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Abstract

Background: The Lymphoblastic leukemia 1 (LYL1) gene is a proto-oncogenic transcription factor found upregulated in
patients with T-cell acute lymphoblastic leukemia (T-cell ALL). Initially, the upregulation was described to be as a result of a
translocation. However, further studies revealed that transcriptional upregulation of LYL1could also occur without
translocations. In addition, post-translational mechanisms, such as protein degradation could influence LYL1 expression as
well.

Methodology/Principal Findings: In this study, we considered possible post-translational regulation of Lyl1, and
investigated fundamental mechanisms governing LYL1 degradation in cell-based culture assays. We identify a PEST
sequence motif located in the N-terminus of LYL1, which determines the efficiency of LYL1 degradation by the proteasome.
The absence of the PEST degradation site leads to accumulation or upregulation of LYL1. We also show that LYL1 is
phosphorylated by MAPK at S36, and determined that proteasomal degradation of LYL1 occurs in a phosphorylation-
independent manner.

Conclusions/Significance: Understanding LYL1 degradation is a step forward not only towards deciphering the normal
function and regulation of LYL1, but could suggest post-translational mechanisms for upregulation of LYL1 that may
contribute to its oncogenic role.
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Introduction

The lymphoblastic leukemia 1 (LYL1) gene codes for a basic

helix-loop-helix (bHLH) transcription factor [1]. The basic region

facilitates DNA interactions and the HLH domain, protein

dimerizations [2,3]. LYL1 has an important role in hematopoietic

stem cell biology, normal hematopoiesis and leukemia. It is

expressed throughout the hematopoietic lineages with the

exception of T-cells [4,5,6]. Deletion of Lyl1 in mice reduces the

hematopoietic stem and progenitor populations and the mature B-

cells [7]. Lyl1 is non-essential for embryonic development;

however, deletion of Lyl1 together with its paralog, the stem-cell

leukemia (Scl) gene, causes rapid apoptosis of hematopoietic

progenitors in adult mice [4]. Upregulation of LYL1 has been

linked to a subtype of T-cell acute lymphoblastic leukemia defined

by a stem-like phenotype and an unfavorable prognosis [8,9]. In

addition, significant proportion of the Lyl1 transgenic mice

develop T- and B-cell lymphoma after an average latent period

of one year [10]. Furthermore, overexpression of Lyl1 in the

mouse bone marrow causes hematopoietic progenitor-expansion

and increased mature T-cells. These effects were most likely due to

the anti-apoptotic and proliferative roles of the Lyl1 overexpres-

sion in the hematopoietic system [Lukov et al. – accepted for

publication in Leukemia Research].

LYL1 was first discovered ectopically expressed in T-cell ALL

lymphoblasts as a result of the t(7;19)(q35;p13) translocation with

the T-cell receptor beta chain gene [1,11]. LYL1 translocations, on

average, have been observed in 2% of all T-cell ALL cases [12].

However, Ferrando at al. reported that 22% of the studied

children with T-cell ALL have overexpressed LYL1 which was not

associated with any locus-specific translocations of the LYL1 gene

[8]. In addition, a LYL1 translocation and multiple translocation-

independent upregulations have also been observed in acute

myeloblastic leukemia (AML) cases [9,13]. It is clear that there are

multiple mechanisms responsible for LYL1 upregulation in ALL

and AML [14]. What remains unknown is the nature of these

mechanisms and how they contribute to the role of LYL1 in

leukemia. Chan et al. reports that Ets and GATA factors regulate

Lyl1 transcription however, very little is known about the protein

stability and the post-translational regulation of LYL1 [15].

Disregulated protein degradation causing accumulation could

be a powerful reason for increased gene expression [16,17]. Post-
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translational processing and degradation are regulatory mecha-

nisms controlling protein expression and function [18,19]. Their

role in the function of LYL1 is still unexplored. The aim of our

study was to examine the mechanisms governing protein stability

and degradation of LYL1. We determined whether LYL1

degradation is proteasome dependent. We identified and studied

the importance of a PEST (Proline (P), Glutamate (E), Aspartate

(D), Serine (S) and Threonine (T)) rich sequence motif, recognized

as a site for protein degradation [20,21]. In addition, we

established that LYL1 is phosphorylated and further investigated

how the phosphorylation affects LYL1 degradation. Our findings

set a solid foundation for further basic science and clinical

explorations aimed at understanding the mechanisms of LYL1

upregulation and their role in leukemia.

