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Proteomics techniques have been used to generate com-
prehensive lists of protein interactions in a number of
species. However, relatively little is known about how
these interactions result in functional multiprotein com-
plexes. This gap can be bridged by combining data from
proteomics experiments with data from established
structure determination techniques. Correspondingly, in-
tegrative computational methods are being developed to
provide descriptions of protein complexes at varying lev-
els of accuracy and resolution, ranging from complex
compositions to detailed atomic structures. Molecular
& Cellular Proteomics 9:1689–1702, 2010.
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MOTIVATION: STRUCTURES FOR MECHANISTIC UNDERSTANDING
OF PROCESSES

The cell contains hundreds of functional macromolecular
assemblies responsible for performing critical cellular pro-
cesses (1, 2). These include, among others, the ribosome
(translation) (3, 4), chaperonins (protein folding) (5, 6), RNA
polymerase (RNA synthesis) (7), and the proteasome (protein
degradation) (8–10). A macromolecular machine is often built
around a stable core of proteins that defines the basic func-
tion of the complex. This core assembly can be modulated
through interactions with peripheral protein components, re-
sulting in a multitude of functionally relevant states (11). A
structural description of an assembly in all of its states often
facilitates a mechanistic understanding of the corresponding
process (3, 12, 13). Thus, a critical challenge in structural

biology is to identify biologically relevant states of macromo-
lecular assemblies and to determine the structures of these
states at the highest possible resolution.

ASSEMBLY STRUCTURES OFTEN CANNOT BE RESOLVED BY A
SINGLE TECHNIQUE

The structures of macromolecular assemblies in their biolog-
ically significant states generally cannot be resolved to atomic
resolution by a single technique (14). Although x-ray crystallog-
raphy remains the most powerful approach for visualizing a
static snapshot of a complex at atomic resolution, it is limited to
samples that can be purified in large quantities and crystallized
(15). Similarly, NMR spectroscopy results in an ensemble of
structures of a system in solution (16–18), but the technique is
limited by the size of the complex and sample availability. Elec-
tron microscopy (EM)1 techniques provide an alternative ap-
proach for visualizing multiple conformations of complexes in
vitro and even within cells (19–22). However, in most cases, the
resolution of an electron density map is too low to provide a full
mechanistic description of a protein complex. Additional tech-
niques, such as high throughput proteomics methods (23),
small angle x-ray scattering (SAXS) (24, 25), and fluorescence
resonance energy transfer (FRET) spectroscopy (26), are gen-
erally limited by low resolution (14) and at times by low accuracy
(27–29) of the corresponding structural information.

INTEGRATIVE STRUCTURE DETERMINATION

The limitations in the resolution, accuracy, and coverage of
individual experimental methods can be bridged by simulta-
neous consideration of multiple types of information. Exam-
ples of techniques that specialize in integrating a few types of
experimental data include (i) combining electron density maps
of complexes with atomic structures of protein components
to build high resolution structures of protein complexes (30–
34); (ii) using atomic models to estimate the phases required
for converting diffraction data into electron density maps (35);
(iii) inferring the binary interaction map of a complex fromFrom the ‡Department of Bioengineering and Therapeutic Sci-
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affinity purification, mass spectrometry, and comparative
modeling data (36); and (iv) incorporating NMR-derived data
into protein structure prediction (37, 38).

Recently, a number of macromolecular structures have
been resolved by such integrative methods. For instance, the
constituent proteins in the nuclear pore complex (NPC) were
localized based on the shape and symmetry of the NPC from
cryo-EM, positions of the proteins from immuno-EM, relative
proximities of proteins from affinity purification, and the
shapes of proteins from ultracentrifugation (13, 39). An atomic
model of the AAA-ATPase ring of the 26 S proteasome was
determined primarily by fitting comparative models of sub-
units into a single-particle cryo-EM map subject to protein
interactions identified by proteomics (40). A structural model
for a complete clathrin lattice (41) and a mechanistic model of
the clathrin lattice assembly-disassembly cycle driven by
chaperone Hsc70 (42) were suggested by combining data
obtained by x-ray crystallography and single-particle cryo-
EM. The architecture of RNA polymerase II in complex with its

