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Abstract
RDS (retinal degeneration slow) is a photoreceptor-specific tetraspanin protein required for the
biogenesis and maintenance of rod and cone outer segments. Mutations in the Rds gene are associated
with multiple forms of rod- and cone-dominant retinal degeneration. To gain more insight into the
mechanisms underlying the regulation of this gene the identification of regulatory sequences within
the promoter of Rds was undertaken. A 3.5kb fragment of the 5′ flanking region of the mouse Rds
gene was isolated and binding sites for Crx, Otx2, Nr2e3, RXR family members, Mef2C, Esrrb, NF1,
AP1, and SP1 in addition to several E-boxes, GC-boxes and GAGA-boxes were identified. Crx
binding sequences were conserved in all mammalian species examined. Truncation expression
analysis of the Rds promoter region in Y-79 retinoblastoma cells showed maximal activity in the
350bp proximal promoter region. We also show that inclusion of more distal fragments reduced
promoter activity to the basal level, and that the promoter activities are cell-type and direction
specific. Co-transfection with Nrl increased promoter activity, suggesting that this gene positively
regulates Rds expression. Based on these findings, a relatively small fragment of the Rds promoter
may be useful in future gene transfer studies to drive gene expression in photoreceptors.
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Introduction
Rds is one of the most common ocular genes to carry pathogenic mutations. Over 80 different
disease causing mutations in Rds have been identified and are responsible for a wide range of
degenerative phenotypes including autosomal dominant retinitis pigmentosa (RP) and various
forms of macular dystrophy (Berson, 1993, Keen and Inglehearn, 1996). We and others have
successfully delivered wild type murine Rds to the retinas of mice with an Rds-associated
haploinsufficiency RP phenotype (the rds+/-) and reported structural and functional rescue of
the diseased retina (Ali, et al., 2000, Cai, et al., 2009b). For our studies we used both ubiquitous
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(chicken beta-actin, CBA) and photoreceptor-specific (human interphotoreceptor retinoid
binding protein, IRBP) promoters and while they represented satisfactory preliminary choices,
further knowledge of the native Rds promoter will be a great advantage for our future studies.
However thus far, no reports have specifically addressed regulation of this gene.
Characterization of the Rds promoter region will give a better understanding of the native
regulation of the Rds gene and may enable us to enhance our gene therapy studies by
incorporating critical regulatory elements in our vector design.

Gene therapy has been a popular and promising therapeutic approach for the treatment of
inherited retinal degenerations in various animal models and patients [rodents (Ali, et al.,
2000, Cai, et al., 2009b, Weber, et al., 2003), dogs (Acland, et al., 2005, Acland, et al., 2001,
Le Meur, et al., 2006), primates (Jacobson, et al., 2006, Lotery, et al., 2003, Weber, et al.,
2003) and humans (Bainbridge, et al., 2008, Cideciyan, et al., 2008, Hauswirth, et al., 2008)],
and optimization of ocular gene therapy by expanding promoter choices is advantageous. Due
to the prevalence of inherited retinal degenerations associated with photoreceptor and retinal
pigment epithelial (RPE) defects, these cell types have often been targets of gene delivery
studies. While tissue-specific promoters like vitelliform macular dystrophy 2 (VMD2) and
rhodopsin (MOP) and ubiquitously expressed promoters like chicken beta-actin (CBA) have
been successfully used to direct expression in the retina (Allocca, et al., 2007, Cai, et al.,
2009a, Cai, et al., 2009b), strong promoters that can direct proper levels of gene expression in
rods and cones have been lacking. The strongest currently used ocular promoter (the MOP
promoter) is typically thought to be rod specific, or to drive very low levels of gene expression
in cones (Glushakova, et al., 2006). For the treatment of rod-based diseases, this promoter is
a good choice, however, many diseases target both cones and rods. The most commonly used
promoters to target both rods and cones have been the promoter for the photoreceptor
transcription factor Crx and the IRBP (interphotoreceptor retinoid binding protein) promoter
(Nour, et al., 2004, Oh, et al., 2007) although other promoters such as the rhodopsin kinase
promoter, have also been studied for this purpose (Khani, et al., 2007). To expand the available
options for strong rod/cone promoters, we chose to characterize the promoter region for a gene
that is expressed robustly in both photoreceptor types; Rds (retinal degeneration slow, also
referred to as Peripherin/rds, P/rds, or Prph2). Our goals were first, to characterize a novel
promoter that could be potentially used to direct high levels of expression of any gene (but
particularly Rds) in rods and cones in gene therapy studies; and second, to study regulation of
the Rds gene to better understand the expression and regulation of this key outer segment
protein. We isolated a 3.5kb fragment of the 5′ flanking region of the mouse Rds gene from
wild type C57BL/6 genomic DNA, identified regulatory factor binding sites in the promoter,
and characterized the in vitro activity and cell-type specificity of various promoter fragments.

