/fusion. For example, Bax and Bak promote fragmen-
tation of the mitochondrial network, possibly by activating
fission machinery; on the other hand, targeting these fission
proteins through expression of Bcl-X1 prevented cytochrome c
release (518). These findings indicate that Bcl family proteins
can influence mitochondrial fission and fusion. However,
another study reported that Bak blocks mitochondrial fusion
to induce fragmentation. By this function, Bak may collabo-
rate with Bax to permeabilize the OMM leading to apoptosis
(72, 73). Thus these Bcl family proteins appear to be attractive
therapeutic targets in fighting neoplastic cells (4, 131).

The disruption of the mitochondria to ER communication,
required for normal cellular function, could be targeted by
molecular approaches that would up- or downregulate the
proteins involved in the link between these organelles. In
the mitochondria-nuclear communication, overexpression of
PGC1-o0 and or HSP70 and 60, which are involved in the
importation of mitochondrial proteins, could also serve as
targets for therapy to improve mitochondrial function. Other
genetically targeted approaches have been used for IMM
proteins and they have also furnished some effectiveness as a
remedy against mitochondria-related pathologies (28). Yet,
which, or if any of these mitochondrial genetic approaches
will become clearly applicable in treating human maladies
remains to be determined.

D. Mitochondria and caloric restriction

Morbid obesity is associated with numerous diseases from
the metabolic syndrome to cancer. Indeed, obesity as a result
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of high-energy intake has been shown to increase the risk of
age-related cognitive decline (622). Caloric restriction (CR;
either a decrease in food intake or intermittent fasting) delays
the rate of aging in many species and increases resistance to
diseases (41, 129). In animal models of aging and neurode-
generative diseases, CR protected hippocampal, striatal, and
cortical neurons, and ameliorated functional decline (622). CR
has been shown to minimize age-related loss of mitochondrial
function and biogenesis in several tissues, including heart,
liver, skeletal muscle, and brain (190, 588) and to mitigate the
severity of dysfunction. For example, studies have shown that
the complete maintenance of skeletal aerobic contractile func-
tion with aging by CR is associated with improved mito-
chondrial function and a reduction of the age-related decline
in mitochondrial capacity (255). The decline in mitochondrial
biogenesis in obese animal has been associated with a de-
crease in PGC-1a (128). It was reported that the rate of decline
of PGC-1« was lower in CR animals than in non-CR animals
(255). This increase in mitochondrial biogenesis, coupled with
increased oxidative capacity and lower ROS levels (62), might
translate to less accumulation of oxidatively damaged mito-
chondria, thereby accounting for the protection of mitochon-
drial function with CR (255).

E. Mitochondria and dietary supplements

The potential contribution of impaired energy metabolism
to behavioral disorders and migraine headache has been
considered over the years. Initial studies correlated defi-
ciencies in riboflavin or folate to the prevalence of depression.
Higher dietary intake in folate and riboflavin in recent clini-
cal trials in Japan was associated with lower prevalence of
depressive symptoms in some patients (390). Riboflavin’s
(vitamin B,) effect is required for the formation of FAD™,
which is critical for the TCA and as an electron donor to
complex II. FAD™ is a key cofactor in folate-dependent meth-
ylation pathways that would lead to improved neuronal
metabolism and improved function. Riboflavin in combi-
nation with CoQ;o has been shown to reduce neurological
episodes associated with migraine headaches (505). The
combined approach augments complex I activity and has
been used in clinical trials to demonstrate their combined ef-
fectiveness for preventing migraine attacks (459). Niacin has
also been used as a supplement to boost mitochondrial energy
metabolism by increasing substrate availability to complex I;
in this way it might act to deter/reduce migraine headache
(459). Clearly, the efficacies of these approaches remain to be
resolved, their side effects remain under scrutiny, and they are
limited by the fact that some studies have failed to make any
association of migraine headache or dietary supplements with
specific mitochondria deficits.