Results

LYL1 is degraded by the proteasome
For our studies we used the 293T cell-line which is a widely used

and easily manipulated biological system shown to have the

cellular machinery required for studies of ubiquitous processes,

such as the protein proteasomal degradation [22,23,24]. The

majority of the cellular proteins are degraded by the proteasome

[25]. Therefore, our initial approach was to determine if LYL1

also is targeted for degradation by the proteasome. To test that, we

treated cultured 293T cells, transfected with V5 tagged LYL1

(LYL1-V5), with the proteasome inhibitor MG-132. We observed

a dose dependent accumulation of LYL1 after 6 hrs of incubation

with increasing concentrations of MG-132 (Fig. 1). Western

blotting analysis revealed that the MG-132 induced accumulation

affected predominantly the upper band of LYL1. Normally, on a

western blot LYL1 is represented by two bands positioned

approximately 5 kDa of each-other indicating, that there are

two forms of LYL1. These forms could either be the wild type and

a truncated form of LYL1 or most likely the wild type LYL1

existing in two post-translational modification states. If the latter is

true, our observations would indicate that only the modified form

of LYL1 is subjected to degradation with the modification itself

acting as a signaling event.

LYL1 is phosphorylated by the MAPK
Common post-translational modifications are the protein

phosphorylations. To confirm that LYL1 is a phosphorylated

protein we immunoprecipitated LYL1 from 293T cells followed by

treatment with Calf Intestinal Phosphatase (CIP) in order to

remove any existing phosphate group modifications. Upon

incubation with CIP the top band completely disappeared

signifying that indeed LYL1 is phosphorylated and that the

phosphorylated form has decreased electrophoretic mobility

represented by the upper band (Fig. 2A).

Naturally, our next aim was to indentify and localize the

phosphorylation site. We performed mass spectrometry analysis of

immunoprecipitated LYL1-V5 digested with endoproteinase Lys-

C and trypsin. Separately, using MALDI-TOF mass spectrometry,

we measured the mass-to-charge (m/z) ratios of peptide fragments

generated either from the upper or the lower band of LYL1. The

sequence of each identified fragment was confirmed by MS/MS

analysis. After comparing the m/z of corresponding peptides we

found that the only difference between the phosphorylated and the

non-phosphorylated forms of LYL1 is between the peptides

spanning residues 34 through 48. The expected m/z of peptide

34–48 is 1556.8 which was the m/z measured for this fragment

when derived from the lower band or non-phosphorylated LYL1

(Fig. 2B). When derived from the upper band or phosphorylated

LYL1, the m/z of this fragment was 1636.8. In both cases we also

observed traces of either the phosphorylated or the non-

phosphorylated forms which was most likely due to cross

contamination during the excision of the bands. The m/z

difference of 80 between the upper and lower fragments suggests

that the fragment from the phosphorylated LYL1 has a single

phosphate group modification. The only place this modification

could occur is at S36 (Fig. 2B). The phosphorylation at S36 was

further confirmed by a single residue substitution. Expression

studies showed that the upper band of LYL1 disappeared

completely upon substitution of S36 with alanine (LYL1-S36A)

(Fig. 2C).

After localizing the phosphorylation site we focused on

identifying the kinase responsible for the phosphorylation of

LYL1. Serine 36 with Proline residues at the +1 and the -2

positions (PASP) represents a classic mitogen-activated protein

kinase (MAPK) phosphorylation site [26,27]. Therefore, we tested

if MAPK can phosphorylate LYL1 and if S36 is the target site. In

order to do so, we immunoprecipitated wild type LYL1 (LYL1-

WT) and LYL1-S36A from 293T cells, dephosphorylated them

with Protein phosphatase 1 (PP1) and rephosphorylated with

MAPK. The MAPK rephosphorylated successfully only LYL1-

WT. There was no evidence suggesting phosphorylation of LYL1-

S36A. Our results indicate not only that MAPK phosphorylates

LYL1 but that the phosphorylation site is S36 (Fig 2D).