Materials and methods
Cloning of the 5′ flanking region and identification of regulatory sequences

3.5 kb of the 5′ flanking region of the murine Rds gene was isolated from C57BL/6 genomic
DNA using the PromoterFinder™ DNA Walking kit (Clontech Laboratories, Inc., Palo Alto,
CA, for details see Supplementary Methods and Supplementary Figure 1). Products were
cloned into the pBluescriptKS+ vector and sequenced. Sequences were blasted against the
ensembl database (www.ensembl.org). Analysis for the presence of known transcription factor
binding sites (cis-elements) in the 3.5kb murine RDS 5′ flanking region was carried out by
MatInspector version 7.0 using the Matrix Family library database version 7.0 (Genomatix,
Munich, Germany). Similar assessment was carried out on 3.5kb of the flanking region of
bovine, rat, Xenopus, and human RDS promoter (using the ensembl sequences). For
comparison sake, the same 5′ flanking region was analyzed from the mouse HPRT
housekeeping gene and the liver specific HSD17b gene. Identity calculations and Clustal
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alignment of sequences from multiple species was carried out using Vector NTI 11 (Invitrogen,
Carlsbad, CA). Analysis of CpG islands was carried out according to the method by Gardiner-
Garden and Frommer (Gardiner-Garden and Frommer, 1987). Briefly, CpG rich areas were
defined as regions at least 200 bp in length (starting from the transcription initiation site-TSS)
that had a GC content above 50% and an observed/expected CG ration of greater than 0.6. In
all cases, the translation initiation site (ATG) was defined as +1.

Animal care and use
C57/Bl6 and Balb/C mice were maintained in the breeding colony under cyclic light (14L:
10D) conditions; cage illumination was ∼7 foot-candles during the light cycle. All procedures
were approved by the University of Oklahoma Health Science Center Institutional Animal Care
and Use Committee (IACUC) and adhered to the ARVO Statement for the Use of Animals in
Ophthalmic and Visual Research (http://www.arvo.org/). Genomic DNA was harvested from
tail cuts as described previously (Naash, et al., 1993).

