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INTRODUCTION
Although environmental insults such as smoking have been implicated in the initiation of
rheumatoid arthritis (RA) in patients who express the shared epitope, our understanding of the
role of innate immunity in the pathogenesis of this disease is also expanding. The clinical
picture of pain, stiffness, swelling, and joint destruction seen in RA is a result of chronic
inflammation of the synovium, characterized by interactions of fibroblast-like synoviocytes
with cells of the innate immune system, including macrophages, dendritic cells, mast cells and
NK cells, as well as cells of the adaptive immune system, B and T lymphocytes (1). Also present
are immune complexes, proteins of the complement system, autocrine and paracrine-acting
cytokines as well as chemokines that have inflammatory, homeostatic, and even anti-
inflammatory properties (2). As knowledge of the complexities of RA grows, gaps in the
understanding of its pathogenesis are filled, and new potential therapeutic targets are
uncovered.

The best known function of the innate immune system is the initial recognition of microbial
pathogens. Upon encounter with non-self, primarily by macrophages and dendritic cells via
membrane-bound or intracellular pattern recognition receptors (PRRs), cells of the innate
system become activated leading to the production of inflammatory cytokines and chemokines.
Effector cells and molecules of the innate system are recruited locally, and if unable to
overcome the pathogen alone, macrophages and dendritic cells travel to local lymphoid tissues.
There, processed antigens are presented by MHC molecules to naïve T-cells, thus initiating an
adaptive response complete with lasting immunological memory. Upon clearance of the
organism, with the help of opposing anti-inflammatory mediators, the inflammatory response
is terminated (3). In RA however, “self” is either the primary target, or an innocent bystander
that then becomes the focus of attack. In RA there is abundant evidence that the innate immune
system is persistently activated, as evidenced by the continual expression of macrophage
derived cytokines such as TNFα, IL-1 and IL-6. As our understanding of the innate immune
system in RA continues to expand, enticing targets for new therapeutic interventions continue
to be identified. This review will focus on cells of myelomonocytic origin, their receptors and
factors that interact with them.
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MONOCYTES AND MACROPHGES
Background and Role in RA

Macrophages, together with osteoclasts and myeloid dendritic cells are derived from
myelomonocytic origins and are key cellular components of the innate immune system.
Macrophages differentiate from circulating monocytes and have primary roles in tissues as
phagocytes of invading pathogens, and as scavengers of apoptotic debris. In addition,
macrophage activation results in the expression of chemokines and cytokines, such as TNFα
and IL-1β, that help to attract other cells and proteins to the sites of inflammation (3). The
central role of macrophages in RA pathogenesis is supported by the fact that conventional
therapies, including methotrexate and cytokine inhibitors, act to decrease the production of
cytokines produced primarily by macrophages (4). Indeed, a correlation has been found
between synovial macrophage infiltration and subsequent radiographic joint destruction (5).
A remarkable fact is that a reduction of sublining macrophages in RA synovial tissue has been
shown to strongly correlate to the degree of clinical improvement regardless of the type of
therapy chosen (6). In addition to local effects of macrophages in the synovial tissue, systemic
consequences of macrophage-mediated inflammation in RA may be manifested by damage to
other areas such as the subendothelial space where macrophages become foam cells
contributing to atherosclerotic plaques (7).

Mechanisms of Increased Macrophage Number in RA Tissue
Possible mechanisms for the increased number of macrophages in diseased tissue include
increased chemotaxis (8,9) and reduced emigration (10). Some studies also suggest local
proliferation of macrophages in areas of inflammation (11–14). Decreased apoptosis may also
contribute to the accumulation of macrophages in the RA joint. Several studies have shown
that induction of synoviocyte apoptosis in animal models of inflammatory arthritis ameliorates
both joint inflammation and joint destruction (15). In both experimental arthritis and RA patient
synovial tissue, reduced expression of the proapoptotic Bcl-2 family member, Bim, was seen
in macrophages and corresponded to the increased expression of IL-1β by macrophages.
Furthermore, administration of a Bim mimetic dramatically reduced the incidence of arthritis
and successfully ameliorated established arthritis in mice (16). This result suggests that
therapies that restore the homeostasis between survival and cell death of RA macrophages may
be successful in ameliorating arthritis in patients.

Heterogeneity of Monocyte and Macrophage Populations
Within monocyte and macrophage populations there is a great deal of heterogeneity. For
example, two human monocyte populations have been defined based on their surface marker
expression, that is the CD14+CD16− and the CD14lowCD16+ subsets (17). CD16 is a receptor
for IgG, FcγIIIA, which binds to IgG containing immune complexes, and will be discussed
later in this review. The number of CD14lowCD16+ monocytes is elevated in RA peripheral
blood and CD14lowCD16+ macrophages are enriched in RA synovial tissue (18).
CD14lowCD16+ monocytes produce more TNF-α in response to the microbial TLR4 ligand
LPS compared with the CD14+CD16− subset (19,20). These observations suggest that the
proinflammatory CD14lowCD16+ monocytes migrate to the RA joint and become highly
responsive macrophages. However, CD14+CD16− monocytes also express the chemokine
receptor CCR2, which binds Monocyte Chemotactic Protein-1, and thereby promotes
monocyte migration to the site of inflammation. Since the RA joint is rich in this chemokine,
it is possible that CD14+CD16−, CCR2+ monocytes are recruited to the joint, where CD16
expression is then induced. Nonetheless, since monocytes migrate from the peripheral blood
into RA synovial tissue, identification of circulating monocyte subpopulations may be an
extremely useful clinical tool in tracking disease activity and for identifying additional
therapeutic targets (20–22).

Gierut et al. Page 2

Rheum Dis Clin North Am. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In addition, diversity in activation states of macrophages has been found (23). In general,
macrophages exhibiting a more inflammatory phenotype have been named M1, or classically
activated macrophages, while those that trend toward a more anti-inflammatory and repair role
are known as M2, or alternatively activated macrophages (23). Most macrophages in the RA
joint express proinflammatory cytokines and are thus most consistent with classically activated
macrophages. Therapies that promote the balance in favor of an M2 phenotype may be useful
in RA (8).