The proteasome degrades LYL1 in a phosphorylation-
independent manner

Protein phosphorylation is a well recognized mechanism for

regulation of degradation by the proteasome [25,28,29]. Other

Figure 1. Accumulation of LYL1 as a result of proteasomal
inhibition with MG-132. Cultured 293T cells, transiently transfected
with wild type LYL1, were treated with 2.5 or 5 mM MG-132, or DMSO as
a control, for 6 hrs under normal growth conditions. Following the
incubation, the cells were lysed and LYL1 expression was analyzed by
immunoblotting against the V5 tag. The bar graph represents the mean
intensities of the upper and lower bands of LYL1 at increasing
concentrations of MG-132 from four experiments. The error bars show
the standard error of the mean (SEM). The p values were calculated
using two tailed, unpaired t test.
doi:10.1371/journal.pone.0012692.g001

LYL1 Proteasomal Degradation
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Figure 2. LYL1 is phosphorylated by MAPK at Serine 36. A) Dephosphorylation of LYL1 by Alkaline Phosphatase. Protein A/G beads with
bound, immunoprecipitated LYL1-WT were treated with the Calf Intestinal Alkaline Phosphatase for 1 h. The samples were then analyzed by anti-V5
immunoblotting. The shown image is representative of four experiments. B) Mass fingerprinting of phosphorylated and non-phosphorylated LYL1.
The upper, phosphorylated and the lower, non-phosphorylated bands of immunoprecipitated LYL1were excised, digested and mass fingerprinted by
MALDI-TOF mass spectrometry. The histograms, representative of two experiments, show the measured m/z values of the peptide spanning residues

LYL1 Proteasomal Degradation
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bHLH transcription factors, such as c-Myc and Scl also exhibit

phosphorylation-dependent proteasomal degradation [30,31]. In

order to assess if phosphorylation has a role in the proteasomal

degradation of LYL1 we treated 293T cells, transiently transfected

with LYL1-WT or LYL1-S36A with 5 mM MG-132 following the

same procedures as before. The MG-132 induced accumulation of

the non-phosphorylated (S36A) form of LYL1 was the same as the

accumulation of LYL1-WT indicating that there is no difference in

the degradation of LYL1 whether it is phosphorylated on not

(Fig. 3). In addition, if phosphorylation was required for de-

gradation, we should observe cellular accumulation of LYL1-S36A

when transiently expressed in 293T cells (Fig. 2C). Some increase

of the band intensity of the non-phosphorylated S36A form was

expected because, it represents a combination of the upper and

lower bands given by the LYL1-WT. It is apparent that the

proteasome degrades LYL1 regardless of its phosphorylation state.

The N-terminus of LYL1 contains a PEST rich degradation
site

Since phosphorylation does not affect LYL1 degradation, we

focused our attention on identifying degradation signals within the

sequence of LYL1. The presence of a PEST rich sequence motif

has been associated with a short protein half-life and a higher

probability for degradation [20,21]. Protein sequence analysis

revealed that 22 or 50% of the first 44 residues of LYL1 are PEST

residues (Fig. 4A): 13 Proline (29.5%); 5 Glutamate (11.4%); 2

Serine (4.5%) and 2 Threonine (4.5%) amino acids. To investigate

the role of the PEST amino acid cluster we compared the

expression of the wild type LYL1 to a truncated form of LYL1

lacking the PEST rich sequence. We observed a 4.3 fold increase

in LYL1 expression upon deletion of the initial 56 amino acids

(LYL1-T56) (Fig 4B). The accumulation was most likely due to

inefficient degradation of LYL1 by the proteasome. This statement

was further supported by our observation that there was no

significant accumulation of LYL1-T56 as a result of treatment

with 5 mM MG-132 (Fig. 3) suggesting that in the absence of the

first 56 residues, LYL1 degradation becomes significantly less

dependent on the proteasome. Clearly, the N-terminus of LYL1

contains a PEST rich sequence-motif responsible for the stability

and degradation of LYL1.