initiation factors was determined by combining known crystal
structures with data from chemical cross-linking coupled to
mass spectrometry (43). An NMR solution structure for the
interface between two subunits in the human immunodefi-
ciency virus type 1 capsid was fitted to an electron density
map of the whole complex, revealing a relative orientation of
subunits different from that in the corresponding crystal struc-
ture (44).

UNIFIED APPROACH FOR INTEGRATIVE MODELING

As outlined above, different studies on different systems
will have a variety of different types of available data (Fig. 1
and Table I). Therefore, a unified approach for integrative
modeling that can incorporate any type of information about a
macromolecular assembly into the determination of its struc-
ture is needed. This information may include physical theo-
ries, statistical preferences extracted from biological data-
bases, and heterogeneous experimental data at different
resolutions, ranging from atomic structures to sets of inter-

FIG. 1. Structural information about a protein assembly. Standard proteomics, biophysical, and computational methods can collectively
determine the copy numbers (stoichiometry) and types (composition) of assembly components and predict or experimentally determine
protein-protein connectivities (interactivity among a group of proteins) and protein-protein interactions (direct physical interactions). Many of
these techniques are capable of a high degree of throughput, allowing for collection of a high volume of data about components of an assembly
in a short period of time. Additional biophysical methods can determine distances between components in an assembly, positions of the
components, and their relative orientations. Integration of data from varied methods, including low resolution proteomics data, generally
increases the accuracy, precision, coverage, and efficiency of structure determination. Methods listed include the following: mass spectrom-
etry (124–126), quantitative immunoblotting (127), genetic interactions (128, 129), bioinformatics predictions of protein-protein interactions
(130), affinity purification (13, 39, 71, 72), surface plasmon resonance (SPR) (131), Y2H (111–116), protein microarrays (132–134), protein-
fragment complementation assay (PCA) (135, 136), calorimetry (137, 138), FRET (139), bioluminescence resonance energy transfer (BRET)
(140), SAXS (24, 25), electron tomography (ET) (21), EM (19, 20, 22), gold labeling (39, 141, 142), green fluorescent protein (GFP) labeling (143),
protein-protein docking (144), cross-linking (36, 43, 145, 146), hydrogen/deuterium (H/D) (147), limited proteolysis (148), footprinting (149),
x-ray crystallography (15), and NMR spectroscopy (16–18).
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acting proteins. We have proposed a single unified approach
that can leverage all information to describe a macromolecu-
lar structure (14, 39, 45). This approach consists of an iterative
series of four steps, including 1) generation of data informa-
tive about the structure being determined, 2) design of system
representation and translation of the data into spatial re-
straints, 3) calculation of an ensemble of structures that sat-
isfy the spatial restraints, and 4) an analysis of the ensemble.
In this procedure, spatial restraints derived from data about
the structure are summed into a scoring function that as-
sesses how well a structural model of an assembly agrees
with the data. The scoring function is used to optimize the
structural models and to generate a final ensemble of solu-
tions that agrees with the data as much as possible. This
four-step approach, by design, benefits from synergy among
the input data sets, minimizing the drawback of incomplete,
inaccurate, and/or imprecise data sets; although each indi-
vidual restraint may contain little structural information, the
concurrent satisfaction of all restraints derived from inde-
pendent experiments may drastically reduce the degeneracy
of the final structural models.