XIl. Mitochondria Age and Lifespan
A. Mitochondria and age-associated diseases

The term aging generally refers to organismal senescence,
a process whereby cells lose their ability to divide after a
number of cell divisions, and by a decline in the capacity of an
organism to respond to stress. Although aging is not a disease,
the frequency of many disease processes increases with age.
Mitochondria are proposed to be critical components in the
process of aging, in the regulation of the cell cycle, and in
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limiting cellular lifespan (401, 632). Mitochondria are in turn a
primary target of the aging process, as evidenced by a decline
in mitochondrial oxidative capacity in both skeletal and heart
muscle with age (255, 292, 328). Aging has been associated
with excessive oxidative stress and over production of RNS
(401). Indeed, oxidative/nitrosative stress is thought to be
an important contributor to the degeneration of long-lived
postmitotic cells such as cardiomyocytes and neurons. This
explains in part the relation between acquired cardiac and
neurodegenerative diseases and aging (391).

In aged mitochondria, a defect in mtDNA is coincident
with a decrease in complex IV activity and in some cases
reduced activity of complex I (130). Although we were unable
to show age-related changes in complex I activity in mito-
chondria, we did show a decrease in complex III activity, but
only in interfibrillar mitochondria (328). These defects are
conducive for increasing oxidative stress that further predis-
poses mitochondria to injury (Fig. 16). The exact mechanism
for the relationship between impaired mitochondria and
aging remains unclear. However, Melov et al. (371) recently
reported that in older animals a characteristic mitochondrial
“signature” of declining mitochondrial function could be re-
versed in part through exercise and suggested that a sufficient
reserve capacity exists in the genome to reverse certain age-
dependent expression profiles back to more youthful geno-
types.

The current view is that mtDNA mutations accumulate at a
rate that is several folds higher than nDNA mutations (292).
This increase in mutation rate occurs primarily in postmitotic
organs such as brain, skeletal muscle, and heart, compared to
cells that undergo frequent mitosis (568). Thus the evidence,
albeit tenuous, supports the notion that accumulation of ROS
over time is wholly or partially responsible for aging. Cer-
tainly, increased oxidative stress has been associated with
increased mtDNA strand breaks during aging and in the aged
MnSOD-deficient mice (614). However, this belief has been
questioned for vertebrate and invertebrate animal models of
aging (172, 388). Furthermore, targeting of mitochondria to
“reverse” the aging process and therefore mitigate age-related
diseases has remained elusive. Indeed, overexpression of sod2
and catalase genes in the fruit fly D. melanogaster has yielded
the opposite outcome, that is, lifespan was decreased instead
of increased (16). In another study in the nematode C. elegans,
Doonan et al. (172) showed that overexpression of sod genes
did not alter lifespan, whereas other studies reported that
ROS might in fact be responsible for extending the lifespan of
C. elegans (590).

Some studies have consistently reported a role for mito-
chondrial ROS in aging-related maladies. This includes some
of the neurodegenerative diseases discussed above (Section
IX,E); others include presbyacusis, the hearing loss associated
with aging as a consequence of the progressive deterioration
of the cochlear mtDNA (391, 451). Antioxidants targeting
mitochondria were reported to reduce this age-related hear-
ing loss (127). Toxic aldehydes, including HNE, an end prod-
uct of lipid peroxides, are known to accumulate in the brain
in neurodegenerative disease. Mitochondrial aldehyde dehy-
drogenase 2 (ALDH2) detoxifies HNE by oxidizing the alde-
hyde group. ALDH2-deficient neuronal cells show increased
vulnerability to HNE. The increased oxidative stress may in
part explain some age-dependent neurodegeneration, such as
loss of pyramidal cells and marked deficits in cognition. These
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FIG. 16. ROS as a byproduct of oxidative stress and an essential component of some cellular functions and cell death.
ROS are an integral component of the aging process, in which oxidative stress within mitochondria slowly degrades
mitochondrial proteins, including the ETC complexes and matrix scavenging proteins. These alterations result in a self-
perpetuating cycle of damage that eventually can lead to a decline in bioenergetic capacity and ultimately a compromise in
organ system functional reserve. These factors predispose to increased probability and susceptibility damage. Reproduced

with permission and modified from Muravchick et al. (391).

neurological deficits could be mitigated by expression of
ALDH2 (419). The implication is that patients deficient in the
enzyme may benefit if treated with activators.

