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DNA microarray technology has already revolutionized basic research in infectious diseases, and whole-
genome sequencing efforts have allowed for the fabrication of tailor-made spotted microarrays for an increas-
ing number of bacterial pathogens. However, the application of microarrays in diagnostic microbiology is
currently hampered by the high costs associated with microarray experiments and the specialized equipment
needed. Here, we show that a thorough bioinformatic postprocessing of the microarray design to reduce the
amount of unspecific noise also allows the reliable use of spotted gene expression microarrays for gene content
analyses. We further demonstrate that the use of only single-color labeling to halve the costs for dye-labeled
nucleotides results in only a moderate decrease in overall specificity and sensitivity. Therefore, gene expression
microarrays using only single-color labeling can also reliably be used for gene content analyses, thus reducing
the costs for potential routine applications such as genome-based pathogen detection or strain typing.

In recent years, molecular applications in the diagnosis of
infectious diseases have become commonplace in academic
medical centers and tertiary-care facilities and are becoming
also more tangible in community-based settings. However, to
be implemented in clinical microbiology laboratories with ease
and accuracy, the further advancement of molecular infectious
disease diagnostics is dependent on the ability of multiplexing
technologies or the ability to detect and identify more than one
pathogen simultaneously from the same specimen (18).

One approach to multiplex detection and characterization is
microarray analysis which, since its first description in the
1990s, has already revolutionized basic research in infectious
diseases (reviewed in references 7 and 18). Accordingly, mi-
crobial diagnostic microarrays (MDMs) have also been used in
a number of research applications in clinical microbiology (18).
For example, an oligonucleotide microarray targeting the 16S
rRNA gene was recently developed for the detection of a panel
of 40 predominant human intestinal bacterial pathogens in
human fecal samples (35), and assays using broad-range PCR
along with microarrays have been shown to allow rapid bacte-
rial detection and identification with positive blood culture (2).
Another promising application of microarray techniques in
clinical microbiology is the determination of antimicrobial re-
sistance by simultaneously detecting a panel of drug resistance-
related mutations in microbial genomes, and oligonucleotide
microarrays were developed to analyze and identify drug-re-

sistant Mycobacterium tuberculosis strains with results that were
comparable to those of standard antimicrobial susceptibility
testing but obtained in less than 24 h (12, 17). Likewise, an
oligonucleotide microarray outperforming the standard proce-
dures in terms of assay time and the depth of information
provided was designed for the rapid identification of extended-
spectrum beta-lactamases in Gram-negative bacteria by simul-
taneously genotyping blaTEM, blaSHV, and blaCTX-M (14). The
accurate identification and prompt typing of pathogens is fi-
nally another important area where MDMs have numerous
potential applications, and microarray-based approaches that
can be used to support or replace the classical serotyping
methods for several conventional diarrhea bacterial pathogens,
including pathogenic Escherichia coli (16), as well as Salmo-
nella (34) and Campylobacter (33) species, have already been
proposed. As a consequence, this multitude of possible clinical
applications, as well as their recent technical evaluation by the
MicroArray Quality Control (MAQC) consortium (27), re-
sulted in the approval of microarray technology by the U.S.
Food and Drug Administration (26), and recent advancements
in whole-genome sequencing technologies will allow for the
fabrication of tailor-made spotted microarrays for an ever-
increasing number of bacterial pathogens.

Unfortunately, one of the biggest challenges for the use of
MDMs in routine microbiological diagnostic laboratories is
still the high price not only for the design and manufacturing of
microarrays but also for the downstream experimental steps
(19). Moreover, since transcription profiling is still the most
widespread application of microarrays and the design of oligo-
nucleotides for gene expression arrays differs from the design
of oligonucleotides used, e.g., for strain identification and typ-
ing or the detection of antibiotic resistance genes by compar-
ative genome hybridization (aCGH) (4), tailor-made microar-
rays are required for each of these applications. Since the costs
for dye-labeled deoxynucleoside triphosphates (dNTPs) are
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also still considerable, possibilities to reduce the costs would
therefore include the dual use of gene expression microarrays
also for aCGH experiments and/or the use of only a single
fluorescent dye for DNA labeling. However, the difference in
quality between one- and two-color designs have only been
assessed for measuring gene expression differences (21), as
well as with respect to tissue classification tasks (3), and thus
far no systematic comparisons have been made in the context
of aCGH studies. Likewise, a systematic comparison of the
effect of spotted array design on aCGH performance is also
still missing.

