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Abstract Kir2 subunits form channels that underlie classi-
cal strongly inwardly rectifying potassium currents. While
homomeric Kir2 channels display a number of distinct and
physiologically important properties, the functional proper-
ties of heteromeric Kir2 assemblies, as well as the
stoichiometries and the arrangements of Kir2 subunits in
native channels, remain largely unknown. Therefore, we
have implemented a concatemeric approach, whereby all
four cloned Kir2 subunits were linked in tandem, in order
to study the effects of Kir2.1 and Kir2.2 heteromerization
on properties of the resulting channels. Kir2.2 subunits
contributed stronger to single-channel conductance than
Kir2.1 subunits, and channels containing two or more
Kir2.2 subunits displayed conductances indistinguishable
from that of a Kir2.2 homomeric channel. In contrast,
single-channel kinetics was a more discriminating property.
The open times were significantly shorter in Kir2.2
channels compared with Kir2.1 channels and decreased

nearly proportionally to the number of Kir2.2 subunits in
the heteromeric channel. Similarly, the sensitivity to block
by barium also depended on the proportions of Kir2.1 to
Kir2.2 subunits. Overall, the results showed that Kir2.1 and
Kir2.2 subunits exert neither a dominant nor an anomalous
effect on any of the properties of heteromeric channels. The
data highlight opportunities and challenges of using
differential properties of Kir2 channels in deciphering the
subunit composition of native inwardly rectifying potassi-
um currents.

Keywords Inward rectifier potassium channels . Patch-
clamp barium . Kinetics . Single channel

Introduction

Members of the Kir2 subfamily (Kir2.1–Kir2.3) are
constitutively active channels that underlie classical strongly
inwardly rectifying potassium currents, which contribute to
stabilization of the resting membrane potential and action
potential repolarization in excitable cells [1]. Several studies
have shown that Kir2 subunits may form heteromers in
exogenously expressing systems [2–4], and it is highly likely
that native strongly inwardly rectifying potassium chan-
nels may also be heteromers of distinct Kir2 subunits.
Since different Kir2 channels possess a number of distinct
and physiologically important properties, including differ-
ent profiles of outward current in the range of physiolog-
ical membrane potentials [5–8], determining the specific
Kir2 subunits that compose native channels is an impor-
tant goal for better understanding their role in cellular
excitability.

Subunit composition of a native channel can potentially
be derived from its properties if one knows the contribution
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of individual subunits to the properties of their possible
heteromeric assemblies. The proportional contributions of
individual subunits cannot be simply assumed, and previ-
ous experimental data pointed to both possible dominant [6]
and even anomalous [3] contributions of Kir2 subunits to
some properties of Kir2 heteromers.

Previous studies have utilized external blockers of Kir2
channels to determine the molecular composition of native
channels. For example, block by Ba2+ was used to compare
the properties of cloned Kir2 channels to that of IK1, the
major inwardly rectifying potassium channels in the heart
[3, 4]. This is a potentially very powerful technique since
homomeric Kir2 channels are known to possess significantly
different affinities for Ba2+ ions [2, 9]. However, assessment
of the Ba2+ sensitivities of heteromeric Kir2 channels has
yielded conflicting results. For example, Preisig-Muller et al.
[2] showed that channels formed by co-expressed Kir2.1
and Kir2.3 subunits had sensitivities to Ba2+ that were
intermediate to those of Kir2.1 or Kir2.3 channels. In
contrast, in similar experiments, Schram et al. [3] found
that Kir2.1/Kir2.3 heteromers were significantly more
sensitive to Ba2+ than Kir2.1 or Kir2.3 channels expressed
alone. Several factors may have contributed to this
discrepancy. In particular, the relative level of expression
of specific Kir2 subunits or their effective participation in
the formation of heteromeric channels cannot be con-
trolled in experiments using co-expression of subunits. In
addition, in co-expression experiments, presumably random
heteromerization of Kir2 subunits would lead to formation
of channels with unknown subunit stoichiometries and
arrangements, thus significantly complicating the interpreta-
tion of the data.

Some suggestions with regard to specific properties of
Kir2 heteromers can be made based on known underlying
mechanisms. For example, evidence suggests that spermine
binding may primarily be determined by the total electro-
negativity of its binding site inside the channel rather than
by the position of specific subunits (non-coordination
binding) [10]. In contrast, block by Ba2+ may strongly
depend on precise coordination of the ion in the pore of the
channel, rather than on the total electronegativity of binding
sites. The precise contribution of specific Kir2 subunits to
the properties of the heteromeric channels, however, cannot
be predicted with certainty and thus must be determined
experimentally.