After a closer examination of the 44 residue segment rich with

PEST amino acids, we noticed that 10 of the 13 total Proline

residues are located between amino acids 24 and 40. The Prolines

account for 59% of all residues in that segment. The presence of

such a high number of Prolines would destabilize any secondary

structures and most likely be a part of an unstructured loop [32],

which are often preferred targets for degradation [21,33]. To

achieve more precise localization of the degradation site and to

investigate the role of the Proline cluster, we constructed

additional truncated forms of LYL1. Deletion of the first 29

amino acids, or 3 of the 10 Proline residues in the 24–40 segment

caused a noticeable but, not significant increase of LYL1

expression. After removing 6 additional residues (LYL1-T35) or

7 of the 10 Prolines, LYL1 expression increased significantly (2.6

fold) compared to the wild type (Fig 4C). The deletion of 5 more

residues (LYL1-T40), or all 10 Prolines, resulted in over 4 fold

increase of LYL1 expression which is almost identical to the

expression of the T56 truncated form of LYL1 (Fig 4B). It appears

that the cluster of Proline residues between amino acids 24 and 40

is instrumental in driving LYL1 degradation.

Discussion

In this study we examined the mechanisms governing the

protein stability and degradation of LYL1. We showed that LYL1

is degraded by the proteasome. Interestingly, we observed that

only the upper band of the wild type LYL1 accumulated during a

proteasomal block with MG-132. Additional studies revealed that

the upper band of LYL1 represents the phosphorylated form of

LYL1. Furthermore, we established that LYL1 is phosphorylated

by the MAPK and identified S36 as the phosphorylation site.

However, phosphorylation did not appear to be required for

proper LYL1 degradation by the proteasome. The expression of

the LYL1-S36A was just as dependent on the function of the

proteasome as the LYL1-WT. The question of why the

phosphorylated LYL1 accumulates and the non-phosphorylated

LYL1 does not, or at least does not begin to show signs of

accumulation until the use of higher concentration of MG-132,

still remains unanswered. One possible explanation is that the

phosphorylation does not have signaling role with respect to

degradation but, simply under physiological conditions, the

phosphorylated form of LYL1 might be the form that reaches

the proteasome for degradation hence that is the form which

predominantly accumulates.

While the degradation is phosphorylation-independent, the

absence of the PEST motif significantly decreases the ability of the

Figure 3. Effect of MG-132 inhibition of the proteasome on the
expression of LYL1-WT and variants. Transiently transfected 293T
cells were treated with DMSO as a control, or 5 mM MG-132 as
previously described. LYL1 protein expression was analyzed as
described in Fig. 1.
doi:10.1371/journal.pone.0012692.g003

34 through 48 derived from the non-phosphorylated (LYL1) and the phosphorylated (LYL1-P) LYL1. C) Expression analysis of LYL1-WT and LYL1-S36A.
LYL1 wild type and S36A variant were transiently expressed in 293T cells, immunoprecipitated and analyzed by western immunoblotting. D)
Phosphorylation of LYL1 by the MAPK. Immunoprecipitated LYL1-WT and LYL1-S36 were first treated with Protein Phosphatase 1 to remove all
phosphate modifications. Then, re-phosphorylation was attempted by treatment with the MAP kinase. The proteins were resolved and analyzed by
anti-V5 immunoblotting. The images are representative of four experiments.
doi:10.1371/journal.pone.0012692.g002
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proteasome to degrade LYL1, leading to protein accumulation.

More detailed studies revealed that a cluster of Proline residues

located between amino acids 24 and 40 is essential for the proper

degradation of LYL1. Clearly, the proteasomal degradation of

LYL1 depends on a PEST and more specifically on a Proline rich

sequence located in the N-terminus of LYL1. We found further

supporting evidence in the alignment of N-terminal protein

sequences of LYL1 from six species (human, chimpanzee, bovine,

dog, rat and mouse) (Figure 5). We observed significant

conservation of the Proline residues from residue 24 to 40. All

Prolines, but one in the bovine and dog sequences, were preserved

in the higher mammals. The rodent sequences have fewer

Prolines; however, their even distribution may still preserve the

role of this segment as a degradation signal. The Serine 36 residue

is conserved in all sequences. The MAPK site is also conserved

with the exception of the mouse. The fact that Serine 36 and the

MAPK motif are conserved suggests that MAPK phosphorylation

may have a significant physiological role in the function of LYL1;

however, we have no evidence suggesting that it has a role in

LYL1 degradation.