Plasmid construction, cell transfection and luciferase assay
Rds promoter fragments were inserted upstream of the luciferase reporter gene in the multiple
cloning site of the pGL2-Basic plasmid (Promega, Madison WI) using standard techniques.
For cell transfections, plasmids were prepared using the Endofree Plasmid Maxi Kit (Qiagen,
Chatsworth, CA). COS-1 cells, low passage (<40) human Y-79 retinoblastoma cells (Di Polo
and Farber, 1995), and in some experiments NIH3T3, 661W, and MCF-7 cells were seeded in
six well plates at 3.2×105 cells/well 24 hours prior to transfection. Y-79 cells were cultured/
transfected in suspension, in RPMI-40 media containing 15% FBS (Invitrogen/Gibco, Carlsbad
CA) while adherent 661W, COS, MCF-7 and NIH3T3 cells were cultured/transfected in
DMEM containing 10% FBS. All media contained standard antibiotics (penicillin 100 U/ml
and streptomycin 100 μg/ml-Invitrogen/Gibco). Adherent cells were ∼70% confluent at the
time of transfection. 15 μg of each plasmid (pLUC468, pLUC468IV, pLUC1084, pLUC1439,
pLUC2632, pLUC3304, pGL2-Basic, and pGL2-promoter) was used for standard CaPO4
transfection carried out according to the manufacturer procotocl using the CalMaximizer
(Clontech) kit. As an internal control for transfection efficiency, 5 μg of pCH110 plasmid
(Amersham GE, Piscataway NJ) was co-transfected. Cells were harvested 48 hours after
transfection in 250 μl of 1× lysis buffer containing 5% (v/v) Triton X-100. Luciferase activity
was assayed by mixing 20 μl of this lysate with 100 μl of luciferase assay reagent (Luciferase
Assay System, Promega) and light emission was measured immediately in a
spectrophotometer. As described previously (Rosenthal, 1987), β-gal activity was measured
by ortho-Nitrophenyl-β-galactoside (ONPG) cleavage assay using the same cytosolic extract.
The promoter activity of each construct in each cell line was defined as Relative Light Unit/
β-gal activity. Each data point was the average of three readings and each experiment was
repeated three times.

mRNA collection and real-time PCR
Murine eyes from P30 WT, CRX-NRL and nrl-/- animals were collected (5-6 eyes per group),
and total RNA was isolated using Trizol (Invitrogen) as per the manufacturers instruction.
DNase treatment and cDNA synthesis were performed as described previously (Cai, et al.,
2009b, Farjo, et al., 2006). qRT-PCR for Rds was performed in triplicate for each sample using
a Bio-rad iCycler single color system and the previously published primers (Farjo, et al.,
2006). The HPRT housekeeping gene was used as an internal control as previously described
(Farjo, et al., 2006).
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Immunocytochemistry and western blotting
Cells were fixed with 4% paraformaldehyde at room temperature (RT) for 20 min. The
monoclonal anti-RDS antibody 5H2 (1:2, a generous gift from Dr. Robert Molday, University
of British Columbia) was applied overnight at room temperature. The cells were rinsed with
PBS and covered with FITC-anti-rabbit IgG (1:100) for 30 min. After three washings in PBS,
cells were mounted in Vectashield with DAPI (Vector Laboratory Inc, Burlingame CA) and
viewed under an epifluorescent microscope (Zeiss USA, Thornwood NY). Western blotting
was performed using the RDS-CT polyclonal antibody and HRP conjugated secondary (as
previously described) (Farjo, et al., 2006) and actin-HRP (Sigma-Aldrich, St. Louis MO).

Statistical Analysis
One-way ANOVA with Bonferroni's post-hoc test was used to test the null hypothesis in cases
where there were three or more different groups. Two-tailed Student's t-tests were used in cases
where there were only two groups to compare (Fig. 4B and 5A).

Results
Sequence analysis of the 5′ flanking region

The 5′ flanking region of murine RDS was sequenced and analyzed as described in the methods
(Supplementary Fig. 2). The GC content in the 400 bp immediately 5′ to the ATG initiation
codon is 55%. The observed/expected CpG ratio was 0.49 indicating that the immediate
upstream promoter region is not CpG rich. Sequence analysis of the flanking region showed
the absence of typical TATA and CCAAT elements. Over 800 potential cis-regulatory elements
were detected in the analyzed region. Those relevant to photoreceptor gene regulation are
shown on the sequence in Supplementary Fig. 2, and schematically in Figure 1. At the -3 and
+4 positions (see Supplementary Fig. 2), A and G residues were observed respectively,
consistent with the proposed consensus sequence for initiation of translation in higher
eukaryotes (Kozak, 1987). Transcription start sites are observed at -218 and -221. An OTX
binding site was observed at position -237 to -253. AP1 elements were observed at -641 to
-651 and -1707 to -1717. Several binding sites for RXR (Retinoid X receptor) family members
including CAR, VDR, RAR, PXR and RTR were located throughout the promoter region as
were putative Mef2C sites. Three Nr2e3 binding sites (PNR) were found, at -1424 to -1450,
-3094 to -3118 and -3139 to -3163. Five E-boxes were located in the distal region of the
fragment, with two additional E-boxes in the proximal region. Sites for Otx2 (-1836 to -1852),
and NF1 (-1663 to -1684) were observed near the middle of the promoter region. Just upstream
from these elements are one SP1 site (-2021 to -2035), one GAGA-box (-2075 to -2131) and
four GC-boxes. One mammalian transcriptional repressor binding site was found located in
the extreme distal part of the isolated flanking region (-3457 to -3471).