To circumvent the inherent limitations of co-expression
studies, we implemented a concatemeric approach whereby
all four cloned Kir2 subunits were linked in tandem, which
allowed us to assess both single-channel properties and
Ba2+ sensitivities of channels with known stoichiometries
and arrangements of subunits. In doing so, we were able to
delineate Kir2 channels of different subunit stoichiometries
based on their functional properties. The data provide

essential tools needed for further elucidation of the exact
subunit composition of channels underlying native inward-
ly rectifying potassium currents.

Materials and methods

Cloning of Kir2.x channels and producing concatemeric
constructs

Cloning of Kir2.x channels Kir2.1 and Kir2.2 subunits
were cloned from mouse genomic DNA using a PCR-based
technique and then sub-cloned into a pIRES-GFP vector
(Clontech, USA), as described previously [8]. The Kir2.1-
GFP fusion construct was made as described previously
[11].

Concatemeric constructs Concatemeric constructs were
generated as described previously [12]. Briefly, Kir2.1/
Kir2.2 tetrameric concatemers were made using a PCR-
based method, whereby each full subunit was linked in
tandem with eight glutamine residues each containing a
restriction site in the middle. Each PCR product was
digested and ligated into a pBluescript SK(-) vector
(Stratagene, USA). Subsequent digestions and ligations
were performed in order to introduce each channel
component into the tetramer. After the complete tetramer
was made in the pBluescript SK(-) vector, it was sub-cloned
into a pIRES-EGFP vector for future cell transfections and
expression.

HEK293A cell transfection

HEK293A cells were plated on 35-mm dishes, which
contained glass coverslips. Cells were transfected (approx-
imately 24 h after plating) with the Lipofectamine 2000
system (Invitrogen, USA) according to the manufacture’s
protocol. For single-channel studies, smaller amounts of
DNA (0.25–0.5 μg per dish) were used, and transfection
times were only 2–3 h in order to produce lower
expression. For studies with Ba2+, larger DNA amounts
(1–2 μg per dish) were used, and transfection times were 4–
6 h. Cells were used for electrophysiological experiments
1–2 days after transfection.

Solutions

Modified Tyrode (mM): 137 NaCl, 5.4 KCl, 0.5 MgCl2, 0.3
CaCl2, 0.16 NaH2PO4, 3 NaHCO3, 5 HEPES, 5 glucose,
pH 7.35 with NaOH.

KINT-CaCl2 (mM): 140 KCl, 10 HEPES, 0.3 CaCl2,
pH 7.35 with KOH.

840 Pflugers Arch - Eur J Physiol (2010) 460:839–849



FVPP (mM): 95 KCl, 0.1 Na3VO4, 10 K4P2O7, 5 KF, 10
HEPES, 1 EGTA, pH 7.35 with KOH.

Electrophysiology

Ionic currents were recorded in outside-out, inside-out, and
cell-attached configurations [13]. The electrophysiological
setup was as described previously [8]. Applied voltages
were not corrected for liquid junction potentials. FVPP
solution was used to slowdown channel rundown in inside-
out and outside-out patches as well as during cell-attached
recordings. Temperature of the perfusion solution was
measured directly in the flow chamber using a small
insulated thermocouple probe (K-08113-28, Cole Parmer).

Single-channel recordings Patch pipettes, made of glass
obtained from either Sutter Instruments (no. BF150-110-10;
Novato, CA) or A-M Systems (no. 617000; Sequim, WA),
were coated with either Sylgard 184 (Dow Corning, USA)
or a heated mixture of parafilm and oil, and filled with
KINT-CaCl2 solution. No differences were observed in
current properties with either glass type. Cells were first
superfused with modified Tyrode solution, which was then
quickly changed to the high K+ FVPP solution after a stable
cell-attached patch was formed. The use of FVPP solution
(high K+ concentration) ensures membrane depolarization
to ∼0 mV. Recordings were performed at a holding
potential of −100 mV (assuming the above uncertainty of
membrane potential) and chord conductances calculated as
I/100 mV. A 1-s ramp from −90 to +60 mV was used to
confirm that the single-channel currents were inwardly
rectifying. All recordings were filtered at 1 KHz and
digitized at 2–5 KHz. Patches that contained more than four
active channels were discarded from single-channel analysis.
The single-channel data were corrected for differences in
the temperature of experimental solutions. The Q10 values
for single-channel conductance (1.56±0.04; estimated
using Kir2.1-GFP; n=3) and kinetics (2.42±0.14 for open
and 2.06±0.31 for closed; estimated using Kir2.1 mono-
mer, n=3) were measured by increasing the temperature of
the bath solution during cell-attached single-channel
recordings. For inside-out recordings, the patch was
excised into the FVPP solution to washout polyamines
and Mg2+ from the intracellular side of the membrane.