Since quality and reproducibility are critical issues in mi-
croarray experiments (6), we compared here computationally
unprocessed and postprocessed spotted oligonucleotide mi-
croarrays originally designed for transcriptional profiling in
Neisseria meningitidis as a test case in a one-color and a two-
color aCGH setup with respect to specificity, sensitivity, and
prediction variability using the results from computational ge-
nome comparisons as a reference.

MATERIALS AND METHODS

Microarray design and fabrication. There are already two PCR-product-based
spotted microarrays available for N. meningitidis which were both termed pan-
Neisseria microarray (30, 31) and representing open reading frames (ORFs) from
the genomes of the invasive N. meningitidis strains Z2491 (20), MC58 (32), and
FAM18 (5) among others. However, oligonucleotide-based microarrays were
shown to offer important advantages over PCR product-based microarrays, in-
cluding a reduction in cross-hybridization and an increase in the differentiation
of overlapping genes or highly homologous regions (reviewed in reference 10).
Therefore, to also include the recently sequenced genome of the meningococcal
carriage strain �14 (25), an oligonucleotide-based microarray was constructed in
collaboration with Eurofins MWG Operon (Ebersberg, Germany) containing
2,872 oligonucleotides representing 2,098 open reading frame (ORFs) from N.
meningitidis MC58 (NCBI Ref_Seq NC_003112), 2,119 ORFs from N. meningi-
tidis Z2491 (NCBI Ref_Seq NC_003116), 2,131 ORFs from N. meningitidis
FAM18 (NCBI Ref_Seq NC_008767), and 2,067 ORFs from N. meningitidis �14
(GenBank accession no. AM889136), respectively. The oligonucleotides were
designed according to the method described by Li and Stormo (15). Accordingly,
2,078 oligonucleotides were directly designed from the primary source N. men-
ingitidis MC58, but the probes were selected such that a large number of N.
meningitidis Z2491, N. meningitidis FAM18, and N. meningitidis �14 ORFs were
also represented. An ORF was said to be represented by an oligonucleotide if the
oligonucleotide had a greater than 93% identity over the entire length of the
oligonucleotide in the corresponding ORF. The cross-hybridization percent
identity was calculated from the number of matched bases divided by oligonu-
cleotide length times 100 using ungapped BLASTN (1) comparisons against the
top non-self-hit gene for that oligonucleotide. All oligonucleotides were first
designed for each ORF in the primary source N. meningitidis MC58 minimized
for cross-hybridization identity to other non-self ORFs in strain MC58 and to
maximize cross-hybridization identity to all other ORFs of the three other ge-
nomes. Since N. meningitidis MC58 has a number of duplicate ORFs with almost
identical nucleotide sequences, only one of these duplicate ORFs was used for
oligonucleotide design. Accordingly, 296 oligonucleotides were directly designed
from N. meningitidis Z2491, 102 oligonucleotides were directly designed from N.
meningitidis FAM18, and 396 oligonucleotides were directly designed from N.
meningitidis �14, respectively. All oligonucleotides had �70% cross-hybridiza-
tion identity to all other non-self ORFs and were designed to be 70mers with a
Tm of 75 � 5°C except for a few cases with too-high or too-low GC content. In
addition, 14 oligonucleotides that represent different regions of the luciferase
gene (from pGL3-Basic Vector; Promega, Manheim, Germany) were spotted,
and 100 ng of a PCR product (using the primer pair LucF [5-CTAGCAAAAT
AGGCTGTCCC-3�] and LucR [5�-GACGATAGTCATGCCCCGCG-3�]) was
used as a spike in controls in each slide to assess the quality of hybridization. The
oligonucleotides were resuspended in spotting buffer (3� SSC [1� SSC is 0.15 M
NaCl plus 0.015 M sodium citrate], 1.5 M betaine) to a final concentration of 25
�M and were spotted onto Schott Nexterion E epoxy-coated slides (Schott AG,
Mainz, Germany) using an OmniGrid spotter (Genomic Solutions, Ann Arbor,
MI) according to the manufacturer’s protocol. Test scans of slides hybridized

with Cy3-labeled nonamer probe [4� SSC, 1 mg of poly(dA)/ml, 50 mM HEPES,
0.2% sodium dodecyl sulfate, 7.5 �M Cy3 random nonamer (Qiagen, Hilden,
Germany)] were performed to assess the quality of the spotted slides with respect
to spot morphology and missing spots.

The layout of the spotted microarray slides and the data associated with the
present study have been deposited in NCBI’s Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) and are accessible through the GEO series
accession number GSE18158 (two-color data set) and GSE18159 (one-color data
set), respectively.