In the aged heart, ischemic damage to mitochondria is su-
perimposed upon aging-induced defects in mitochondrial
oxidative metabolism (327, 328, 330). The aged heart generally
sustains increased damage during I/R (30, 192, 326). Isolated,
buffer-perfused hearts from 24 mo-old Fischer 344 rats sus-
tained greater myocardial injury after I/R than hearts from
6 mo-old adult controls (326, 349). Unfortunately, IPC and
APC were found to provide minimal cardioprotection in the
aged rat (1, 565) and in human hearts (376). Older patients
with ischemic heart disease generally have impaired recovery
of myocardial function after cardiac surgery or other cardiac
interventions when compared to younger patients (471).
There is evidence also that older patients are more sensitive to
ischemic damage and have a poorer prognosis and higher
mortality due to acute myocardial infarction (361). Thus,
the potentially useful approach of conditioning to protect
aged myocardium appears not to be very effective. This
highlights the importance of considering other approaches
to modulate mitochondrial oxidative metabolism to protect
the aged heart.

In the aging heart, enhancing basal glucose uptake and
lowering fatty acid oxidation by overexpression of GLUT1 in
the heart protects against I/R injury (351). Also the observed
decrease in OXPHOS in the older heart may be attributed to
an aging-induced defect of cytochrome c oxidase (113). Stu-
dies have shown that acetylcarnitine reversed an aging-
induced decrease in cytochrome ¢ oxidase activity, as well as
enhanced the maximal rate of OXPHOS in mitochondria to

rates observed in the younger hearts (87, 329). Acetylcarnitine
had no effect on the extent of myocardial or contractile re-
covery in the adult heart. In an earlier study, Hagen et al. (234)
demonstrated that acetyl-L-carnitine restored mitochondrial
cardiolipin levels in hearts of old animals compared to hearts
of young animals and improved OXPHOS. As in the adult
heart, the ETC contributes to mitochondrial damage during
ischemia in the aged heart (329). Amobarbital treatment im-
mediately before ischemia protected OXPHOS in the aged
heart on reperfusion (Tanaka—Esposito et al. unpublished ob-
servations). These observations provide strong experimental
support for the association of aging-related defects in mito-
chondrial metabolism to the enhanced cardiac damage in
older hearts observed following I/R.

The increased susceptibility in the aging heart to I/R injury
could also be attributed in part to an increased sensitivity to
cell stress, possibly due to a reduction of antioxidants and
chaperone proteins, altered mitochondrial respiration, and
a shift from the survival pathway to the cell death signaling
pathway. Thus, a better understanding of molecular and cel-
lular mechanisms of aging could improve not only medical
care of the elderly, but also may offer some hope in finding
feasible solutions to slow down the aging process as well.