The lack of proper degradation leads to accumulation of LYL1

which might not only increase the activity of LYL1 but may also

provide an environment supporting positive selection of cells with

increased potential to become transformed. Disregulated degra-

dation of oncogenes is a proven mechanism for induction of cancer

formations [16,28,30,34]. Considering the results presented in this

study, added to the fact that LYL1 is a transcription factor, it is

plausible that factors, such as mutations or improper regulation,

Figure 4. LYL1 degradation is dependent on a PEST motif located at the N-terminus of LYL1. A) Sequence of the first 44 amino acids of
LYL1. The PEST residues have been highlighted or boxed for easier identification and convenience. B) Comparative expression in 293T cells of
transiently expressed wild type (WT) and T56 or additional truncated forms of LYL1(C). The bar graphs describe the average band intensity for each
protein from three or four experiments. The SEM is represented by the error bars. The immunoblotting for b-Actin serves as a control. The p value was
calculated using two tailed, paired t test.
doi:10.1371/journal.pone.0012692.g004

Figure 5. Alignment of N-terminal protein sequences of LYL1. The first 44 amino acids obtained from the human (NP_005574), chimpanzee
(XP_524130), bovine (NM_001193074), dog (XP_853573), rat (NP_001007678) and mouse (NP_032561) protein sequences were aligned. All Proline
residues from position 24 to 40 were highlighted as well as Serine 36.
doi:10.1371/journal.pone.0012692.g005
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preventing LYL1 degradation or inactivation by the proteasome

may have significant role in cancer formation.

Materials and Methods

DNA constructs
All constructs were prepared by insertion of coding sequences

into the pcDNA-DEST40 vector (Invitrogen) using Gateway

recombination techniques. The stop codons were removed from

the open reading frames to allow C-terminal fusion of the expressed

proteins with the V5 tag provided by the vector. The LYL1 wild type

cDNA was purchased from Open Biosystems and was used as a

template for subcloning and preparation of all LYL1 constructs.

Cell culture
Cultured 293T cells were maintained in DMEM/F-12 (50/50

mix) growth media with L-glutamine and 15 mM HEPES

(Mediatech, Inc), supplemented with 10% fetal bovine serum

(HyClone) at 37uC in a humidified CO2 incubator. The active

growth of the cells was maintained by regular subculture. Cells

beyond 20 passages were not use.

Transient transfections
Cultured 293T cells were transfected with plasmid DNA using

Lipofectamine 2000 reagent according to the manufacturer’s

protocol (Invitrogen). The cells were harvested for subsequent

applications 24 or 48 hrs after transfection.

Immunoprecipitation (IP) experiments
Transfected 293T cells were washed with phosphate-buffered

saline (PBS) (Fisher) and solubilized in IP buffer (PBS, pH 7.4, 2%

IGEPAL (Sigma), supplemented, prior to use, with Protease

Inhibitor Cocktail for use with mammalian cell and tissue extracts

(Sigma)). The lysates were passed 13 times through a 25 G needle

and centrifuged at maximum speed for 8 min at 4uC in an

Eppendorf microfuge. The clarified lysates were incubated with

2 mg of anti-V5 (Invitrogen) antibody for 30 min. followed by

incubation for additional 60 min. with 25 ml of a 50% slurry of

Protein A/G Plus agarose (Santa Cruz Biotechnology). After the

incubations, the beads were washed three times with 400 ml of IP

buffer. The precipitate was solubilized in SDS sample buffer (Bio-

Rad) and resolved on 10% or 4–20% Tris-HCl Rgels (Bio-Rad).

The gels were immunoblotted using anti-V5 or anti-b-Actin (Santa

Cruz Biotechnology) monoclonal antibodies. Immunoblots were

developed with the ECL Plus chemiluminescence reagent

(Amersham). They were visualized with a Storm 860 phosphor-

imager, and the band intensities were quantified using Image

Quant software (GE Healthcare).

Treatment with MG-132
Transiently transfected 293T cells were incubated (24 hrs post-

transfection) in culture media, supplemented with 2.5 or 5 mM MG-

132 (Calbiochem), or DMSO as a control for 6 hrs. After the

incubation, the cells were solubilized in IP buffer and equal amounts

of lysate and 2X SDS sample buffer (Bio-Rad) were mixed followed

by boiling for 10 min. The protein concentration of the non-

denatured lysate was measured using the BCA Protein Assay Kit

(Thermo). Equal amount of total protein was loaded on a 10% Tris-

HCl Rgel for expressions analysis by Western immunoblotting.