On the base pair level, the 5′ flanking region is moderately conserved among the species we
examined; 46% similarity between mouse and human, 46% between mouse and bovine, and
44% between mouse and Xenopus Tropicalis, and 39% between mouse and rat (Supplementary
Fig. 3). Cis-element analysis of the 5′ regions of each of these species was then undertaken.
The only regulatory element that appears in the same region of all the mammalian species
examined is the CRX binding site (OTX) at position -237 suggesting a prime regulatory role
for this transcription factor. As shown in Table 1, additional cis-elements were conserved
across species within regions of the promoter (as opposed to in exactly the same place). Those
conserved in the proximal (0 to -500), medial (-500 to -1500), and distal regions (-1500 to
-3500) are shown in Table 1. Cis-element analysis of the HPRT (housekeeping) gene and the
non-ocular HSD17B (hydroxysteroid 17β dehydrogenase) gene are included on table 1 as a
reference for which cis-elements are found ubiquitously and which may be more retina-
specific.
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Promoter activity of the Rds gene in vitro
To test the promoter activity of the 5′ flanking region of the Rds gene, transient transfection
experiments were carried out in vitro using human Y-79 retinoblastoma cells. Although these
cells have been shown to express both rod and cone specific genes, (Di Polo and Farber,
1995) it was necessary to confirm the presence of all basal and tissue-specific factors required
for Rds expression. The most straightforward way to confirm that the cells possess the ability
to express Rds was to examine Rds expression. RT-PCR across intron 1 revealed that Y-79
cells express Rds transcripts: a PCR product of the expected size (387 bp) was detected in both
Y-79 and the positive control (mouse retina) samples (Fig. 2a). Immunocytochemistry with
mAB 5H2 (against RDS) was performed and substantial specific immunoreactivity was
observed (Fig. 2b) confirming that RDS is expressed in these cells.

To evaluate the promoter activity and cell type specificity of the isolated flanking region, a
series of deletion mutants (Fig. 3a) was generated by PCR or restriction digestion. Promoter
fragments in the native orientation were inserted into the pGL2-Basic plasmid containing the
luciferase reporter gene as follows: 1) pLUC468, [-154 to -468], 2) pLUC1084, [-154 to -1084],
and 3) pLUC1439 [-154 to -1439], 4) pLUC2632 [-154 to -2632] and 5) pLUC3304 [-154 to
-3304]. The tested fragments did not include the region downstream from positions -154 to
+58. This region includes a modified start codon (ATG) and stop codon (TGA) and based on
our initial tests it does not have any promoter activity (data not shown). The fragments were
transfected into Y-79 retinoblastoma cells or COS-1 cells (as a non-ocular control) and
luciferase activity was measured. Transfection with pGL2-Basic (no promoter) was used to
determine the basal level of luciferase activity and transfection with pGL2-SV40 (pGL2-Basic
with SV40 promoter) served as a positive control. As an internal control to evaluate the
transfection efficiency, pCH110 containing the β-gal reporter gene driven by SV40 promoter
was co-transfected with the luciferase vectors.