B. Mitochondrial p66°™ and lifespan

The 66KDa isoform of the growth factor adapter Shc
(p66°™) is located in IMS and may play a role as a redox
enzyme involved in ROS generation via electron transfer from
reduced cytochrome c (92, 211). The protein is a signaling link
between cellular stress and mitochondrial pro-apoptotic ac-
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tivity. Cellular oxidative stress led to phosphorylation of the
protein and translocation into the mitochondrion led to acti-
vation of the apoptotic program (452). p66™™ is implicated in
lifespan determination and is in crosstalk with other lifespan
proteins, p53, a tumor suppressor protein, and MnSOD to
regulate oxidative stress in the organelle (436). As discussed
above, accumulation of oxidative stress with age is considered
a mediator of age-associated diseases (92). Mitochondrial
p66™ is reported to contribute to tissue injury during I/R
and it has been shown to contribute to aging of vessels and
concomitant functional impairment (132). Redox-defective
mutants of p66"™ were unable to induce ROS production
and swelling or to mediate apoptosis in vivo (132). Indeed
mice deficient in p66°™ (p66™"/") gene showed less ROS
production and extended lifespan. The protein has also been
implicated in the signal transduction pathway relevant to
hyperglycemia-induced vascular damage, and hence, rep-
resents a novel therapeutic strategy in diabetic vascular
complication (92), and could be a potential target of phar-
macological approaches to slow aging (452).

XIll. Caveats and Potential Limitations
in Mitochondrial Drug Targeting

Targeting the mitochondria for therapeutic purposes poses
a dilemma of how to protect, while at the same time, preserve
the normal aspects of cellular functions that maintain viabil-
ity. A vivid example is the role of ROS as a physiological
modulator of cellular function as well as a mediator of cell
death (543). Given the multiple pathways potentially affected
by a change in mitochondrial function, development of drugs
targeting mitochondria requires judicious safety assessment
and risk management (239). Muravchick (391) reinforced this
in a recent article by stating that “therapeutic strategies that
suppress or block the effects of putative pro-apoptotic agents
may produce unintended interruptions of other cell functions
and actually compromise viability”.

An emerging therapeutic dilemma is the systemic manip-
ulation of the pro-apoptotic proteome of the OMM. In cancer
therapy, an attempt to promote pro-apoptotic mechanisms in
tumor cells may unwittingly worsen the pathological state of
normal differentiated cells. As discussed above, the goal in
cancer therapy, especially therapy against lymphomas, is to
overcome inhibition of cell apoptosis in cells immortalized
due to overexpression of Bcl-2. In contrast, the same inhibition
of Bcl-2 in tissues with normal expression of Bcl-2, especially
relatively postmitotic tissues such as the heart, may predis-
pose to unanticipated deleterious cell death. There is an
emerging concern that Bcl-2 blockade utilized in cancer che-
motherapy may predispose to cardiomyopathy, especially if
combined with other therapies including doxorubicin that can
also result in cardiomyopathy.

The use of mitochondria as a therapeutic target can also
be limited by the changes the organelle undergoes during
the different phases of development. For example, the youn-
ger heart shows greater sensitivity to anesthetic precon-
ditioning (APC) than the older heart (376), which may
correspond to the period during which bioenergetic function
may begin to decline. Ontogenetic defects in mitochondrial
function that lead to depressed mitochondrial bioenergetics
due to inherited mitochondrial cytopathies could result in
altered responses to pharmacological interventions. For ex-
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ample, an anesthetic given in the APC paradigm could un-
intentionally lead to pathologic levels of ROS that cause cell
damage (391) instead of the small amount of ROS needed to
mediate cellular protection.

The desired effect of any targeted drug or gene delivery can
be achieved only if the bioactive molecule is delivered to the
destined organ and/or cell type, and also to desired subcel-
lular location. To achieve this specificity of target, a more ef-
ficient and selective delivery vehicle should be constructed to
enable transport of the bioactive drug to the desired mito-
chondrial population and site of mitochondria. As presented
above, attempts to engineer such mitochondria homing de-
vices is being actively sought. Although some of these agents,
the SS-peptides, or use of TPP™ moieties, are currently being
considered, whether these targeted entities can be delivered to
the desired mitochondria in vivo is highly sought. This raises
a critical concern about the specificity of their biodistribution,
penetration, and their bioactivity and pharmacodynamics.
These concerns remain to be resolved. Some of the examples
given below illustrate the complications associated with
mitochondria-targeted approaches.