Microarray hybridization. Chromosomal DNA from the meningococcal
strains were isolated by using Qiagen Genomic-Tip 20/G (Qiagen, Hilden, Ger-
many), and the microarray slides were prehybridized according to the manufac-
turer’s protocols (Schott AG, Germany).

In a low-cost setting using only one fluorescently labeled dNTP, 4 �g of
chromosomal DNA was labeled with Cy3 dCTP (GE Healthcare, Munich, Ger-
many) and Klenow enzyme. Briefly, 4 �g of meningococcal DNA (denatured at
95°C for 10 min) was mixed with 100 �M dATP, dTTP, and dGTP and 50 �M
dCTP; 10 �g of random nonamers (Sigma Aldrich, Heidenheim, Germany); 1
nmol of Cy3dCTP; and 2 U of Klenow enzyme (Roche Diagnostics, Mannheim,
Germany) with a 1� reaction buffer (50 mM Tris-HCl, 10 mM MgCl2, 100 �M
dithiothreitol, 2 �g of bovine serum albumin). The labeling reaction was per-
formed at 37°C overnight. The reaction was stopped by using 200 �M EDTA (pH
8.0) and 4 M sodium acetate (pH 4.5), and the labeled DNA was precipitated
using absolute ethanol. The labeled DNA pellet was resuspended in distilled
water after washing with 70% ethanol and drying. Labeling efficiencies were
measured by using Nanodrop 1000 (PeqLab Biotechnologie GmbH, Erlangen,
Germany) to assess the quantity of labeled DNA and also the rate of incorpo-
ration of the labeled dCTPs (Cy3/Cy5). Standard rates of incorporation of la-
beled nucleotides were adapted from reference 24 and, accordingly, a probe
specific activity as defined by (pmol of dye per �l)/(�g of DNA per �l) � 25
pmol/�g and a yield of labeled DNA � 6 �g were used for hybridizations. The
DNA probe for hybridization onto the microarray slides was prepared by mixing
the labeled DNA with 3 �g of salmon sperm DNA (Sigma Aldrich) and two
volumes of hybridization buffer (Eurogentec, Cologne, Germany). The probes
were denatured at 95°C for 10 min, manually hybridized onto prehybridized
microarray slides using a coverslip, and incubated overnight at 50°C. After
hybridization, the slides were washed according to the manufacturer’s protocols
and scanned using ScanArray HT (Perkin-Elmer, Jügesheim, Germany), and the
resulting images were analyzed using Imagene 4.0 (BioDiscovery, El Segundo,
CA) to generate the raw files for further analyses.

In the high-cost setting using two fluorescently labeled dNTPs, an aliquot of all
DNAs to be tested was pooled together to form the common reference. Then, 4
�g of test DNA was labeled with Cy3 dCTP, and 4 �g of reference DNA was
labeled with Cy5 dCTP using the protocol described above. Hybridization in this
case was carried out on a Tecan 4800 Pro hybridization station (Tecan Trading
AG, Switzerland). The slides were scanned by using GenePix 4200, and the raw
data files were extracted by using GenePix Pro 4.0. Spots were flagged in obvious
instances of high background or stray fluorescent signals in both experiments. In
both cases (i.e., the low-cost and high-cost settings), three microarrays were
performed for each probe.

Prediction of gene presence or absence from the genomic data. For compu-
tational gene presence or absence predictions, we performed gapped BLASTN
searches (word size, 11) of all 2,870 oligonucleotides against both strands of the
genomes of N. meningitidis MC58, N. meningitidis Z2491, N. meningitidis FAM18,
N. meningitidis �14, N. meningitidis �153 (GenBank accession no. AM889137),
and N. meningitidis �275 (GenBank accession no. AM889138). Hits below an
E-value cutoff of 0.001 were considered significant and predicted the presence of
the oligonucleotide in the genome and therefore of a hybridization signal.

Postprocessing of the microarray design for aCGH. To minimize the chance
for cross-hybridizations with noncoding regions, we used the available genome
annotations to distinguish true gene hits from hits in intergenic regions. Oligo-
nucleotides that resulted in a significant BLAST hit in an intergenic region within
one or more genomes were therefore removed from downstream analyses.

Prediction of gene absence or presence from aCGH data. Microarrays were
analyzed using Limma (29) implemented in the R language (23). All processing
and normalization steps were performed identically on both one- and two-color
arrays. Normalization was carried out using variance stabilization (13) and, after
fitting to the reference channel, the two-color arrays were transformed into
single-channel intensities using Limma’s intraspot correlation routine. The nor-
malized single-channel intensities were used for the absence or presence predic-
tion of individual genes. To determine the intensity threshold above which a gene
was predicted to be present, we fitted receiver operating characteristic (ROC)
curves to the linear predictor and used the threshold minimizing the misclassi-
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fication error, thus treating specificity and sensitivity as equal (28). To assess
robustness of the threshold estimator, we generated 1,000 bootstrap samples by
drawing with replacement from the original data set and repeated the threshold
estimation for each bootstrap sample to create ca. 95% bootstrapped percentile
confidence bounds for the threshold parameter. All normalization and boot-
strapping steps were performed using R.