High levels of luciferase activity were observed when the pGL2-SV40 plasmid was delivered
to Y-79 and COS-1 cells, indicating that these cells can be successfully transfected and the
plasmid expressed (data not shown). In Y-79 cells, pLUC468, pLUC1084 and pLUC1439
drove significantly higher levels of luciferase expression than pGL2-Basic, although the level
observed in pLUC1084 transfected cells was approximately 33% lower than that in pLUC468
(Fig 3b). The longer pLUC2632 construct promoted much lower level luciferase expression
than other constructs; 79% reduction compared to the activity of pLUC468. This strongly
suggests the presence of basic promoter activity in the 314 bp fragment (pLUC468), potential
negative regulatory element(s) in the region from [-468 to -1084], and additional enhancer
elements in the region between [-1084 and -1439]. pLUC2632 exhibited a modest but not
statistically significant amount of activity, while pLUC3304 was virtually identical to non-
expressing controls (pGL2-basic). The absence of detectable in vitro promoter activity in the
longer pLUC3304 constructs suggests that additional elements in the distal regions of the 5′
flanking region may also negatively regulate transcription. In COS-1 cells, only pLUC1439
showed a low level of tissue non-specific promoter activity (Fig. 3b).

Cell type specificity of pLUC468 mediated gene expression
In Y-79 cells, pLUC468 showed the highest promoter activity of all the fragments (12 fold
higher than the promoterless construct) but it directed no detectable expression in COS-1 cells.
To further explore the cell-type specificity of this region, two additional non-photoreceptor
cell lines, NIH3T3 (mouse embryonic fibroblast derived) and MCF-7 (human breast cancer
derived) and one additional photoreceptor cell line, 661W (cone photoreceptor derived (Tan,
et al., 2004)) were transfected with pLUC468. None of the non-photoreceptor cell lines
exhibited any gene expression above baseline when transfected with pLUC468 (Fig. 4a), while
transfection in 661W cells resulted in a significant level of luciferase expression.
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In addition to the cell-type specificity of the promoter activity, we were also interested in its
directional specificity. To that end, we tested the promoter activity of the 314 bp fragment in
Y-79 cells when it was inverted (pLUC468IV). As can be seen in Figure 4b, inversion of the
promoter fragment abolished its ability to drive luciferase gene expression confirming that the
promoter activity is directional.

Effect of photoreceptor developmental transcription factors on Rds expression
Rds is expressed in both rod and cone photoreceptor cells. Sequence analysis of the 3.5kb 5′
flanking region of the mouse Rds gene revealed the presence of several cis-elements known to
bind key transcription factors in the development of these two divergent cell types, specifically
Crx and Nr2e3. Crx and Nr2e3 are known to regulate transcription with the aid of a third
photoreceptor-specific factor, Nrl (Peng, et al., 2005) and some ubiquitous transcription factors
such as the Sp zinc finger proteins (Hennig, et al., 2008). Crx and Nr2e3 are known to regulate
Rds transcription. Chromatin immunoprecipitation assays demonstrate that Nr2e3 binds to the
Rds promoter region and in a mouse model lacking Nr2e3 (rd7/rd7 mice), Rds transcript levels
are several fold lower than in wild-type controls (Nystuen, et al., 2008). Similarly, Rds levels
are decreased in mice lacking Crx (Crx-/-) (Furukawa, et al., 1997, Livesey, et al., 2000). In
spite of the observation that these photoreceptor transcription factors usually work as a group,
our cis element analysis did not identify any Nrl sites in the Rds promoter region. To determine
whether Nrl might therefore have an indirect regulatory affect on Rds, we co-transfected Y-79
cells with pLUC2632 or pLUC468 and a plasmid containing the Nrl (pNrl) gene under the
control of the adenovirus major late promoter (pMT3 vector, a generous gift from Dr. Anand
Swaroop, NEI). Co-transfection of the pNrl and pLUC468 resulted in significantly enhanced
(∼5 fold) promoter activity compared to single transfected controls (Fig. 5a). Co-transfection
with pLUC2632 and pNrl also resulted in a ∼2-fold increase in promoter activity (Fig. 5a). To
determine whether these transcription factors might affect Rds expression in vivo, we measured
Rds message levels by qRT-PCR in mice that overexpress Nrl (Crx-Nrl transgenics (Oh, et al.,
2007)). As can be seen in Figure 5, overexpression of Nrl leads to enhanced expression of
Rds transcript (∼3 fold higher than in wild-type animals, Fig. 5b) and protein (higher in wild-
type animals, actin shown to verify loading, Fig. 5c). Nr2e3 promotes rod development directly
in concert with Nrl while simultaneously suppressing cone differentiation. In Figure 5b, we
show that, consistent with previously published results (Nystuen, et al., 2008), the absence of
Nr2e3 (Nr2e3-/- mice) yields significantly decreased steady-state Rds transcript levels (∼50%
reduction compared to wild-type).