Therapies Targeting Macrophages
Conventional therapies such as prednisone, methotrexate, leflunomide, sulfasalazine, and
TNFα inhibitors have been shown to decrease the number of CD68+ macrophages in the
synovial sublining (24). Another study of synovial tissue response to rituximab found a
significant reduction of sublining macrophages at 16 weeks, providing evidence for synovial
tissue sublining macrophage reduction following B-cell depletion therapy in RA as well (25).
Furthermore, a reduction in the number of synovial sublining macrophages correlated clinically
with improvement of DAS 28 scores, suggesting an association between sublining CD68+
macrophages and therapeutic efficacy (24). The positive correlation between the change in RA
clinical activity and CD68 expression in the synovial sublining has been independently
confirmed (26).

Specifically targeting activated macrophages at sites of inflammation would be a way of
circumventing the potential untoward effects of systemic macrophage depletion. The
bisphosphonate clodronate, encapsulated within liposomes, has been used to specifically
deplete macrophages. After injecting rats intraperitoneally with streptococcal cell wall
fragments (SCW) to induce arthritis, IV liposomal clodronate suppressed the development of
chronic arthritis for up to 26 days after treatment. Treatment was also associated with depletion
of synovial and hepatic, but not splenic, macrophages, as well as a reduction in articular
IL-1β, IL-6, TNFα, and MMP-9 (27). Similarly, in the K/B × N serum transfer model of
arthritis, where spontaneously produced anti-GPI antibodies from a K/B × N mouse are injected
into a naïve host, treatment with liposomal clodronate prior to serum transfer caused depletion
of macrophages in the bone marrow and liver, and the treated mice were completely resistant
to arthritis. Resistance to arthritis was reversed when the macrophage-depleted mice were
reconstituted with macrophages from naïve animals and immediately injected with K/B × N
serum (28). In rabbits with established antigen-induced-arthritis (AIA), repeated intraarticular
administrations of low, noncytotoxic doses of liposomal clodronate led to an early reduction
of joint swelling, delay in radiographic progression, and decrease in synovial lining
macrophage number. However, no difference was seen in pannus formation or radiographic
erosions at 8 weeks (29). In patients with RA undergoing knee replacement surgery, a single
intraarticular dose of clodronate liposomes significantly reduced the number of CD68+ cells
as well as the expression of adhesion molecules in the synovial lining. In contrast, no
immunohistologic difference was observed in the control group (30). These observation
suggest that depletion of synovial tissue macrophages may be an important therapeutic goal in
RA.

Systemic depletion of all macrophages could have serious consequences in patients, and this
may be avoided by specifically targeting receptors present on activated macrophages. Folate
receptor β (FRβ) has been described on both activated macrophages from RA synovial fluid
and animal models of arthritis, but not on resting/quiescent macrophages or normal cells of the
body except for the proximal tubule cells of the kidneys (31–33). The FRβ has been used to
deliver folate-conjugated imaging agents to inflamed joints in patients with RA (34), and is a
target for novel therapeutic agents. Several new generation folate antagonists are selectively
taken up by the FRβ and show growth inhibition capabilities against FRβ-expressing cells, thus
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circumventing the systemic effects (35). In addition, antibodies or fragments of antibodies
against FRβ linked with immunotoxins have been developed and have been shown to reduce
the number of macrophages and levels of IL-6, and to increase the number of apoptotic cells
in RA synovial tissue engrafted into severe-combined-immunodeficient mice (36,37). Another
approach involved the conjugation of folate to superoxide dismutase and catalase, two enzymes
that scavenge the damaging reactive oxygen species secreted by activated macrophages. Folate
conjugation dramatically enhanced the ability of catalase and superoxide dismutase to scavenge
reactive oxygen species produced by activated macrophages in cell culture experiments and
enhanced uptake of the enzyme catalase into activated macrophages (38). Folate has also been
conjugated to small molecules, or haptens such as fluorescein, and given to rodents previously
immunized to the hapten after the onset of experimental arthritis. The folate-hapten conjugate
selectively “decorated” and promoted immune-mediated elimination of activated
macrophages, as well as decreased paw swelling, spleen size, systemic inflammation, arthritis
score, and bone erosion (39). Thus, the presence of select folate receptors on activated
macrophages offers exciting potential to target activated macrophages in the RA joint.

DENDRITIC CELLS
Background

Dendritic cells (DCs), along with macrophages and B cells, have the ability to present antigen
to T cells, and therefore play a central role in the development of innate and adaptive immune
responses. In the periphery, immature DCs are stimulated to undergo differentiation by an array
of pathogens, mainly via the activation of TLRs by exogenous or endogenous stimuli, but also
in response to cytokines or immune complexes produced during the inflammatory response.
TLR signaling results in a significant change in chemokine receptors expressed by DCs,
allowing for maturation of DCs and migration to the lymphoid tissue. There, mature DCs
display antigen on MHC molecules to naïve T cells. DCs also express the critical co-stimulatory
molecules, CD80 and CD86, which interact with CD28 on T cells, completing the necessary
signal for antigen-specific effector T cell maturation to occur. In addition to stimulation of
naïve T cells, DCs can process and display antigen in local tissues, and contribute to the
inflammatory response by the production of cytokines such as TNFα, IL-1β, and IL-6.
Furthermore, DCs can direct the formation of distinct T-helper (Th) cells by producing key
cytokines, such as IL-12 and IL-18 for Th1 cells, and IL-23 for Th17 cells (3). Finally, DCs
are important in the development of both central and peripheral tolerance, and their depletion
in animal models is associated with the onset of fatal autoimmune-type disease (40). In the
thymus, DCs present endogenous self-antigens to T cells and delete those that are strongly
reactive, while in the periphery, interaction between autoreactive T cells and immature DCs
bearing self-antigen may result in anergy, apoptosis, or differentiation into T regulatory cells
(3). Deviations in this pathway, either failed clearance of dead cells or exposure of DCs bearing
self-antigens to maturation signals, can abrogate their tolerogenic ability and are implicated in
the development of autoimmunity (41).

DCs may be categorized into subtypes based on the expression of various cell surface markers
(42,43). Functionally, however, DCs may be separated into 2 main classes: classical or
conventional DCs (cDCs), which are resident in lymphoid tissues or migratory in non-
lymphoid tissues and plasmacytoid DCs (pDCs). Both types may be activated by particular
TLRs which induce the molecules necessary to promote antigen presentation, T cell
stimulation, and cytokine production. cDCs express CD11c:CD18, also known as complement
receptor 4 (CR4), and express all known TLRs except for TLR9. cDCs are the main participants
in antigen presentation and activation of naïve T cells as well mediators of peripheral tolerance.
pDCs, on the other hand, are particularly important in modifying the immune response toward
viruses. They do not express high levels of CD11c, and have been identified by the expression
of specific markers, such as blood dendritic cell antigen 2 (BDCA-2). In addition, pDCs express
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TLRs 1, 7, and 9, and other TLRs to a lesser degree (3). In response to stimuli such as viruses,
pDCs are able to generate abundant amounts of type-I interferons (IFN-α and IFN-β) as well
as other cytokines such as TNF-α and IL-12. These cytokines increase the production of
inflammatory mediators by macrophages, and, in the case of IL-12, can direct a potent Th1
response (44).