Outside-out recordings Outside-out recordings of macroscop-
ic currents were carried out essentially as described previously
[8] with the following modifications: FVPP plus 100 μM
spermine (Spm) was used as the pipette solution (intracellu-
lar), and KINT-CaCl2 was used as the external solution.
Stocks of BaCl2 were diluted into the KINT-CaCl2 to make
appropriate concentrations for experiments. Cells were kept in
modified Tyrode solution until a stable outside-out configu-

ration could be formed. To study steady-state Ba2+ sensitivity,
currents were recorded at a holding potential of −50 mV. The
kinetics of block with 10 μM Ba2+ was studied using a 2-s
step pulse to −100 mV from a holding potential of +30 mV.
The number of sweeps per recording varied from one to 20.
Multiple sweeps from the same recording were averaged.

Data analysis

Data analysis was performed using Microsoft Excel (2000)
and Clampfit 10.2 (Molecular Devices Co, CA). For single-
channel conductance determination, single-channel records
were transformed into mean-variance histograms using a
homemade software incorporating the model used in Patlak
et al. [14]. Conductances obtained using this program
matched those obtained by using Clampfit 10.2. Single-
channel kinetics was analyzed using Clampfit 10.2.
Records were idealized, and events less than 1 ms were
excluded. For kinetics analysis, in multi-channel patches,
only few long stretches of activity (in the range of minutes
and with hundreds to thousands of events in each) with
only one level present were used. In a highly unlikely case
that those stretches originated from different channels, the
outcome will not be affected in any significant way as the
situation would be equivalent to averaging the data from
two identical Kir2 constructs. From the events data,
logarithmic dwell-time histograms (number of events vs
Log Dwell time (ms)) were constructed and fit with the
predefined ‘exponential log probability’ function in Clampfit
10.2. Note that the above procedure uses linear rather than
square-root ordinate for number of events [15]. Dwell-time
histograms had 16 bins per decade and had a range of 1–
5,000 ms. Open times were fit with single-exponential
function. In general, closed times were fit with a four-
exponential function. In a few patches, when either fastest or
slowest components were not resolved, two- to three-
exponential fits were used.

In experiments with Ba2+, the dose–response relations
were fit with the following Hill equation:

IREL ¼ 1

1þ Kd
½Ba�

� �nH

where IREL is the current in the presence of Ba2+ relative to
the current in zero Ba2+, Kd is the concentration at which
one half of the current is blocked, [Ba] is the concentration
of Ba2+ applied (μM), and nH is the Hill coefficient.

For all analyses of the kinetics of Ba2+ block, the tau of
block (τblock) was determined by fitting the current trace
with a single-exponential function. The fit began ∼15–
30 ms from the beginning of the trace to minimize the
contribution of the capacitance current.
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Statistics

The data are presented as the mean ± standard error (SE). A
two-tailed t test with equal variances was used for
estimation of statistical significance of the differences
between two means. A paired t test was used to test for
statistical significance between single-channel properties in
the cell-attached and excised inside-out configurations. For
comparisons of multiple means, a one-way ANOVA was
used. Asterisks *, **, and *** represent p<0.05, p<0.01,
and p<0.001, respectively.

Results

Single-channel conductance of heteromeric Kir2.1/Kir2.2
channels

Figure 1a shows representative cell-attached records of
inward currents for several Kir2 channels. All tested
channels exhibited strong inwardly rectifying behavior
(not shown). In contrast to the study by Picones et al.
[16] that revealed a large variability in the single-channel
conductance of Kir2.1 channels in a majority of patches,
our measurements showed only moderate variability,
consistent with a number of previous reports. In a
minority of patches, small conductances similar to those
described in Picones et al. [16] (Fig. 1b) were also
observed in both homomeric and heteromeric Kir2 chan-
nels, but their activity was short-lived and channel openings
were infrequent when compared with the larger conductance
channels. In addition, we also observed sub-conductance
levels (Fig.1b), a common phenomenon in various ion
channels including Kir2.1 [17]. Sub-conductances and small
conductances were still present when the pipette was filled
with a CaCl2-free solution containing 1 mM EGTA and
1 mM EDTA, indicating that these sublevels were not being
caused by some multivalent cationic contaminant blocking
the channel [18]. No such channels (large or small) were
observed in untransfected cells (n=5). For the purposes of
this study, we characterized only the main conductance
states.