The risk associated with using uncouplers to mitigate
mitochondrial-related pathologies has been recognized. DNP,
which wastes energy and produces heat by OXPHOS un-
coupling, was once used as a weight-loss drug but was
abruptly discontinued due to undesirable side effects and
even death (570). Aside from their very limited window
of action, another major problem with uncouplers is that they
must be designed for tissue specificity to maximize their
therapeutic potential and minimize side effects. A broad
usage of uncouplers could lead to reduction in ATP produc-
tion in untargeted mitochondria (218). Systemic induction of
UCP2 in pancreatic f-cells could lead to decrease in A¥,,,
which in turn could make insulin release by the cells less
responsive to changes in glucose concentration (218).

In pancreatic f-cells, mKatp channels are pivotal in regu-
lating plasma glucose levels. Use of Katp channel inhibitors
for treatment of type-2 diabetes could have a serious down
side because K4 rp channels are widely expressed in a variety
of tissues, including cardiac, skeletal, and nervous system.
Blockade of Ksrp channels in non-fi pancreatic cells during
type 2 diabetes treatment may engender severe side effects.
This could limit the potential beneficial effects of IPC or PPoC,
which appear to use the Karp channel for protection (378).
Therefore, potential undesirable effects related to the use of
sulfonylurea drugs are cardiovascular complications (303).
Thus, the challenge is to design uncoupling agents and other
drugs that are mild and also tissue selective/specific to de-
crease ROS production without significantly affecting ATP
production in other tissues (218, 378).

Another pharmacologic delivery problem is how to target
brain mitochondria due to the relative impermeability of the
blood-brain barrier (BBB). For example, MnTBAP is effective
in ameliorating numerous pathological cardiovascular ab-
normalities and in extending the lifespan of sod2-deficient
mice (369, 445). However, MnTBAP does not cross the BBB
and consequently, ROS can accumulate in the brain of these
animals and cause abnormalities such as ALS, tremor, and
other movement disorders (233, 370).

It is evident that an overarching concern in development
of mitochondria-targeted drugs is to make the distinc-
tions between nonadverse drug effects that are physiologic,
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pharmacologic, or adaptive, and the adverse effects that
lead to unacceptable deleterious consequences. Despite these
limitations and challenges, the approaches outlined in this
review have features that suggest a potential utility of tar-
geting mitochondpria for therapeutic purposes.

XIV. Conclusion and Perspectives

This review has focused on the growing body of evidence
that mitochondria, although the major source of ATP, are also
intimately involved in the etiology of numerous human pa-
thologies. Different cells and tissues have distinct sensitivities
and responses to mitochondrial dysfunction. These differ-
ences are probably due to the cell-type specializations that
rely on particular functions of specific mitochondria (105).
Appreciation of these differences will be important when
considering mitochondrial therapeutic strategies to combat
diverse groups of maladies such as coronary heart disease,
heart failure, hypertension, diabetes, cancer, and neurode-
generative diseases. Some of these diseases have a potential
for considerable “crosstalk” (254) as a result of mitochondrial
oxidative stress, and similar pathways in the disease process
may be involved or overlap. Therefore, the goal in develop-
ment of effective treatments for each of these diseases be-
comes a more pressing issue. It is evident that much future
work is required to develop novel and more tissue specific
mitochondria-targeted approaches or interventions that will
furnish a greater efficacy and selectivity for the disease of
interest, but leading to fewer undesirable effects.
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Abbreviations Used