Discussion
In this study, we evaluated the 3.5kb flanking region of the Rds gene due to its structural
importance in the photoreceptor outer segment, functional necessity for proper vision, and
experimental value in the design of optimized gene therapy vectors. Unlike many other dual-
photoreceptor specific genes, it lacks typical TATA and CAAT promoter elements but contains
several other regulatory elements. This region is not CpG rich. Notably, several critical
photoreceptor transcription factor binding sites were observed on the isolated 3.5kb fragment
including OTX (Crx), PNR (Nr2e3), EsrrB, Mef2C and RXR family members. Additional,
non-photoreceptor specific regulatory elements were detected including SP1 sites, several E-
boxes, one GAGA-box, and several GC-boxes. In vitro analysis of the activity of various
promoter fragments contained within the 3.5kb 5′ flanking region indicated that the region
from [-154 to -468] possesses the basal, direction-specific promoter activity in retina-derived
cell lines (Y-79/661W) but not in any other non-ocular cell lines tested. Although two of the
other promoter fragments possessed some activity (pLUC1084, pLUC1439), expression of
longer constructs was significantly suppressed in Y-79 cells.
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Photoreceptor gene regulation is controlled by a highly conserved network of transcription
factors centered on Crx (Hennig, et al., 2008). Crx regulates expression of the Nrl gene which,
among other things, regulates expression of Nr2e3. Crx plays a critical role in the differentiation
and maintenance of photoreceptor cells, (Chen, et al., 1997, Furukawa, et al., 1997), regulation
of tissue specificity, and levels of rod and cone gene expression and photoreceptor development
(Boatright, et al., 1997, Kennedy, et al., 1998, Kennedy, et al., 2001, Mani, et al., 2001,
Martinez and Barnstable, 1998, Morabito, et al., 1991, Tao, et al., 1993, Whitaker and Knox,
2004, Yu, et al., 1996). Nrl and Nr2e3 work together to promote rod development although
Nr2e3 is considered a dual action transcription factor. In the absence of Nr2e3, cone genes are
de-repressed and rod genes are suppressed resulting in an enhanced S-cone phenotype (Haider,
et al., 2006, Haider, et al., 2009). All three (Crx, Nr2e3, and Nrl) can act together along with
ubiquitously expressed transcription factors such as the Sp zinc finger proteins to co-regulate
photoreceptor gene expression (Cheng, et al., 2004, Hennig, et al., 2008).

Binding sites for Crx (OTX), Nr2e3 (PNR), and Sp1 were identified in the Rds promoter region
however, the specifically modified AP1 sites (Rehemtulla, et al., 1996) to which Nrl binds
were not found in the 5′ flanking region of the Rds gene. In spite of this, in vitro results shown
here demonstrate that reporter gene expression is increased in cells co-transfected with our
pLUC468 Rds construct and pNrl, supporting a role for Nrl in the regulation of Rds. Although
Nrl could possibly exert regulatory effects by binding to the various non-modified AP1 sites
identified in the 5′ flanking region, the absence of these sites in the region shown to be regulated
by Nrl (pLUC468) suggests this is unlikely. It is possible that Nrl regulates Rds expression
indirectly by enhancing expression of Nr2e3 or Crx, or by participating in the Crx regulatory
complex. It is likewise possible that Nrl regulates Rds expression by binding to an as yet
unidentified sequence. The lack of a predicted cognate binding site does not preclude
transcription factor binding; indeed many photoreceptor gene regulatory elements have been
identified after being missed by standard sequence comparisons (Hsiau, et al., 2007, Peng and
Chen, 2005). Support for the idea that Nrl regulates Rds comes from our observation that in
the Nrl over-expressing all-rod retina (Crx-Nrl) Rds message levels are significantly increased
by approximately 3 fold. As the murine retina is only 3% cones, this dramatic increase in
Rds message (and protein) cannot be accounted for by the small increase in Rds which would
be expected to accompany the conversion of cones to rods.