The conductance increased by 5.7±0.9 pS (n=4, p<
0.01, Kir2.1-GFP channels were used in this experiment)
when the patch was excised and exposed to the polyamine-
free bath FVPP solution. Similar results were also observed
with Kir2.2 monomeric channels (3.0±0.9 pS; n=10, p<
0.01). This was not unexpected since it is known that
intracellular polyamines may inhibit Kir2 currents and
decrease the single-channel conductance of Kir2 channels
even at far negative membrane potentials [8, 19]. Effects of
free intracellular Mg2+ ions may be similar. It is highly
likely that a similar increase in conductance would be

observed with any other Kir2 constructs used in this study
(this phenomenon was not investigated further). Despite the
observed differences between cell-attached and inside-out
single-channel conductances, the cell-attached approach
employed in this study is not compromised in any way
since the composition of intracellular environment is
strongly believed to be similar across the cells. In order to
minimize channel rundown and to increase the success rate
of experiments, single channel measurements were carried
out in the cell-attached configuration.

Figure 2 shows conductance values measured at a
holding potential of −100 mV for various heteromers.
Consistent with past studies [9], Kir2.1 monomeric chan-
nels displayed a smaller conductance than Kir2.2 mono-
meric channels, 30.2±0.77 pS vs 35.8±0.74 pS for Kir2.1
and Kir2.2 channels, respectively (p<0.01). Importantly,
Kir2.1 homo-concatemers, Kir2.1 monomeric channels, and
Kir2.1 channels with a C-terminal GFP fusion tag have
statistically indistinguishable conductances, 29.9±0.49 pS
vs 30.2±0.77 pS vs 30.4±0.7 pS, for 1-1-1-1, Kir2.1 mono,
and Kir2.1-GFP, respectively (p=0.75), indicating that
concatemerization or addition of GFP fusion tag has no
appreciable effect on K+ permeation. However, hetero-
concatemers containing a single Kir2.2 subunit and three
Kir2.1 subunits (e.g., 1-1-1-2) display an increased conduc-
tance (e.g., 34.4±0.6 pS for 1-1-1-2 concatemer; p<0.01)
when compared to Kir2.1 homomeric channels (Fig. 2). The
position of the Kir2.2 subunit does not significantly affect
the channel conductance (compare 2-1-1-1 vs 1-1-1-2 vs 1-2-
1-1; p=0.075), and the small observed differences are likely
due to experimental variation. Addition of second Kir2.2
subunit leads to further increase in channel conductance, but
again, essentially independent of the specific subunit
arrangement (p=0.1 for 1-1-2-2 vs 1-2-1-2). Conductance
of channels containing two Kir2.2 subunits was not different
from that of monomeric Kir2.2 channels, and concatemers
with three or four Kir2.2 subunits displayed somewhat
higher conductances. In practical terms, it is clear that
assemblies with two or more Kir2.2 subunits form a group of
channels with essentially similar conductances.

Taken together, the data show that Kir2.1/Kir2.2 hetero-
merization does not lead to any anomalous single-channel
conductances although some stronger contribution of
Kir2.2 subunit can be appreciated. Clearly, single-channel
conductance property can be useful (but not strongly
discriminating) in deciphering the subunit composition of
native channels.

Single-channel kinetics of heteromeric Kir2.1/Kir2.2
channels

In contrast to single-channel conductances, kinetics properties
might be a significantly more discriminating, in particular, due
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to relatively larger differences in open times (τopen) between
Kir2.1 and Kir2.2 channels (Fig. 4).

Single-channel recordings in HEK293 cells expressing
various Kir2.x concatemers were stable for 3-40 min in the
cell-attached configuration. All channels displayed pro-
longed closed times, sometimes lasting tens of minutes,
therefore long-lasting stable cell-attached recordings

allowed for both open and closed times to be analyzed.
The prolonged closed times were intermittently spaced
between high-activity “burst” times, where the channel
opened and closed rapidly (Fig. 3a). The mechanism of
these prolonged closed states is unknown. These prolonged
closed states still occurred even when the pipette was filled
with a Ca2+-free solution that contained 1 mM EGTA and
1 mM EDTA, or when the holding potential was changed to
+30 mV for ∼1 min and then returned to −100 mV,
suggesting that the long closed times are unlikely due to
block by an unknown cationic contaminant [18].