Dendritic Cells and RA
The vast majority of studies that have examined the role of DCs in RA have relied on
immunohistochemical techniques or have isolated DCs from peripheral blood and
characterized their phenotype and function. In RA synovial tissue, the number of pDCs which
are localized to perivascular lymphocytic infiltrates (45) correlates with anti-CCP antibodies
(46). These pDCs produced BAFF, IL-18, and INFα/β, while the cDCs secreted IL-12 and
IL-23 (46). The total numbers of cDCs or pDCs, or the number of mature DCs in RA synovial
tissue were not significantly different from patients with OA or PsA (46,47), although there
was a statistical increase in the ratio of pDC/cDC in RA synovial tissue (46). These data suggest
that the numbers of DCs in synovial tissue may not reflect their true contribution to RA
pathogenesis.

Few cDCs or pDCs are detected in peripheral blood of RA patients and the numbers are lower
compared to healthy controls. The expression of the inhibitory FcγRIIB on DCs derived from
peripheral blood monocytes of patients with RA correlated with disease activity. Additionally,
DCs expressing higher levels of FcγRIIB inhibited T-cell proliferation and promoted the T-
regulatory phenotype following TLR and FcR stimulation in co-culture studies (48). Treatment
with methotrexate or infliximab dramatically affects the number, maturation, and function of
the DC. DCs derived from monocytes of patients treated infliximab displayed an anti-
inflammatory phenotype (49) and increased numbers of cDCs in the circulation (50).
Additionally, the numbers of pDCs were increased in the peripheral blood in patients in clinical
remission induced by either methotrexate or infliximab. Further, isolation of these pDCs and
co-culture with naïve T-cells led to an induction of the T-regulatory phenotype, which was
capable of inhibiting autologous T-cell proliferation (51). In contrast, there was a reduction of
both circulating cDCs and pDCs in anti-IL-6 receptor treated RA patients, which was not
observed in anti-TNF or CTLA4-Ig treated RA patients (52). These data suggest that clinically
relevant information may be gleaned from examining circulating DCs in RA patients and that
there are differences related to the mode of therapy.

Dendritic Cells and Murine Models of RA
The utilization of murine models of inflammatory arthritis has supported the human studies on
the roles of DCs in RA. Follicular DCs are required for development of the K/BxN mouse
model of arthritis (53). In contrast, selective depletion of pDCs enhanced the severity and
pathology of collagen-induced arthritis (CIA) (54). These data suggest that pDCs may prevent
the break of tolerance and that the follicular DC or cDC may be the central culprit that leads
to the activation of autoreactive lymphocytes. Adoptive transfer of DCs from CTLA4-Ig-
treated mice was sufficient to inhibit arthritis in CIA recipient mice (55). Additionally, adoptive
transfer of TLR-stimulated DCs following immunization reduced CIA (56). Thus, similar to
RA patients, modification of the DC function by biologic therapies may lead to a skewing of
T-cell development towards a T-regulatory phenotype mediated by DCs.

PATTERN RECOGNITION RECEPTORS
Background

There are several mechanisms by which macrophages and other innate immune cells become
activated. One way is via pattern recognition receptors (PRRs) that are designed to recognize
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simple and regular non-self patterns of molecular structure, conserved during evolution, called
pathogen-associated molecular patterns (PAMPs). Furthermore, when cells are under duress,
such as in chronic inflammation, they may express danger-associated molecular patterns
(DAMPs), such as uric acid, ATP, heat shock proteins (HSPs) or glycoprotein 96 (gp96), that
may also be recognized by PRRs (57–60). PRRs may be membrane bound, or soluble plasma
proteins. Examples include mannose-binding lectin (MBL) that is important in the lectin
pathway of complement activation, the transmembrane PRRs composed of ten known human
toll-like receptors (TLRs) that may be activated on cell-surfaces or within endosomal
compartments, and the cytosolic PRRs which include the nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs) and the retinoic acid-inducible gene I (RIG-1)-like
receptors.

Toll-like Receptors
The cell surface TLRs include TLR1, 2, 4, 5 and 6, with the recognition motifs outside the cell,
while TLR 3,7, 8 and 9 are on the endosomal membrane with the PRR recognition motifs
within the endosomal compartment. The TLR system recognizes PAMPs, including
lipopolysaccharide (LPS) (TLR4), peptidoglycans (TLR2 together with TLR1 or 6), and
unmethylated CpG DNA motifs (TLR9) from bacteria, ssRNA (TLR7) and dsRNA (TLR3)
from viruses. The cytoplasmic domain of the TLR receptor is called the Toll-IL1 receptor (TIR)
motif because it is also present in the IL-1 receptor. TLR signals are mediated through the TIR,
which interacts with adaptor molecules. All TLRs except TLR3 signal through the adaptor
molecule myeloid differentiation factor 88 (MyD88), while TLR3 signals only through the
adaptor molecule toll-interleukin-1-receptor-domain-containing adaptor-inducing interferon
β (TRIF), and TLR4 signals through both MyD88 and TRIF. Signaling through the MyD88
leads to the activation of NF-κB and the MAP kinases: c-Jun N-terminal kinase (JNK) and
p38. Activation of NF-κB and the MAP kinases leads to the transcription of genes involved in
inflammation, proliferation and protection against apoptosis (3,61,62), whereas activation
through TRIF results in the expression of type I interferons (IFN), IFN α and β (63). Clinically,
further elucidation of TLR signaling cascades is important because they offer attractive targets
for intervention.

TLR Expression in RA
TLRs are expressed in the RA joint. In RA synovial tissue, CD16+ synovial lining macrophages
also expressed TLR2 (64), and the expression of both TLR-2 and TLR-4 was significantly
higher in RA tissue than in samples from patients with OA (65). Interestingly, RA synovial
tissues have a pronounced expression of TLR2 mRNA in the synovial lining and at sites of
attachment and invasion into cartilage or bone tissue (66). In addition, TLR3 and TLR7 were
also found to be highly expressed in RA synovium (67), and samples of tissue from patients
with either early or longstanding RA showed similar levels of TLR3 and TLR4, both of which
were significantly higher than in patients with OA (68).