RESULTS AND DISCUSSION

Statistically rigid validation of the hybridization results with
respect to prediction accuracy has seldom been performed thus
far in aCGH studies. Therefore, we used available whole-

genome data as a “gold standard” against which we individu-
ally compared the results of aCGH experiments obtained un-
der two different test conditions representing different
complexity and cost scales: a simple one-color manually hy-
bridized intensity array versus the log fold changes from a
two-color study against a pooled common reference probeset,
hybridized with specialized hybridization station equipment.
Microarray experiments for both one- and two-color arrays
were carried out using identical arrays originally designed for
transcriptional profiling studies. Although there are steps in
the experimental design in both settings that are not identical,
the robust postprocessing of the obtained data in both cases
and their comparison to the available genome data allowed for
a robust and meaningful comparison between the one-color and
two-color arrays. Prediction accuracy was measured both with and
without computational postprocessing of the arrays to cope with
the danger of cross-hybridization to intergenic regions.

Effect of array design. Typically, aCGH microarrays are spe-
cifically designed for the task, and oligonucleotides to be used
in expression analyses are usually not suited for aCGH studies
since they are designed to minimize cross-hybridization with
other coding regions but not with genomic regions that are not
expressed (15). To cope with possible cross-hybridizations
from intergenic regions, we performed a filtering step as de-
scribed above that excludes these oligonucleotides from the
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FIG. 1. Comparison of spot intensities (upper panels) and the corresponding densities (lower panels) between one- and two-color arrays. The
two-color arrays (left panels) have clearly a wider spread, lower overlap, and therefore better differentiation between absent or present genes. Note
that the absence or presence data in the first plots (upper panels) are binary values that have been jittered solely for visualization purposes.

TABLE 1. Comparison of array performancea

Result

Relative error (�SD)

Two-color array One-color array

Filtered Unfiltered Filtered Unfiltered

True positive 0.99 (�0.00) 0.99 (�0.00) 0.98 (�0.01) 0.97 (�0.01)
False negative 0.01 (�0.00) 0.01 (�0.00) 0.02 (�0.01) 0.03 (�0.01)
True negative 0.95 (�0.05) 0.58 (�0.08) 0.81 (�0.04) 0.52 (�0.06)
False positive 0.05 (�0.05) 0.42 (�0.08) 0.19 (�0.04) 0.48 (�0.06)
Total correct 0.98 (�0.01) 0.88 (�0.04) 0.94 (�0.01) 0.85 (�0.03)
Total wrong 0.02 (�0.01) 0.12 (�0.04) 0.06 (�0.01) 0.15 (�0.03)

a Relative error and correct classification rates for gene absence or presence
predictions were averaged over all six strains comparing one- and two-color
arrays before and after postprocessing.
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downstream analyses. Since most laboratories use microarrays
for gene expression analyses this filtering provides a cost-effi-
cient way to exploit a specific microarray to its fullest by using
the same array design for both expression and aCGH studies.

By excluding oligonucleotides with possible cross-hybridiza-
tions in intergenic regions 1,174 oligonucleotides were re-
moved, thus reducing the number of oligonucleotides available
for aCGH to 1696. However, for one- and two-color arrays,
comparison of the array performance before and after post-
processing showed that false-positive rates dramatically de-
creased in the filtered setting (Table 1). For example, in �14
the false-positive rate decreased from 31% without filtering to
only 1.3%, and this rather simple computational postprocess-
ing therefore results in a drastically improved performance of
gene expression arrays in aCGH studies.