In all channels, dwell-time histograms for τopen could be
well fit with a single-exponential function (see Materials
and Methods), indicating the presence of only one open
state (Fig. 3b, top). The τopen decreased by 31.4±5.4 ms
(n=4, p=0.005, Kir2.1-GFP channels) when the patch was
excised and exposed to the polyamine-free FVPP bath
solution. This change, however, is relatively small com-
pared to the larger values of τopen, and the effect of patch
excision on the conclusions will be mostly offset by
measuring differences in τopen between different Kir2.1/
Kir2.2 channels (see below).

Homo-concatemers and corresponding monomeric chan-
nels display statistically indistinguishable τopen, 275.2±
20.4 ms vs 279.9±6.0 ms for Kir2.1 and 1-1-1-1,
respectively (p=0.87), vs 121.3±5.1 ms and 106.9±
2.5 ms for Kir2.2 and 2-2-2-2, respectively (p=0.0501),
thus justifying the usefulness of concatemerization ap-
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Fig. 1 Single-channel record-
ings of Kir2.1/Kir2.2 channels.
a Representative recordings of
Kir2 single-channel currents
recorded in HEK293 cells at
−100 mV in cell-attached mode
with high external K+. b Exam-
ples of recordings that contain
small channels (left) and sub-
conductance states (right). Left,
a single-channel recording from
a patch expressing Kir2.2 mo-
nomeric channels. A smaller
conductance channel can be ob-
served with a larger conductance
channel (black triangle). Right,
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a patch expressing Kir2.1-2-1-2
heteromeric channel. Insert, an
enlargement of the section of the
recording where sub-
conductance states are seen
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proach. Kir2.1 monomeric channels tagged with GFP at the
C terminus also did not display any significant changes in
τopen (262.5±12.8 ms) when compared to Kir2.1 monomers
or homo-concatemers. Figure 4 shows τopen for channels of
different stoichiometries. A concatemer containing only one
Kir2.2 subunit and three Kir2.1 subunits (2-1-1-1) displays
a significantly decreased τopen of 209.7±2.0 ms (n=6)
while positioning the Kir2.2 subunit at the C or N terminus
or in the middle does not result in any change in τopen
(compare 2-1-1-1 vs 1-1-1-2 vs 1-2-1-1; p=0.82). Adding
two Kir2.2 subunits further decreases the τopen, again,
independent of the subunit arrangement: 169.3±5.6 ms and
163.2±3.8 ms for 1-1-2-2 and 1-2-1-2 channels, respec-
tively (p=0.39). Channels with three Kir2.2 subunits can be
distinguished from homomeric Kir2.2 as well (Fig. 4).

All together, the data show that channels with the same
Kir2.1/Kir2.2 stoichiometries but with different subunit
symmetries and arrangements are likely to have same τopen.
Accordingly, Fig. 4 (insert) shows the τopen for group-
averaged (same stoichiometry) data and highlights the finding
that τopen decreases nearly proportionally to the number of
Kir2.2 subunits in the heteromeric channel. However, one
should not be misled by small error bars in this graph when
considering the reverse task of deriving the subunit compo-
sition of a channel from a single-channel record.

In contrast to open times, dwell-time histograms for
closed times generally required a fit with a four-exponential
function (Fig. 3b, bottom; Table 1). Although in some
patches (from different constructs), either fastest or slowest
component could not be resolved with certainty due to
limited time resolution or small amplitude, respectively, the
data clearly show the existence of at least four closed states
in most Kir2 channels.

Similar to τopen, some τclosed were significantly different
between Kir2.1 and Kir2.2 homomeric channels. In
particular, both the τclosed,2 and the τclosed,3 were nearly
twice larger in monomeric Kir2.1 than in monomeric Kir2.2
channels (Table 1). Concatemerization of Kir2 subunits in
various combinations did not lead to any anomalous values
for τclosed. Although there is a clear trend of shortening both
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τclosed,2 and τclosed,3 as more Kir2.2 subunits are added to
the channel, the variability in the data makes individual
τclosed less reliable in assigning their values to a specific
stoichiometry of Kir2 heteromer.

Steady-state barium sensitivity of Kir2.1/Kir2.2
heteromeric channels

Previous studies examining heteromerization of Kir2 sub-
units have exploited the distinct sensitivities of Kir2
homomeric channels to extracellular Ba2+ [3, 9] in order
to determine subunit composition of native inwardly
rectifying potassium currents. However, most investigations
have been limited to co-expression experiments of Kir2
subunits, where the subunit stoichiometries of individual
channels are unknown. Therefore, in order to advance in
this direction, we studied the Ba2+ sensitivity of our Kir2
concatemers.