In RA synovial fibroblasts, levels of baseline mRNA for TLR2 and TLR4, did not differ
compared to OA tissue fibroblasts. However, compared with OA fibroblasts, RA synovial
fibroblasts demonstrated a significantly increased expression of TLR2 after treatment with
IL-1β, TNFα, LPS, or synthetic bacterial lipopeptide (sBLP), leading to a strong increase of
NF-κB translocation into the nucleus (66). In contrast, another study found that levels of both
TLR2 and TLR4 mRNA were significantly greater in RA synovial fibroblasts compared with
those from patients with OA and normal skin fibroblasts (69). In contrast to whole synovial
tissue, TLR7 mRNA expression by synovial fibroblasts was not seen, suggesting that previous
TLR7 staining may have been reflecting expression by macrophages or dendritic cells (68).
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Peripheral blood monocytes also express TLRs. Both TLR2 and TLR4 were increased on CD16
+ and CD16− peripheral blood monocytes from RA patients versus healthy controls, and the
TLR2 expression on the CD16+ subset was higher than the CD16− subset (64). Furthermore,
IFN-γ increased the expression of TLR2 and TLR4 on RA peripheral blood monocytes (65).
In RA synovial fluid, CD14+ macrophages demonstrated increased expression of TLR2 and
TLR4 expression compared to peripheral blood monocytes or control macrophages
differentiated in vitro from normal monocytes (70).

Activation of Cells From the RA Joint by Microbial TLR Ligands
Isolated RA synovial fibroblasts treated with microbial TLR2 and TLR4 ligands demonstrated
a marked increase in the osteoclast activator RANKL, at both the mRNA and protein levels
(69). Inflammatory cytokines IL-6 and IL-8 as well as matrix metalloproteases (MMP) 1 and
3 were induced by stimulation of RA synovial fibroblasts with bacterial peptidoglycan (PGN)
(71). Furthermore, RASFs demonstrated increased expression of vascular endothelial growth
factor (VEGF) after stimulation with bacterial PGN, and increased IL-15 after stimulation by
both TLR2 and TLR4 ligands (72). Stimulation of RA synovial fibroblasts with the synthetic
TLR3 ligand, poly I:C, led to the production of IL-6 and TNFα, which was significantly
enhanced when the cells were pre-incubated with IFN-α compared to cells stimulated with poly
I:C alone (73). These observations suggest that in RA synovial fibroblasts may be activated
through the TLR pathway.

RA synovial fluid macrophages demonstrate an increased response to microbial TLR2 and
TLR4 ligands compared to control macrophages differentiated in vitro from normal monocytes,
macrophages from the joints of patients with other forms of inflammatory arthritis, or RA
peripheral blood monocytes (70). In addition, treatment of RA synovial fluid macrophages
with a microbial TLR2 ligand significantly increased the levels of both IFN-γ and IL-23 mRNA
compared to in vitro differentiated control macrophages (74). It is possible that alterations of
intracellular signaling pathways, such as those regulated by IFNγ or IL-10 might be responsible
(75).

Endogenous TLR Ligands in RA
Since microbial ligands are not likely the cause of TLR signaling in the RA joint, studies have
examined RA synovial fluids and tissues for the presence of potential endogenous TLR ligands.
RA synovial fluid activated HEK293 cells only when these cells expressed TLR4, suggesting
the presence of endogenous TLR4 ligands in RA synovial fluid (76). Additionally, we have
demonstrated that RA synovial fluid is capable of activating normal macrophages, and that this
activation was mediated through TLR2 and TLR4 (unpublished observations). Together, these
observations suggest that endogenous TLR ligands or DAMPs may be released in response to
inflammation in early RA and result in continuous persistence of inflammatory mediators
through activation of cells of the innate immune system.

A number of potentially relevant endogenous TLR ligands or DAMPs have been identified in
the RA joint. Ligands such as HSP22, tenascin-C, high-mobility group box chromosomal
protein-1 (HMGB1), serum amyloid A, and fragments of hyaluronic acid are highly expressed
in the RA joint and are capable of activating monocytic cells through TLR2 or TLR4, or both.
Another DAMP, gp96, was also highly expressed in RA synovial fluid and synovial tissue.
The addition of gp96 in vitro to RA synovial fluid macrophages induced significantly greater
levels of TNF-α, IL-8, and TLR2 compared with control macrophages (60). While gp96 bound
to both TLR2 and TLR4, macrophage activation was mediated primarily through TLR2. The
quantity of TLR2 expression on synovial fluid macrophages strongly correlated with the level
of gp96 in the same synovial fluids. Further studies, employing a murine model of arthritis
mediated by immune complexes, demonstrated that in the normal joint an extracellular matrix
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glycoprotein, tenascin-C was not expressed. However during the early phase of the arthritis,
tenascin-C was induced and it contributed to the progression of the arthritis, mediated through
TLR4 activation of macrophages and synovial fibroblasts (77). These observations support a
potentially important role of endogenous TLR ligands in the persistent activation of
macrophages and synovial fibroblasts that is observed in the joints of patients with RA.

TLR Signaling as a Target in RA
Understanding the potential role of TLRs in inflammation has led to its therapeutic exploitation.
In mice with CIA, in which intradermal injections of type II collagen leads to both the priming
and the effector phases of inflammatory arthritis, treatment with a TLR4 antagonist both before
the onset of disease and during established arthritis led to a significant reduction of arthritis
(78). Furthermore, there was decreased histologic destruction of the cartilage matrix and
infiltration of inflammatory cells into the joint space. Additionally, IL-1 receptor antagonist
deficient mice develop a spontaneous chronic arthritis which was ameliorated when treated
with a TLR4 antagonist (78). The results of these animal models support the potential benefits
of suppressing TLR signaling as a therapeutic approach in RA.