Historically, Nr2e3 and Nrl were considered the only rod-specific transcription factors.
However, recent evidence has suggested that two more photoreceptor transcription factors may
be rod-enhanced: Mef2C and EsrrB (Hsiau, et al., 2007). Both of these transcription factors
have binding sites in the 5′ flanking region of Rds and may play a role in Rds expression in
rods. The transcription factor RxrG, which interacts with the RXR cis-element (found in the
5′ flanking region of Rds), is required for some cone gene transcription (Hennig, et al., 2008,
Roberts, et al., 2006, Yoshida, et al., 2004), is upregulated in Nrl-/- mice (Hsiau, et al., 2007)
and may positively regulate Rds expression in cones. However, RXR/RAR cis elements, and
Mef2C binding sites were found in all promoter regions examined, so it is difficult to make
conclusions on their role in the regulation of Rds specifically.

For most photoreceptor genes, the maximal promoter activity and cell type specificity resides
within the first 500 bp of the 5′ flanking region (Fujimaki, et al., 2004, Mohamed, et al.,
1998, Pittler, et al., 2004, Young, et al., 2003). This appears to be the case for the Rds promoter:
we observed strongest activity with our pLUC468 construct. This region contains the only
highly conserved cis-element among the species we examined, the OTX element (conserved
in the X. laevis Rds promoter region (Moritz, et al., 2002)) which will likely be recognized by
Crx thus transactivating the promoter activity. There appear to be suppressors in the regions
between [-468 to -1084] and [-1439 to- 2632] and a positive regulator or enhancer between
[-1084 to -1439]. The pLUC1084 construct (which showed 33% less activity than pLUC468)
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contains one AP1 site and one E-box. The increased promoter activity conferred by inclusion
of the region between [-1084 and -1439] (i.e. pLUC1439 vs. pLUC1084) is likely due to
positive regulation by Nr2e3 (PNR) and possibly Mef2C and CAR/RXR. However, additional
PNR, RXR, and Mef2C sites are found more distally in regions of the 5′ flanking sequence
which demonstrated suppressed transcription (e.g. within pLUC2632 and pLUC3304), so
regulation is clearly not straightforward and additional interpretation will require further
experiments. In some cases, gene expression is inversely correlated with plasmid size (Kreiss,
et al., 1999, Yin, et al., 2005), however not always (Maucksch, et al., 2009). In this case,
however, lack of expression with the larger constructs is not likely to be due primarily to
increased plasmid size. In experiments designed specifically to test the effects of plasmid size
on gene expression, gene expression decreased in a consistent, near-linear fashion over the
range of plasmid sizes comparable to what we use here (Yin, et al., 2005). In contrast,
expression from our constructs does not steadily decrease as the plasmid size increases. In fact,
expression is higher for pLUC1439 than the smaller pLUC1084 and then drops precipitously
for pLUC2632.

Gene therapy studies require a well-characterized promoter fragment to reliably drive high
levels of tissue specific gene expression. Several photoreceptor specific promoters have been
studied including those for rod opsin, cone opsin, Crx, and IRBP. However, the preponderance
of inherited retinal diseases associated with mutations in Rds coupled with RDS' unique
expression pattern (expressed at high levels in rods, and substantial but lesser levels in cones
(Farjo, et al., 2006)) makes characterization of the endogenous Rds promoter a useful step for
our progress in developing gene based therapeutics. Furthermore, our experiments
demonstrating that co-delivery of constructs containing positive regulators of transcription
(including Nrl) and therapeutic constructs containing the Rds promoter may help increase
expression of the therapeutic gene. Since Nrl is thought to have a positive regulatory role on
the expression of many rod genes, it is also possible that delivery of Nrl alone could improve
the phenotype of rod-dominant eye diseases that are associated with haploinsufficiency in
various genes. Development of a genetic therapy that is not specific to any particular gene has
been an area of interest and would be a great advantage for the treatment of multiple retinal
degenerative conditions.