Dephosphorylation with Alkaline phosphatate
LYL1-WT was transiently expressed in 293T and then

immunoprecipitated. Following the incubation with the Protein

A/G beads, the samples were washed twice with IP buffer, once

with PBS and once with NEBuffer 3 (New England Bio.). Each

sample was then resuspended in 15 ml of NEBuffer 3 and 10 U of

Calf Intestinal Phosphatase (CIP) (New England Bio.). Next, the

samples were incubated at 37uC for 1 h with periodical mixing

(every 10–15 min.) by flicking. Following the incubation, to the

samples were added 20 ml of SDS-PAGE sample buffer (Bio-Rad)

and they were boiled for 10 min. LYL1 was resolved by SDS-

PAGE (10% Rgel, Bio-Rad), followed by immunoblotting.

Mass Spectrometric Analyses
Immunoprecipitated LYL1-WT was resold by SDS-PAGE and

the gel was stained for 60 min. using GelCode Blue Stain Reagent

(Thermo). After 60 min. distaining in distilled water the

phosphorylated and non-phosphorylated bands were excised and

submitted for mass spectrometric analysis to the Proteomics Core

at Baylor College of Medicine. The gel bands were then rinsed in

H2O for 10 min, cut with a scalpel blade into ,1 mm pieces,

dehydrated with 0.2 M TRIS pH 8 containing 50% acetonitrile

for 30 min and dried completely in a Speed-Vac. Next, the gel

pieces were rehydrated in 0.05 M TRIS pH 8 containing 0.5–

1 mg each modified trypsin (Promega) and Lys-C (Wako) and

digested for 20 hr at 37uC. The supernatants were removed to a

clean microfuge tube, the gel fragments were extracted with

aqueous 50% acetonitrile/1% formic acid for ,15 min and the

extract combined with the supernatant. Samples were then

evaporated to ,10 ml, acidified with formic acid to ,pH 3 and

desalted on a C18 ZipTip (Millipore). Peptides were eluted from

the ZipTip with 3–5 ml of an aqueous solution of 50% acetonitrile

containing 2% formic acid and spotted on a MALDI target plate

with matrix (HCCA, alpha-cyano-4-hydroxycinnamic acid), dried

and analysis performed in reflector mode on an ABI/SCIEX 4700

Proteomics Analyzer TOF/TOF mass spectrometer. Monoisoto-

pic peptide masses detected were analyzed by MS-Fit (Protein

Prospector, University of California, San Francisco) for protein

database searches and protein identification/verification. Spectra

were visually inspected for the presence of peptide mass differences

between the 2 samples. The selected peptide precursor ions were

subjected to high-energy collision induced dissociation to generate

MS/MS fragment ion spectra that were analyzed and confirmed

by visual inspection to deduce amino acid sequences of the

peptides.

MAPK phosphorylation
LYL1-WT and LYL1-S36A were immunoprecipitated from

transiently transfected 293T lysates as described above. Following

the incubation with the beads, the samples were washed twice with

IP buffer, once with PBS and once with NEBuffer for Protein

MetalloPhosphatases (PMP) supplemented with MnCl2. Next, the

samples were resuspended in 15 ml of NEBuffer PMP supple-

mented with MnCl2 and to the two of the three samples in each set

were added 5 U of Protein Phosphatase 1 (PP1) (New England

Bio.). All samples were incubated at 30uC for 2 hrs with periodical

mixing. After the incubation all samples were washed once with IP

buffer, once with PBS and once with Kinase Buffer (NEBuffer for

Protein Kinases (PK) supplemented with 1 mM ATP and 1 mM

Protein phosphatase inhibitor 2). After the wash, the samples were

resuspended in 15 ml of Kinase Buffer and to one of the two

dephosphorylated samples in each set were added 100 U of

MAPK. The samples were then incubated for 1–2 hrs at 30uC.

Following the incubation the samples were washed once with IP

buffer and once with PBS. After the final wash the precipitated

proteins were released from the beads by addition of SDS-PAGE

sample buffer (Bio-Rad) followed by boiling for 10 min. The

LYL1 Proteasomal Degradation
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proteins were resolved by SDS-PAGE, followed by immunoblot-

ting.
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