Experiments were carried out using outside-out patches
at high symmetrical K+ in order to fully control the
intracellular solution and to easily change the concentration
of extracellular Ba2+ (see Materials and Methods). A
representative record of a typical experiment is shown in
Fig. 5a and Fig. 5b shows dose–response relationships
for Ba2+ measured at −50 mV in various Kir2 hetero-
concatemers. The Hill coefficients (nH) were close to 1 for
every channel studied. Consistent with previous reports, we
also find Kir2.2 channels significantly more sensitive to Ba2+

than Kir2.1 channels (Fig. 5) although in somewhat lesser
degree: ∼5.4-fold difference in Kd compared to ∼6–7-fold in
other [3, 9] studies.

Some of the data on Ba2+ sensitivity can be summarized
as follows (Fig. 5c): (1) no significant effect of concatena-

tion of Kir2 subunits per se, (2) no anomalous effects of
Kir2 subunits heteromerization, and (3) no effect of specific
position of Kir2 subunits in a channel (e.g., p=0.20 when
comparing 2-1-1-1, 1-2-1-1, and 1-1-1-2, and p=0.66 when
comparing 1-1-2-2 and 1-2-1-2). Clearly, Kir2.2 subunits
contribute stronger to Ba2+ sensitivity since the addition of
the first Kir2.2 subunit to a Kir2.1channel (i.e., 1-1-1-2)
leads to a more than two-fold increase in Ba2+ sensitivity.
Relative decrease in Kd upon consecutive introduction of
second and third Kir2.2 subunit is also significant (approx-
imately two-fold) although the absolute (practically impor-
tant) changes in Kd become progressively smaller, and no
difference at all (p=0.74) could be found between Kd for
Kir2.2 or 2-2-2-2 and 1-2-2-2.

Kinetics of barium block in Kir2.1/Kir2.1 heteromers

In order to further discern the differences in Ba2+ sensitivity
between Kir2.1/Kir2.2 heteromers, we examined the kinet-
ics of extracellular Ba2+ block in the presence of 10 μM
Ba2+. The recording conditions were the same as those used
in steady-state studies except using −100 mV membrane
potential. In the absence of Ba2+, currents did not display
any measurable decline (data not shown). Figure 6a shows
examples of current traces from a 1-1-1-1 homomeric and a
1-1-2-2 heteromeric channels. Both current traces were fit
with single-exponential functions, although one can see that
each trace would probably be better described by a two-
exponential function. A fit with a two-exponential function
was surely superior, and we observed fast and slower
components (τblock) in most constructs studied. However,
for reasons that are not clear, the amplitude and the τblock
value of the slower component varied significantly (even

Table 1 Closed times, expressed in milliseconds, for Kir2.1/Kir2.2 channels

τclosed,1 τclosed,2 τclosed,3 τclosed,4 Number (n)

2.1 mono 3.0±0.86 15.3±2.0 67.9±12.8 1961±828 6

1-1-1-1 1.6±0.36 14.1±0.67 60.1±6.8 1822±172 8–9

2-1-1-1 2.7±1.0 11.4±2.1 43.4±4.4 1821±358 5–6

1-1-1-2 3.3±1.0 13.9±2.1 49.5±3.9 1717±331 7–8

1-2-1-1 1.7±0.11 12.1±0.93 57.4±11 3070±980 4

1-1-2-2 4.3±1.2 10.0±1.3 38.8±2.0 2012±210 3–6

1-2-1-2 ND 10.1±1.2 50.5±8.3 1710±289 6

1-2-2-2 2.5±0.54 9.5±0.5 45.5±5.6 2475±307 7–8

2-2-2-2 ND 7.0±0.24 32.1±5.6 2178±582 4–5

2.2 mono ND 6.4±0.31 33±3.7 2376±815 7

Closed times (mean ± SE) were not significantly different between channels of the same stoichiometry. Closed times τclosed,2 and τclosed,3 in
Kir2.1/Kir2.1-1-1-1 channels are significantly longer than those in Kir2.2/Kir2.2-2-2-2 channels (p<0.001). Shortest (τclosed,1) and longest
(τclosed,3) closed times were not different across all channels

ND not determined, this notation is used when the number of patches, where the specific component could be reliably resolved, was less than
three
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for the same construct), and some constructs could be
adequately fit with just a single-exponential function. An
example in Fig. 6b shows two 2-2-2-2 current traces from

two separate outside-out patches, each fit with a single-
exponential function. In one patch (top), a single-
exponential functional does not fit well the trace, but in
the other patch (bottom), a single-exponential function fit
was clearly sufficient. Because of this variability in the
kinetics of channel block, our practical approach was to use
single-exponential fits in all recordings.