Our results suggest that the 314 bp or 1,285 bp regions contained in pLUC468 and pLUC1439
drive the best expression in vitro and are likely the best choices for incorporation into
photoreceptor-targeting vectors. Often promoter activity in vitro does not correlate well with
activity in vivo, and future studies will involve the use of these constructs in vivo. Our data
suggest that Rds is regulated by the same core Crx-based photoreceptor regulatory network as
many other photoreceptor specific genes. The presence of binding sites for both cone and rod
transcription factors may help explain the differential expression pattern of Rds in rods and
cones.
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RXR retinoid X receptor
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Nrl neural retinal leucine zipper

Nr2e3 orphan nuclear receptor subfamily 2, group E, member 3

Otx2 orthodenticle homeobox 2

RxrG retinoid X receptor γ

CAR constitutive androstane receptor

VDR vitamin D receptor

RAR retinoic acid receptor

PXR pregnane X receptor
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OTX orthodenticle homeobox

Mef2c myocyte enhancer factor 2C

Esrrb estrogen-related receptor β

NF1 nuclear factor 1

AP1 activator protein 1

SP1 specificity protein 1
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Figure 1. Schematic distribution of relevant regulatory sequences in the 5′ flanking region of Rds
gene
Relevant putative transcription factor binding sites or other regulatory regions are highlighted
(as identified using the procedures found in the Materials and Methods section). The relative
location of start/end sites for the in vitro expression constructs is also noted (grey circles).
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Figure 2. Expression of the mouse Rds gene in Y-79 cell lines
a. Expression of the Rds gene detected by RT-PCR. Primers used for each PCR reaction are
indicated on top of each lane (Rds, Cyc). The size of the products from Rds and cyclophilin
gene (control) are also labeled. b. Expression of the Rds gene detected by
immunocytochemistry using mAB 5H2 against RDS. Immunostaining was observed in the
majority of the Y-79 cells (top left) while no staining was seen in IgG stained control cells.
Scale bar 25 μm.
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Figure 3. Promoter activity of the 5′ flanking region of the mouse Rds gene
a. Schematic showing the construction of the luciferase reporter constructs. b-c. Luciferase
activity (normalized to β-gal) after co-transfection of 15 μg of the indicated luciferase construct
(containing different Rds promoter fragments) and 10 μg of pCH110 (used as an internal
control) into Y-79 and COS-1 cells. b. Three of the constructs drove significant expression
after transfection into human Y-79 retinoblastoma cells (left) while little expression was
detected after transfection into COS-1 cells (right). The data shown is an average of three
independent experiments, * p<0.01.
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Figure 4. Tissue and direction specificity of Rds promoter activity
a. pLUC468 (with pCHIP110 as a control) was transfected into several different ocular and
non-ocular cell lines. Significant expression (i.e. above levels detected in pGL2-Basic
transfected cells) was only detected in Y-79 and 661W cells. b. pLUC468IV transfection did
not direct significant promoter activity indicating that the Rds promoter is direction specific.
The activity presented is an average of three independent experiments. * p<0.01
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Figure 5. Nrl and Nr2e3 regulation of Rds expression
a. Y-79 cells were co-transfected with the luciferase construct (and pCHIP110) and, as
indicated, pNrl. Expression of Nrl led to a significant increase in Rds gene expression. b.
Rds mRNA levels (qRT-PCR) were significantly reduced in Nr2e3-/- mice and significantly
increased in Crx-Nrl mice. * p<0.01. c. Western blots on 5 μg of total retinal extract from WT
or Crx-Nrl mice were probed with polyclonal antibodies against the RDS C-terminal (RDS-
CT) and with antibodies against actin. RDS protein levels (when normalized to actin) were
increased by approximately 2-fold.
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