PROTEOMICS AS A KEY DATA SOURCE FOR INTEGRATIVE
MODELING

Proteomics techniques have emerged as a powerful tool
for mapping protein interactions in the cell. However, data
produced by these techniques are rarely formally incorpo-
rated into macromolecular structure determination efforts.
Here, we focus on the potential of proteomics techniques to
contribute to the integrative modeling of macromolecular
assemblies. Specifically, we describe how protein binding
and association data can be interpreted as spatial restraints
on a protein complex and thus reduce ambiguity in its
structural description. These ideas have already been ap-
plied to determine the molecular architecture of the NPC

(13, 39) and a pseudoatomic model of the 20 S/AAA-ATPase
ring of the 26 S proteasome (10, 40, 46). Below, we illustrate
our integrative modeling approach by using real experimen-
tal data to determine the known architecture of the human
RNA polymerase II.

INTEGRATIVE STRUCTURE CHARACTERIZATION OF HUMAN RNA
POLYMERASE II (RNAPII)

The eukaryotic RNAPII is a central multiprotein machine
that synthesizes messenger RNAs and small nuclear RNAs. It
is composed of 12 protein subunits with a total molecular
mass of 514 kDa (Fig. 2). Ten subunits (Rpb1, Rpb2, Rpb3,
Rpb5, Rpb6, Rpb8, Rpb10, Rpb11, and Rpb12) form a struc-
turally conserved core, whereas the Rpb4-Rpb7 heterodimer
is located on the periphery (47, 48). Although the atomic
structure of the Saccharomyces cerevisiae RNAPII has been
solved by x-ray crystallography (49), the human RNAPII (H-
RNAPII) has not been determined at atomic resolution mostly
because of difficulties in obtaining sufficient quantities of pure
sample (50). However, the molecular architecture of the H-
RNAPII can be informed by that of its yeast homolog based on
the homology between their constituent proteins (50).

Below, we demonstrate that our integrative structure deter-
mination procedure can be used to accurately model the
known architecture of H-RNAPII using only proteomics-de-
rived protein interactions, an electron density map at 20-Å
resolution, comparative models of the protein subunits based
on yeast and human crystallographic structures, and geomet-
ric complementarity between the interacting subunits. We
describe the input data used for the modeling, the translation
of these data into spatial restraints, an optimization procedure
for determining the models that satisfy the restraints, and an
analysis of the resulting set of solutions. We use a previously
determined crystallographic structure of the full complex in
yeast (51) to evaluate the results.

TABLE I
Common restraints that can be used for integrative structure determination

Restraint Description Source of information

Excluded volume restrainta Prevents steric clashes between system particles Physical first principles
Geometric complementarity restrainta Restrains a protein interface to the tightest

possible packing
Physical first principles

Statistical potential restraint Restrains a structure to have contact frequencies
similar to those in structurally defined
complexes

Physical first principals, all previously determined
protein structures

Distance restrainta Restrains the distance between two particles FRET, BRET, cross-linking, homology to a known
structure

Protein localization restraint Restrains a protein to a specific position Immuno-EM, gold labeling, GFP labeling
Protein connectivity restrainta Restrains all proteins in a set to interact directly or

indirectly
Affinity purification

Angle restraint Restrains the angle between three particles EM, SAXS, homology to a known structure
Complex diameter restraint Restrains the distance between the two most

distant particles in a protein or complex
EM, SAXS

Symmetry restraint Maintains the same configuration of equivalent
particles across multiple symmetry units

EM, SAXS, homology to a known structure

EM quality-of-fit restrainta Restrains the model to overlap with a density map EM, SAXS
Radial distribution function restraint Restrains the correlation between experimentally

measured and computed radial distribution
functions

SAXS

a Restraints used to determine the structure of H-RNAPII.
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Data Generation by Experiments

Different techniques produce data that differ in types of
measured features as well as in the accuracy, resolution, and
coverage of the measurements (Fig. 1). An interpretation of
the data in terms of a spatial restraint involves identifying the
restrained structural components and the allowed values of
the restrained feature implied by the data. For example, a
result of a cross-linking experiment might be used to restrain
the distance between two proteins (40, 52) or within one
protein (53); the restraint parameters are a function of the
length and flexibility of the cross-linker.