In ex vivo synovial tissue cultures from RA patients, the addition of a TLR4 antagonist
suppressed the spontaneous secretion of IL-1β and TNF-α, supporting the role of TLR4 in the
production of inflammatory cytokines (76). Currently available anti-rheumatic therapies that
are known to have a suppressive effect on the TLR signaling pathway including
hydroxychloroquine (TLR7, 8 and 9) and auranofin (TLR4). Antagonists of TLR4 are being
studied for possible use in sepsis and endotoxemia. Lipid A, the innermost of the three regions
of LPS, was created in a stable, synthetic form called E5564 (Eritoran) (79). It is currently
undergoing clinical trials and may become a viable agent in RA. Another TLR4 receptor
antagonist, chaperonin 10 (HSP 10), has been studied in a randomized, double-blind,
multicenter study of 23 patients with moderate to severe active RA who received twice weekly
IV therapy at different concentrations for 12 weeks. All 3 treatment groups tolerated the therapy
well, and had significant improvement in the primary endpoint of clinical improvement as
measured by the DAS28 score. The effect appeared to be dose-dependent, with 4 out of 7
patients in the highest group reachinging an ACR 50 response, and 2 out of 7 achieving an
ACR 70. The highest treatment group also had significant improvement in all secondary
endpoint measures, including swollen and tender joint count, patient’s assessment of pain on
the visual analog scale, disability index on the health assessment questionnaire, and morning
stiffness (80). In summary, the TLR signaling pathway, which may be activated by endogenous
TLR ligands or DAMPs, is a novel target for therapeutic intervention in patients with RA.

Nucleotide-binding Oligomerization Domain (NOD)-like receptors (NLRs)
Similar to TLRs, the NLRs are intracellular, cytosolic receptors that sense PAMPs or DAMPS
and mediate an inflammatory response. Thus far, there are 22 proteins in the NLR family,
including the NOD and NALP subfamilies, with the 14 NALPs characterizing the largest
subfamily. Common features of the NLRs include a central nucleotide binding domain, a C-
terminal leucine rich-repeat domain, and N-terminal caspase-recruitment and pyrin domains
(81). The NOD proteins recognize fragments of bacterial cell-wall proteoglycans and activate
the transcription factor NF-κB. Although NOD proteins are expressed in phagocytes along
with TLRs, they are especially important activators of the innate response in epithelial cells,
where expression of TLRs is weak or absent (3). Members of the NALP family, including
NALP1, 3, and 12, are capable of forming functional caspase-1 activation complexes, or
inflammasomes, that are important in the processing and release of IL-1β and IL-18 in response
to PAMPs or DAMPs.
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Recently, it has been shown that induction of SCW-driven arthritis in NOD-2 gene-deficient
mice results in reduced joint swelling and decreased levels of TNF-α and IL-1β, whereas the
opposite effect was seen in NOD-1 deficient mice, suggesting an anti-inflammatory role for
NOD-1. Moreover, the microbial ligand for NOD-2, muramyl dipeptide (MDP), has been
detected in RA synovium, whereas none was found in synovium from OA patients (82). NOD-2
was expressed by both macrophages and synovial fibroblasts, as detected by
immunohistochemistry, but not by lymphocytes or blood vessels. Transcription of NOD-2
mRNA by RA synovial fibroblasts was induced by TNF-α, poly I:C, and LPS. Adding MDP
to other inflammatory stimuli augmented RA synovial fibroblast production of inflammatory
cytokines and matrix-degrading enzymes compared to the stimuli alone. These observations
suggest that TLR activation may induce NOD-2 expression, and that TLRs and NOD-2 may
act synergistically in promoting inflammation and matrix destruction in the RA joint (83).
Further studies will be required to determine whether NODs may potentially become effective
therapeutic targets in RA.

The Inflammasome and RA
In macrophages, the essential link between pro-IL1β and pro-IL18, and their bioactive
counterparts is the protease caspase 1, which cleaves these molecules and generates the active
cytokines that are then released from the cell (84). Activation of caspase 1 depends on the
formation of inflammasomes, which are multiprotein complexes consisting of a NLR protein
such as a NALP, the adaptor molecule ASC and caspase 1, and which are assembled in response
to cellular recognition of DAMPs or PAMPs (85). Inflammasomes are implicated in diseases
such as systemic-onset juvenile idiopathic arthritis (JIA) and familial Mediterranean fever
(86,87). Additionally, mutations in NALP3 are responsible for cryopyrin-associated periodic
syndromes (88), and NALP3-containing inflammasomes are activated by monosodium urate
(MSU) and calcium pyrophosphate dihydrate (CPPD) crystals in gout and pseudogout,
respectively (89). In addition to MSU and CPPD crystals, other ligands of the NALP3
inflammasome include Alzheimer’s disease-associated amyloid deposits (amyloid-β), and the
extracellular matrix components, biglycan and hyaluronan (90).

NALP3 is expressed in the RA joint. Employing real-time PCR, it has been shown that NALP3
mRNA levels were increased in RA synovium compared with OA, and that monocyte-derived
macrophages from healthy donors differentiated in vitro increased NALP3 expression when
stimulated by TNFα (91). Another study did not find any differences between RA and OA
synovial expression of NALP1, NALP3, NALP12, or ASC using densitometric analysis of
Western blots. However, using ELISA, caspase-1 levels were significantly enhanced in RA
synovial tissues, even though there was no difference in concentrations of IL-1β (92). Thus,
further studies are needed to clarify the role of the inflammasome in RA pathogenesis.

Interestingly, caspase 1 is not the only IL-1β converting enzyme (ICE) involved in IL-1β
processing, which is likely the reason why inhibition of caspase 1 only partially inhibits
experimental models of RA, whereas deficiency of IL-1β completely ameliorates the arthritis
(85). Alternative ICEs, such as elastase or proteinase 3 in neutrophils, or chymase in mast cells,
may be involved in the early stages of inflammatory arthritis by contributing to the processing
of IL-1, whereas caspase 1 may play more of a role in the chronic stage of the arthritis (93,
94).