Prediction accuracy for one- and two-color arrays. Explor-
ative analysis of the experimental signal intensities with respect
to the results from computational genome comparisons further

revealed that the cheaper one-color arrays had lower signal-
to-noise ratios (1.17 compared to 1.66) and greater overlap
between genes predicted as absent and present by computa-
tional genome comparisons (Fig. 1, right panel) than the two-
color arrays (Fig. 1, left panel). This was also confirmed by
analysis of the ROC of the linear classifiers, where the area
under the curve (AUC) indicated a higher accuracy of the
two-color experiments (AUC � 0.98) compared to the one-
color design (AUC � 0.94). The optimality criterion for choos-
ing the intensity threshold was to minimize the combined spec-
ificity and sensitivity error (left panel of Fig. 2) and was
comparable for both data sets (10.6743 in the one-color case
versus 10.6341 in the two-color case), but the curvature of the
error function (right panel of Fig. 2) clearly indicated lower
confidence in the one-color case. However, individual compar-
isons of the results of genome analysis with these gene absence
or presence classifications further showed that both one- and
two-color studies were indeed able to reproduce the results

FIG. 2. ROC curves for one- and two-color arrays. ROC curves are shown for both one-color (top left) and two-color (bottom left) arrays for
all six strains (colored) and the complete data set (black), which was used for determination of the optimal threshold (right). The threshold fitted
on the original data set had its optimum at 10.6341 at an error rate of 0.0182 in the two-color case and 10.2842 at 0.0565 in the one-color case.
err, error.
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from the computational genome analyses for the most part
(Fig. 3), and this could be done largely independent of whether
the analyzed genome was spotted on the chip (misclassifica-
tion rates of 2 and 6%, respectively, for one-color and two-
color studies). The difference in quality between one- and
two-color experiments is only apparent with 76 genes that the
one-color arrays failed to classify correctly compared to the
two-color experiments. Investigation of the misclassified genes
showed that their intensities lay close to the decision boundary,
and misclassification could therefore be due to the lower sig-
nal-to-noise ratio of the one-color arrays. The two-color arrays
thus outperformed the results from the one-color studies by
about a factor of 3, lowering the total misclassification rates
from 5.68 to 1.86%. However, even a combination of state-of-
the-art hybridization technology with an increased experimen-
tal effort requiring an automated hybridization station and
twice the amount of fluorescently labeled dCTP only led to an
overall increase in prediction accuracy from 94 to 98% com-
pared to manual hybridization and a one-color setup, provided
a careful selection of oligonucleotide probes.

Relative cost assessment and potential cost savings. As
shown in this work, a DNA microarray experiment in its most
reduced version requires in addition to custom-made slides
only a microarray scanner and one fluorescently labeled dNTP
for labeling. Therefore, for institutions where microarrays are
already used for genome-wide gene expression analyses, the
dual use of the same microarray also for aCGH obviates the
need for extra array design and fabrication. Further, since
manual hybridization did not drastically impair the overall

performance of the aCGH, the acquirement of a costly hybrid-
ization station is also not required for laboratories with only a
low throughput of clinical specimens to be analyzed by aCGH.
Finally, cost differences between one- and two-color arrays are
mainly due to the twice-as-high consumption of the fluorescent
dCTP, Klenow enzyme, and dNTP in the two-color case.

Conclusion and outlook. Based on a careful selection of
oligonucleotide probes, our results show that the accuracy of
gene absence/presence prediction of manually hybridized one-
color microarrays in aCGH studies remains remarkable, with
an overall of 94% of genes correctly annotated compared to
two-color hybridization using specialized equipment. At least
for institutions where microarrays are already used for ge-
nome-wide gene expression analyses, the dual use of the same
microarray also for aCGH thus obviates the need for an extra
array design and, in particular, the one-color aCGHs could be
applied in diagnostic microbiology laboratories complement-
ing more traditional cultural or molecular approaches. Since
the computational postprocessing of the gene expression mi-
croarray design for aCGH application presented here is based
on the availability of whole-genome sequences, the clinical
applicability of MDMs might indeed be fostered by the in-
creasing number of whole-genome sequences currently gener-
ated by numerous genome sequencing efforts using so-called
next-generation sequencing technologies (9). The considerable
number of oligonucleotides that had be excluded from further
analyses is usually not a major drawback if the aCGH outcome
is used for simple pathogen identification by simultaneous de-
tection of pathogen-specific genes (8), for strain typing for

FIG. 3. Gene absence and presence comparisons for six meningococcal strains. Venn diagrams of gene presence comparing genome sequencing
with one-color and two-color arrays over all six test strains are shown. For the vast majority of the genes (92.94, 92.26, 91.61, 93.15, 91.14, and
94.09% from left to right, top to bottom) for genome sequencing, the one- and two-color arrays were in agreement (total intersection set and
universe). Prediction errors accumulate in the intersections, where one-color predictions contradict both two-color and genome analyses (66
and 19 in �14, 52 and 13 in �153, 30 and 13 in �275, 56 and 17 in �710, 79 and 39 in MC58, and 48 and 24 in Z2491).
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epidemiologic studies based on gene content (11), or for the
detection of multiple antibiotic resistance genes (22).
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