To determine the molecular architecture of the H-RNAPII,
we use structural homologs of individual human protein sub-
units found in the ModBase database (54) (Table II), proteom-
ics data for yeast RNAPII subunits extracted from the Bio-
GRID database (55) (Table III), and an assembly electron
density map of H-RNAPII determined at 20-Å resolution by
single-particle cryo-EM (50) deposited in the EM data bank
(56).

System Representation

The first step in integrative structure determination is de-
ciding on an appropriate representation for the system to be
modeled as dictated by the resolution of the available data. At

the finest representation granularity, an assembly structure
can be represented by particles corresponding to its atoms,
each associated with attributes such as position, radius,
charge, and mass. Alternatively, a single-particle may be a
sphere corresponding to a group of atoms, a whole amino
acid residue, a secondary structure segment, a domain, a
protein, a “subcomplex” consisting of a subset of proteins in
a complete assembly, or even an entire assembly. Given the
availability of high accuracy comparative models for the H-
RNAPII subunits, we represent the structures of its subunits at
atomic resolution. We use atomic models found in the Mod-
Base database of comparative models for domains in �2.4
million protein sequences that are detectably related to
known structures (Table II) (57).

Translation of Data into Spatial Restraints

A restraint is a function that reaches its minimum if the
restrained feature (e.g. distance) is consistent with the data on
which the restraint is based. Beyond that, a restraint can, in
principle, have any functional form. For example, a restraint is
frequently a harmonic function (of the form k�x2 where x is the
distance from the mean and k is proportional to the force
constant) of the restrained feature. A restrained feature may
be any structural attribute of a protein or assembly, including

FIG. 2. Determining the molecular architecture of human RNAPII. Top, data gathering. Comparative models of the H-RNAPII subunits
were obtained from the ModBase database (54). A density map of H-RNAPII at 20-Å resolution (50) was obtained from the EM data bank (56).
Proteomics data for S. cerevisiae RNAPII subunits were obtained from BioGRID (Table III) (55). All pairwise direct interactions are visualized in
a single graph with solid edges, and each pulldown experiment is presented as a separate graph with dashed edges to indicate the missing
underlying binary interaction network. Pulldowns Rpb1-Rpb2-Rpb3-Rpb4-Rpb5-Rpb8 and Rpb1-Rpb2-Rpb3-Rpb8-Rpb10 are missing some
edges for clarity. Gray edges indicate interactions present in BioGRID but not in the yeast RNAPII crystallographic structure. Middle, scoring.
The scoring function is the sum of the distance (illustrated between Rpb4 and Rpb7), connectivity (illustrated between Rpb1, Rpb2, Rpb3, Rpb8
and Rpb10), EM quality-of-fit (illustrated between the H-RNAPII density map and Rpb1), and geometric complementarity (illustrated between
Rpb4 and Rpb7) restraints. Bottom, optimization. The configuration of the subunits in H-RNAPII was optimized using an extension of the
divide-and-conquer MultiFit protocol to incorporate proteomics-based restraints. The optimization procedure resulted in a single model that
satisfied all of the input restraints.

TABLE II
Representation of H-RNAPII

Subunit (name,
UniProt accession

no.)

Sequence
identitya

(%)

Number of
residues,

residue range

Template (Protein Data
Bank code and

chain, residue range)

Rpb1, P24928 55 1970, 11–1475 1i6h A, 7–1445
Rpb2, P30876 63 1174, 15–1171 2vum B, 20–1216
Rpb3, P19387 47 275, 7–264 1twf C, 6–263
Rpb4, O15514 100 142,14–142 2c35 A, 14–142
Rpb5, P1938 52 210, 146–209 1hmj A, 10–73
Rpb6, P61218 100 127,1–127 1qkl A, 801–927
Rpb7, P62487 100 172,1–171 2c35 B, 1–171
RPB8, P52434 100 150,1–150 2f3i A, 1–150
Rpb9, P36954 47 125, 15–124 1twf I, 5–111
Rpb10, P62875 73 67,1–64 1twf J, 1–65
Rpb11, P52435 52 1–105, 117 1twf K, 1–105
Rpb12, P53803 38 1–70, 70 2e2h L, 70

a The percentage of sequence identity between the target subunit
and the template as calculated from their alignment used for com-
parative modeling.