Retinoic Acid-inducible Gene I (RIG-I)-like Receptors (RLRs)
Three genes encode RIG-I-like receptors (RLRs) in human and mouse genomes (95). One of
these, retinoic acid-inducible gene-I (RIG-I), encodes an RNA helicase protein whose
expression is induced by IFN γ, and which is found in cells such as endothelial cells, bronchial
epithelial cells, smooth muscle cells, and macrophages (96–98). It is a sensor of viral RNAs
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and activates cells of the innate immune system (99). It is also associated with various chronic
inflammatory diseases including lupus nephritis, and is considered important in mediating
reactions induced by IFN-γ (100). Recently, high levels of RIG-I expression have been found
in RA synovial tissues compared to OA controls. Treatment of RA synovial fbroblasts with
IFN-γ significantly induced expression of RIG-I, and knockdown of RIG-I in RA synovial
fibroblasts with small interfering RNA (siRNA) resulted in the inhibition of the expression of
the chemokine CXCL10 (101). In addition, RIG-I was expressed in RA synovial fibroblasts
stimulated with TNFα and knockdown of RIG-I with siRNA suppressed TNF-α-induced
RANTES (CCL5) expression, suggesting a possible role for the TNFα/RIG-I/CCL5 pathway
in RA pathogenesis (102). Further studies are needed to show whether RIG-I is a plausible
target for therapy in RA.

Complement Pathways
Background

The complement system is a key mediator of inflammation in the effector phase of RA. It is
composed of a family of plasma proteins that act alone or in concert with antibodies to opsonize
pathogens and dying cells of the host, enhance phagocytosis, and recruit effector cells to areas
of inflammation. In addition, the coating of antigens with complement facilitates uptake by
antigen presenting cells, and thus enhances the presentation of antigen to the adaptive immune
system. Several complement proteins, including C3 and C5, are present in inactive states called
zymogens. A cleaved zymogen yields 2 fragments. The larger fragment is a serine protease
that remains covalently bound to the immune complex or pathogen surface (e.g. C3b), while
the smaller peptide fragment acts locally as a mediator of inflammation (e.g. C3a). Upon
activation, the proteases cleave other complement proteins into their active forms, amplifying
the response.

There are 3 pathways of complement activation. The classical pathway is initiated by the
binding of C1 to antigen: antibody complexes, either circulating or tissue bound or on pathogen
surfaces, or directly to the surface components of some bacteria. Once activated, C1 cleaves
C2 and C4, which together form C4b2a, the C3 convertase of the classical pathway. The lectin
pathway is initiated by the binding of carbohydrate-binding proteins, such as mannose-binding
lectin (MBL) to arrays of carbohydrates on the surface of pathogens. This pathway also leads
to the creation of the C3 convertase formed by C4b2a. The alternative pathway primarily
amplifies activation that is initiated by the other two pathways. C3b generated by the cleavage
of C3 by the classical or lectin pathways is able to bind factor B which is cleaved by factor D,
ultimately forming the alternative pathway C3 convertase, C3bBb. The most important activity
of the C3 convertase is to cleave large numbers of C3 molecules into C3b fragments that
opsonize pathogens, dying cells, and immune complexes, and amplify the complement cascade.
Surfaces opsonized by C3b and its derivatives, are recognized by effector cells bearing
complement receptors (CRs), and can stimulate phagocytosis as well as augment inflammatory
signals in both innate and adapative cells.

Formation of the C3 convertases is the merging point of the three complement pathways. The
next step involves the formation of the C5 convertase, capable of generating the most potent
inflammatory peptide, C5a. Finally, the terminal complement proteins, C5b-C9, form the
membrane-attack complex, which constructs pores in the cell membranes of some pathogens,
causing death. The enzymatic complement cascade is balanced by membrane and plasma
proteins, such as decay-accelerating factor (DAF) or factor I, that inhibit formation of the C3
convertase or promote its dissociation, thus preventing complement activation on normal host
cells. Deficiencies in these proteins may lead to excessive complement activation and
inflammation, as well as complement depletion and susceptibility to recurrent bacterial
infections (3).
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Evidence of Complement Activation in Murine Models of RA
Findings from experimental models suggest roles for both the alternative and classical
pathways in the development of arthritis. In the CIA model, mice deficient for C3 demonstrate
a significantly lower arthritis score than controls, while the arthritis was intermediate in mice
deficient in the factor B, suggesting that C3 activation occurs via both classical and alternative
C3 pathways in CIA (103). In contrast, another study found no resistance to CIA in C4 deficient
mice, suggesting a more important role for the alternative pathway in this model (104).
Intriguingly, however, both CIA and a passive serum-transfer model showed that injection of
C4 binding protein (C4BP) was effective at delaying the onset of arthritis and reducing the
severity of already established disease by inhibiting activity of both the classical and alternative
pathways (105). Mice with C5 deficiency were highly resistant to CIA despite evidence of
normal cellular and humoral immune responses to type II collagen and intra-articular
deposition of IgG antibodies (106). In the K/B × N serum-transfer model, anti-GPI antibodies
were effective at causing arthritis in mice deficient in C4, whereas no arthritis was seen in C3
or C5 deficient mice, suggesting that the pathogenesis of K/B × N serum-induced arthritis relies
on activation of the alternative pathway (107,108). Together these observations support a major
role for the alternative pathway in CIA and anti-GPI-mediated arthritis.

Evidence of Complement Activation in RA
Complement-activating immune complexes are abundant in the joints of RA patients and
appear to be crucial mediators of the effector phase of inflammation in the pathogenesis of RA
(109–111). In RA synovial fluid, a decrease in C3 and C4 along with increased cleavage
products of C3, suggests increased complement consumption within the joint (112,113).

The concentration of C5a in plasma and synovial fluid of RA patients is significantly higher
than in patients with OA (114), and levels of C5a in RA synovial fluid are sufficient to induce
both neutrophil chemotaxis and microvascular plasma protein leakage, two important features
of inflammation in RA (115). Neutrophils that migrate into inflamed joints demonstrate
upregulated expression of complement receptors that enhance phagocytosis of material
opsonized by C3b (116). The terminal complement proteins, C5b-C9 have also been implicated
in RA. Plasma levels of C5b-C9 are significantly higher in RA than controls (117). Compared
to crystal-induced and OA, RA synovial fluid levels of the C5b-9 complex were significantly
higher and positively correlated with synovial fluid C3a and Bb levels (118).

Further supporting the importance of the classical pathway, microparticles from RA SF were
found to contain abundant quantities of bound C1q, C4, and C3 as well as IgM and IgG
antibodies (119). Components of the extracellular matrix (ECM) exposed during cartilage
damage can also activate the classical pathway. ECM stabilizing proteins, fibromodulin and
osteoadherin, are able to bind to and activate C1q by its globular head domain, resulting in a
significant deposition of C3b and C4b (120). In addition, new activation products have recently
been described in the classical complement pathway. One such molecule is a covalent complex
between C1q and activated C4. The plasma levels of C1q-C4 complex were found to be
significantly higher in patients with active RA as compared to patients with RA in clinical
remission (121). Finally, it has recently been shown that human anti-cyclic citrullinated peptide
(anti-CCP) antibodies activate both the classical and alternative pathways of complement in
vitro (122).