Figure 6c summarizes the measurements of single-
exponential τblock. The Ba2+ block is ∼3.2-fold faster in
Kir2.2 than in Kir2.1 monomeric channels (99.8±24.0 ms
vs 323.5±16.8 ms; p<0.01). The τblock in both Kir2.1 and
Kir2.2 homo-concatemers are not different from that in
corresponding monomeric channels. Sequential addition of
one, two, and three Kir2.2 subunits to a Kir2.1 concate-
meric channel leads to a progressive decrease in τblock
although 1-2-2-2 channels cannot be distinguished from
homomeric Kir2.2 based on the rate of Ba2+ block.
Importantly, the positioning of single Kir2.2 subunit in a
concatemer has no effect on the kinetics of block, and
channels with two Kir2.2 subunits but of different symme-
tries show no differences in kinetics as well. This allows to
group and average the data accordingly as shown in Fig. 6c
(insert). The addition of only one Kir2.2 subunit to a
Kir2.1/1-1-1-1 channel decreases the τblock from 315.8±
9.6 ms to 221.4±6.9 ms (p<0.01), the addition of two
Kir2.2 subunits further decreases the τblock to 174.1±
11.5 ms (p<0.01), and the addition of three Kir2.2 subunits
decreases the τblock to 112.7±15.8 ms (p<0.01), which
becomes statistically indistinguishable from Kir2.2 homo-
meric channels (p=0.62).

Discussion

This study was originated by conflicting data and inter-
pretations regarding Kir2 channel heteromerization and the
contribution of individual Kir2 subunits to the properties of
native inwardly rectifying potassium channels. A number of
attempts were undertaken in order to gain insights into the
molecular composition of native strong inward rectifiers,
mostly in cardiac tissues, where these channels are highly
expressed and play a relatively well-defined roles. The task
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trations of 0, 0.25, 1, 5, 10, and 100 μM Ba2+ are indicated. The
dashed line represents the zero current level. b Ba2+ dose–response
relationships. The data were fit with the Hill equation and the
corresponding fits are plotted using smooth lines. c Kd values for Ba2+

block at -50 mV for each construct. c Insert, averaged Kd values for
channels with the same stoichiometries: 1, Kir2.1 Mono/1-1-1-1; 2, 2-
1-1-1/1-1-1-2/1-2-1-1; 3, 1-1-2-2/1-2-1-2; 4, 1-2-2-2; and 5, Kir2.2
Mono/2-2-2-2
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is twofold: first, to determine the effects of Kir2 hetero-
merization on a selected property of channels and, second,
to use that defined property of distinct heteromers in
deciphering the composition of native channels.

Single-channel conductance Homomeric Kir2 channels
display distinct single-channel conductances although sig-
nificant discrepancies can be found between studies
including ours. For example, Picones et al. [16] showed
that conductances of Kir2.1 channels expressed in Xenopus
oocytes vary from nearly 0 to ∼35 pS, and Liu et al. [9]
found that Kir2.1 channels expressed in HEK293 cells
display conductances ranging from ∼25 to ∼35 pS. In
contrast, we did not see such variation in our recordings of
Kir2 channels (only ±1.0–2.5 pS) (although sub-
conductance levels were present). Few potential reasons
for this conflict may be the differences in the cell type and
basic experimental conditions such as differences in
solutions composition. However, we also believe that other
factors are also critical in order to reach satisfactory
precision in comparing various heteromers. In particular,
even small drifts in the electrode(s) potential, differences in
the intracellular membrane potential, or in the temperature
of bath solution may significantly affect the data. For
example, a 5-mV drift in the electrode or intracellular
potential will account for 1.5 pS of conductance when it is
measured at −100 mV or 3 pS if it is measured at −50 mV.
Similarly, a 5°C increase in the temperature would lead to
increase of the single-channel conductance from ∼30 to
∼37 pS assuming Q10=1.56 as determined in this study. It
should be noted that the ∼0–35-pS variation of single-
channel conductance of Kir2.1 channels observed by
Picones et al. [16] cannot be explained by voltage drifts

or temperature variations. In our experiments, we tried to
account for all possible variables. With only ∼18%
difference in conductance between Kir2.1 and Kir2.2
channels, determining intermediate conductances of
Kir2.1/Kir2.2 heteromers may become practically impos-
sible without paying attention to the above detail.
Overall, our data show that Kir2.2 subunits exert very
strong, although not fully dominant effect, on single-
channel conductance such that channels with more than
one Kir2.2 subunit could not be distinguished from
homomeric Kir2.2 channels. It also follows that in more
experimentally challenging situations such as experi-
ments with cardiac myocytes, the use of single-channel
conductance alone may be limited and challenging.
Nevertheless, an important finding is that Kir2.1/Kir2.2
heteromerization did not lead to any anomalous phenomena
(e.g., unusually high or low conductance) in any tested
subunit combination.