5-HD = 5-hydroxydecanoic acid
A = Alzheimer’s disease
A-f=amyloid-f
ABP = arterial blood pressure
ALS = amyotrophic lateral sclerosis
ANT = adenine nucleotide translocase
AP = amyloid precursor proteins
APC = anesthetic preconditioning
ApoC = anesthetic postconditioning
APP = actin precursor protein
BB =blood-brain barrier
BD =bipolar disorder
CCCP = carbonyl-cyanide-m-
chlorophenylhydrazenone
CDZ = 4'-chlorodiazepam
CPT 1 = carnitine palmitoyltransferase 1
CR = caloric restriction
CsA =cyclosporin A
CypD = cyclophilin D
AuH" = proton motive force, transmembrane
electrochemical H* potential difference
ApHp, = mitochondrial pH gradient potential
Ay, = mitochondrial transmembrane potential
DCEF = 2'7'-dichlorofluorescein
DHE = dihydroethidium
DLPEC = dorsolateral prefrontal cortex
ETC = electron transport chain
FA =Friedreich’s ataxia
FADH, = flavin adenine dinucleotide (reduced)
GPx = glutathione peroxidase
GR = glutathione reductase
GSH = glutathione (reduced)
HIF =hypoxia inducible factor
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Abbreviations Used (cont.)

HKI and HKII = hexokinase I and II
HNE = 4-hydroxy-trans-2-noneal
H,0, = hydrogen peroxide
HSP = heat shock proteins
IMM = inner mitochondrial membrane
IMS = intermembrane space
IPC = ischemic preconditioning
IPoC = ischemic postconditioning
IRS = insulin receptor substrate
Katp = ATP-sensitive KT channel
Kc, = Ca®" sensitive K channel
KHE = K*/H" exchange
L-NAME = N®-nitro-L-arginine methyl ester
LRT = lipid replacement therapy
MDD = major depressive disorder
MnIII TE-2-Pyp®* = Mn (III) meso-tetrakis
(N-ethylpyridium-2-yl) porphyrin
MnSOD = manganese superoxide dismutase
MnTBAP = Mn(Il)tetrakis(4-benzoate) porphyrin
chlorine
MnTPyP = Mn(Ill)tetrakis [(1-methyl-4-pyridyl)-
porphyrin]
MPTH = 1-methyl-4-phenyl-1,2,3,6-tetra-
hydropyridine
mPTP = mitochondrial permeability transition
pore
mtDNA = mitochondrial DNA
NADH = nicotinamide adenine dinucleotide
(reduced)
NARP = neuropathy, ataxia, and retinitis
pigmentosa
ND = neoplastic disease
NHE = Na*/H" exchange
NIM811 = N-methyl-4-isoleucine-cyclosporin
NO® = nitric oxide radical
Nox = NADPH oxidase
O,"" = superoxide anion radical
OMM = outer mitochondrial membrane
ONOO™ = peroxynitrite

OPA-1 = optic atrophy 1
OXPHOS = oxidative phosphorylation
PBR = peripheral benzodiazepine receptor
PD = Parkinson’s disease
PDH = pyruvate dehydrogenase
PGC-1a = peroxisome proliferator-activated
receptor-gamma coactivator-la
PH = prolyl-4-hydroxylase
PHP = phospholipid hydroperoxides
PINK-1 = PTEN-induced kinase 1
PPC = pharmacologic preconditioning
PPoC = pharmacological postconditioning
PRX = peroxiredoxins
PTSD = post-traumatic stress disorder
Q = coenzyme Q;,, ubiquinone, quinone
RISK = reperfusion injury signaling kinase
RNS = reactive nitrogen species
ROS = reactive oxygen species
RuR = ruthenium red
RVLM = rostral ventrolateral medulla
SHR = spontaneous hypertensive rat
Smac/Diablo = second mitochondria-derived
activator caspase/direct inhibitors
of apoptosis protein (IAP), inhibitors
of apoptosis protein
SNO-MPG = S-nitroso-2 mercaptopropionyl glycine
SOD = superoxide dismutase
SR = sarcoplasmic reticulum
SS = Sezto—Schiller tetrapeptides
SZ = schizophrenia
TAT = transactivator of transcription
TCA = tricarboxylic acid
TOM and TIM = outer and inner membrane translocases,
respectively
TPP* = triphenylphosphonium
TRX = thioredoxin
TRXSH, = thioredoxin (reduced)
UCP = uncoupling proteins
VDAC = voltage dependent anion channel