In addition to plasma and RA synovial fluid, complement-mediated inflammation is evident
in RA synovial tissue. On RA synovial fibroblasts and macrophages, the cell surface expression
of the C5a receptor (C5aR) was elevated and positively correlated with joint swelling, ESR,
and CRP levels (123). Furthermore, aside from the classic role of the C5b-C9 complex in cell
lysis, it has been shown that synovial fibroblasts are activated when exposed to sublytic
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concentrations of C5b-C9 in vitro. Thus, enhanced activation of synovial fibroblasts provides
an additional mechanism by which complement promotes inflammation in RA (124). Together,
these observations support an important role for both the classical and the alternative pathways
of complement activation in the pathogenesis of RA.

Therapeutic Strategies Targeting Complement in RA
Therapies that target complement activation may be effective in ameliorating disease given
that it is one of the key mediators of inflammation in the effector phase of RA. In mice, it was
previously shown that inhibition of C5 with a monoclonal antibody was successful at
preventing the onset of CIA and was also effective at ameliorating established disease (125).
This led to the development of eculizumab, which prevents the release of C5a and the formation
of C5b-C9 complexes by inhibiting cleavage of C5 into C5a and C5b (126). Eculizumab has
been most beneficial for patients suffering with paroxysmal nocturnal hemoglobinuria. In
phase II trials, published only in abstract form, significant improvement in RA clinical score
was seen after 3 months of treatment with eculizumab, and the best responders were those
patients who had high baseline levels of C5b-9 complexes in the serum (127,128). Another
approach employed soluble complement receptor 1 (sCR1) derivatives that act as cofactors for
complement inhibitory proteins, DAF and factor I (129). In mice with established CIA, gene
therapy with sCR inhibited the progression of CIA, reduced anti-collagen antibody levels, and
inhibited T-cell response to type II collagen in vitro (130). Additionally, rats with AIA were
concomitantly treated with a single intra-articular dose of a membrane-targeting complement
regulator derived from human CR1 (APT070), or vehicle buffer only. Animals treated with
APT070 demonstrated significantly less clinical and histologic disease compared with controls
after 14 days (131). APT070 is a truncated version of sCR1 with the addition of a membrane-
targeting moiety that improves protein retention at the site of inflammation, and it is currently
undergoing phase I/II clinical trials in RA. Other potential therapies targeting complement
activation have shown positive results in animal studies, and include serine protease inhibitors,
C3a and C5a receptor antagonists, and synthetic regulatory proteins involved in complement
inhibition (132).

Fc RECEPTORS
Background

Fc Receptors (FcRs) are surface molecules on myeloid cells and B cells that are capable of
interacting with the Fc portion of immunoglobulin molecules. FcRs help to bridge the adaptive
and innate immune responses and function as mediators of effector cell activation and
inhibition, antibody-dependent cellular cytotoxicity (ADCC), and release of inflammatory
mediators. For human IgG, there are 3 known activating receptors: FcγRI (CD64), FcγRIIA
(CD32a), and FcγRIIIA (CD16), and one inhibitory receptor: FcγRIIB (CD32b). The activation
receptors are distinguished by the presence of a cytoplasmic immunoreceptor tyrosine-based
activation motif (ITAM), while the inhibitory receptor possesses an immunoreceptor tyrosine-
based inhibitory motif (ITIM). Initiation of the activation pathway leads to phosphorylation of
ITAM sequences by Src-family kinases and recruitment and activation of spleen tyrosine
kinase (Syk), ultimately resulting in activation of downstream signaling pathways such as MAP
kinases that are important for cellular proliferation. On the other hand, engagement of the
inhibitory pathway and phosphorylation of ITIM sequences leads to the prevention of calcium
influx, and thus blocks calcium-dependent processes such as degranulation, phagocytosis,
ADCC, cytokine release, and proinflammatory activation. The critical step in effector cell
activation by FcRs occurs via the cross-linking of the receptors by immunoglobulin. Thus, the
cross-linking of 2 ITAM-bearing FcRs leads to an activation signal whereas cross-linking of
ITIM-bearing FcRs results in the arrest of effector responses. In general, both the activating
and inhibitory receptors are co-expressed on myeloid cells and are engaged at the same time
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by circulating immune complexes or cells that have been opsonized by immunoglobulin. The
threshold of effector cell activation is determined by the levels of expression of each receptor
class on effector cells, as well as the ratio of an antibody’s binding affinity for an activating
receptor to an inhibitory receptor (A/I ratio). Therefore, either increased expression of FcγIIB,
or higher avidity of immunoglobulin subclass for FcγIIB results in a higher threshold for
effector cell activation. Activating and inhibitory receptors may be up- and down-regulated by
inflammatory or inhibitory cytokines. In addition, polymorphisms of FcγRs have been
described which affect the binding affinities for specific IgG subclasses and result in greater
or lesser activation of effector cells when stimulated. Disequilibrium between activating and
inhibitory FcR pathways can result in pathologic responses, and further understanding of
perturbations in the FcR system that contribute to RA will aid in the development of new
therapeutic strategies that target this system (133).

Fc Receptors in Murine Models of RA
Studying mice deficient for various FcRs has led to better understanding of how these receptors
contribute to experimental arthritis. A role for the FcγRIIB receptor in preventing arthritis has
been demonstrated using several models of arthritis. Mice with a haplotype that confers
resistance to CIA were rendered susceptible to arthritis when they were made FcγRIIB-
deficient (134). Similarly, FcγRIIB-deficient mice developed accelerated arthritis when they
were administered anti-GPI antibody from K/B × N mice (135). In contrast, deficiencies in
activating receptors have been shown to reduce the severity of arthritis. Mice deficient in the
common activating FcR γ-chain were protected from CIA (136,137). Another study showed
that, although FcγRIII was critical in early development of CIA, both FcγRIII and FcγRI were
dispensible for the progression to destructive joint disease, whereas the FcR γ-chain was not,
implying a likely role for FcγRIV, which is not expressed in humans, but in mice (138). Finally,
studies using the K/B × N serum transfer model of arthritis showed absence of clinical arthritis
in Fc γ-chain deficient mice, but erosive lesions in the bone still developed, suggesting separate
mechanisms for inflammation and bony erosions (135). Together these observations support
an important role for the FcgR signaling pathway in the pathogensis of experimental models
of RA.