Single-channel kinetics Single-channel kinetics proved to
be a more useful property for distinguishing between
channels containing not only one but two Kir2.2 subunits
(and possibly three Kir2.2 subunits). Open-state kinetics
had significantly smaller experimental variation compared
to that of the four closed states, making the former
parameter a more discriminating property. Although some
closed times (τclosed,2 and τclosed,3; Table 1) displayed a
clear decreasing trend upon sequential addition of Kir2.2
subunits, the experimental errors were too high to allow for
a reliable discrimination between channels differing by one
Kir2 subunit.

The data show that in a reverse task neither single-
channel conductance nor any particular dwell time (e.g.,
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Examples of current traces for a Kir2.1-1-1-1 channel (top) and a
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a single-exponential function. For clarity, only the first part of the 2-s
current trace is shown. b Two recordings from two separate outside-

out patches of Kir2.2-2-2-2 channels. Top, a single-exponential
function does not fit well the current trace; however, in the recording
from the other patch (bottom), a single-exponential function fits the
current trace adequately. c The τblock values for each construct. Insert,
averaged τblock values for channels with the same stoichiometries: 1,
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τclosed,2) alone would allow to determine the subunit
composition of an underlying channel with great degree
of certainty. Nevertheless, since single-channel conductance
and all (five) dwell times are independent parameters which
can be estimated simultaneously from a single recording
these data can be treated together in order to increase the
level of confidence. It seems, however, that a better control
over the experimental conditions leading to smaller exper-
imental variations would be a more useful approach in
future studies. For example, using an open-cell cell-
attached configuration (as e.g., in [20]) or excised patches
would minimize complications arising from variations in
membrane potential and concentration of intracellular K+ as
well as other small relevant molecules such as Mg2+ ions
and polyamines.

Ba2+ sensitivity Although differential Ba2+ sensitivity of
Kir2 channels can be used in single-channel experiments
[9], it is more experimentally challenging compared to
macro patch approach employed in our study. On the other
hand, the integral currents can only provide a pseudo
averaged information on the subunit composition of
underlying Kir2 heteromers and thus have more limited
use compared to single-channel experiments.

Other functional approaches Kir2 channels possess other
properties which can be employed in deciphering subunit
composition of native channels. For example, Kir2 chan-
nels display differential sensitivity to intracellular poly-
amines [8] and H+ [21, 22]. Experiments involving these
properties, however, can practically be carried out only in
inside-out macro patches and would be even more
challenging than those involving Ba2+ ions or single-
channel kinetics parameters due to smaller differences in
the sensitivities of various Kir2 channels to polyamines and
H+ compared.

Limitations Experiments in this study are limited to only
Kir2.1 and Kir2.2 channels although Kir2.3 channels may
also be co-expressed in native tissues thus further compli-
cating the task. The situation in this area strongly depends
on the species and specific tissues and, as mentioned
before, remains quite controversial. For example, using
single-channel analysis, Liu et al. [9] provided evidence
that Kir2.1, Kir2.2, and Kir2.3 channels are functionally
expressed in guinea pig heart, while Dhamoon et al. [6]
found no Kir2.2 mRNA and protein in the same tissue. In
the mouse heart, Kir2.3 subunits are unlikely to be
expressed at a measurable level [12, 23] and thus the data
from this study may be most applicable to this species.

The data also clearly show that the application of
functional assays like those in this study will be a more
challenging task with native channels than that with

exogenously expressed ones. Therefore, the deciphering of
subunit composition of native channels will require not
only a maximal control of possible experimental variables
but also additional biochemical and genetic approaches.

Conclusions The results of this study provide a quantitative
assessment of the properties of Kir2.1/Kir2.2 heteromers. In
particular, the data show that Kir2.1 and Kir2.2 subunits
exert neither dominant nor anomalous but rather propor-
tional effect on all properties of heteromeric channels. This
study demonstrates both important opportunities as well as
significant challenges of functional assays in deciphering
the subunit composition of native Kir2 channels.
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