Fc Receptors in RA Patients
FcRs are found on cells from RA patients and may be associated with activation or inhibition
of innate effector cells. Levels of activating receptors in plasma shed from macrophages and
NK cells as well as membrane-bound activating receptors on peripheral blood monocytes were
increased in RA patients compared to healthy controls (139)–(140). In addition, increases in
the expression of activating FcRs on RA peripheral blood monocytes correlated with higher
sedimentation rates, and DMARD-naïve patients had significantly higher levels of activating
FcγRIIA compared to RA patients taking DMARDs, supporting an association between
expression of activating FcRs and disease activity (140). The stimulation of activating receptors
on macrophages with immune complexes results in the expression of proinflammatory
molecules. In vitro stimulation of healthy peripheral blood monocyte-derived macrophages
with immune complexes formed by anti-citrullinated protein antibodies from RA patient sera
resulted in significantly increased TNF-α secretion via engagement of FcγRIIA. Similar
findings were seen when such cells were stimulated in vitro with immune complexes derived
from RA synovial fluid (141,142). In RA synovial tissue, significantly increased levels of
activating FcRs were found to correlate with the number of synovial macrophages as well as
the expression of TNF-α and matrix metalloproteinases (143). Interestingly, no difference was
seen between levels of inhibitory FcγRIIB expression on peripheral blood monocytes from RA
patients and controls (144), while in the synovial tissue, the expression of all FcγRs, including
FcγRIIB, was found to be significantly elevated in RA patients compared to biopsies from
healthy volunteers (145). Thus, upregulation of activating receptors, rather than a paucity of
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inhibitory receptors, appears to contribute to the increased activation of monocytes and
macrophages in RA. Additionally, C Reactive Protein, which is increased in RA, is capable of
binding Fc receptors promoting the expression of proinflammatory cytokines, possibly
contributing to the persistent expression of macrophage cytokines in RA (146,147).

Recently it has been demonstrated that FcγRIIB was selectively up-regulated on monocyte-
derived dendritic cells (DCs) from RA patients with low disease activity. In vitro incubation
of FcγRIIB-bearing DCs with a TLR4 agonist and immune complexes inhibited T cell
proliferation and promoted the development of regulatory T cells. Furthermore, the addition
of FcγRIIB-specific blocking antibody abrogated regulatory T cell development, suggesting
that FcγRIIB expression on DCs in RA patients with low activity may be important in the
maintenance of tolerance (48).

Fc Receptors as Targets for Therapy in RA
Altering the balance of FcγRs in favor of inhibitory pathways is an attractive therapeutic
strategy in RA. Pooled IgG from multiple donors (IVIG) is used to treat various autoimmune
diseases, and suggested mechanisms of action include blockade of activating FcRs as well as
upregulation of FcγRIIB on effector macrophages (148). In mice, treatment with soluble
FcγRIIB significantly reduced the severity of CIA compared to controls (149). Clinical
improvement in patients with RA on DMARD therapy may be associated with changes in
FcγR expression or binding affinities. In one study, the levels of activating FcγRs on peripheral
blood monocytes were significantly decreased after 16 weeks in RA patients receiving
methotrexate (150). Additionally, recent data suggests that polymorphisms of activating
FcγRs in RA patients may influence outcomes of treatment with TNF-α blocking agents
(151,152). Novel approaches are being developed that target FcRs and downstream signaling
pathways associated with FcR activation. Inflammatory macrophages from RA synovial fluid
treated in vitro with toxin-conjugated antibodies against FcγRI were efficiently eliminated via
apoptotic cell death, resulting in a reduction of TNF-α (153,154). Finally, a novel small
molecule Syk inhibitor, R788, and its active metabolite R406, have been shown to suppress
clinical arthritis, bone erosions, pannus formation, and synovitis in experimental arthritis
(155). Further, in a 12-week, randomized, placebo-controlled trial with 158 active RA patients,
twice-daily oral doses of R788 showed significant improvement in ACR 20, 50, and 70 scores
compared to controls. Clinical efficacy was noted as early as 1 week after initiation of therapy,
and correlated with serum reductions in IL-6 and MMP3 (156). Therefore, targeting the FcR
signaling pathway may be an effective therapeutic strategy in RA.

SUMMARY
Innate immunity, with macrophages playing a central role, is critically important in the
pathogenesis of RA (Figure 1). Experimental models document the importance in innate
immune cells in the initiation of many experimental models of arthritis, promoting the
development of adaptive immunity, which results in autoantibody production. In patients with
RA the presence of rheumatoid factors and anti-CCP antibodies supports the importance of
innate immunity in the initiation of RA. Additionally, in the joints of patients with RA there
is abundant evidence for the presence of immune complexes and the activation of complement,
which directly contributes to the pathogenesis of disease. Further, immune complexes bind to
FcγRs, which are capable of activating macrophages and DCs. The importance of this process
is supported by the preliminary observations demonstrating that suppression of the FcγR
activation pathway may be effective in treating patients with RA. Finally, synovial
macrophages have clearly been demonstrated to be critically important in the pathogenesis of
RA and effective therapies result in a reduction of synovial macrophages, regardless of the
biologic pathway targeted. The mechanisms contributing to the persistent activation of
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macrophages may be due to the expression of endogenous TLR ligands, such as gp96 and
tenascin-C, which are upregulated in RA and are capable of activating macrophages through
TLR signaling, creating a self-perpetuating, progressive chronic inflammatory process. Thus,
targeting innate immunity has already proven beneficial in RA, and targeting additional
pathways such as complement, the FcgR, and TLR signaling pathways holds promise for
further therapeutic advances.
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FIGURE 1.
Various current and novel innate immunity-directed therapeutics and their targets. Mφ,
macrophage; IL-1R, Interleukin-1 Receptor; TNF-α, Tumor Necrosis Factor Alpha; FRβ,
Folate Receptor Beta; TLR, Toll-Like Receptor; HSP, Heat-Shock Protein; LPS,
Lipopolysaccharide; PGN, Peptidoglycan; sCR1, Soluble Complement Receptor 1; ITIM,
Immunoreceptor Tyrosine-based Inhibitory Motif; ITAM, Immunoreceptor Tyrosine-based
Activation Motif; IVIG, Intravenous Immunoglobulin; SYK, Spleen Tyrosine Kinase
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