TABLE III
Proteomics data used for modeling the architecture of RNAPII

Interacting subunits Source method

Rpb1, Rpb2, Rpb10 Affinity capture-MS (72)

Rpb1, Rpb2, Rpb3, Rpb4,
Rpb5, Rpb8

Affinity capture-MS (72)

Rpb1, Rpb2, Rpb8 Affinity capture-MS (72)

Rpb1, Rpb2, Rpb3, Rpb8,
Rpb10

Affinity capture-MS (72)

Rpb1, Rpb2, Rpb6 Affinity capture-MS (72)

Rpb1, Rpb5 Y2H (58, 59)

Rpb1, Rpb8 Y2H (60)

Rpb1, Rpb9 Y2H (58)

Rpb2, Rpb3 PCA (67)

Rpb2, Rpb6 PCA (67)

Rpb2, Rpb10 Y2H (58)

Rpb3, Rpb11 Y2H (58), reconstituted complex
(65), PCA (67)

Rpb4, Rpb7 Y2H (61–66), reconstituted
complex (69)
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contact, proximity, charge, distance, angle, chirality, surface
area, volume, excluded volume, shape, symmetry, and local-
ization of particles or sets of particles (Table I). Below, we
highlight some restraints in the context of the H-RNAPII struc-
ture determination process.

Dealing with Ambiguity

Structural interpretation of data can be ambiguous, espe-
cially for proteomics data sets. For instance, if multiple copies
of a protein exist in an assembly, a protein-protein interaction
derived from a proteomics experiment may not be uniquely
assigned to a specific pair of copies. Such ambiguous infor-
mation must be translated into a restraint that considers all
possible structural interpretations of the data; for example, an
interaction between two protein types in an assembly with
two symmetry units can occur either between the protein
copies within each unit or between proteins across the two
units (or both). We refer to such restraints as conditional
restraints (45).

Distance Restraints from Proteomics

We used direct physical interactions between eight pairs of
eukaryotic RNAPII subunits as determined by the yeast two-
hybrid (Y2H) system (58–66), protein complementation as-
says (67), co-localization (47), and complex reconstitution
experiments (68, 69) (Table III). These interacting pairs were
retrieved from the BioGRID database. Because we aim here to
illustrate only what proteomics could do for structure deter-
mination, we selected true positive pairwise interactions and
ignored the false positives; a discussion of techniques for
addressing false positive interactions follows under “Dealing
with Incorrect Data, Incomplete Data, and Multiple States”.
There are also “indirect” interaction data in BioGRID. How-
ever, because BioGRID does not annotate which interactions
are physical as opposed to indirect, we encoded as contact
distance restraints only those experimentally measured inter-
actions that have been detected by “pairwise” methods listed
above.

In general, distance restraints may operate on multiple
scales, ranging from the distance between two atoms or
residues to the distance between two protein centers in an
assembly. For example, if a direct interaction between two
proteins has been identified, we may apply a restraint that
penalizes deviations from a specified distance between the
two protein centers. This distance restraint scores equally all
relative orientations between the two proteins with the same
intercenter distance. When the shape of the interacting pro-
teins is known, we can achieve a more accurate score at the
cost of additional computational time by restraining the dis-
tance between the closest pair of particles across the protein-
protein interface. Because we do not know a priori which two
atoms, residues, or domains are closest to each other, this
ambiguity must be handled by a conditional restraint.

Connectivity Restraints from Proteomics

In addition to the pairwise interactions described in the
previous section, we also chose to use five sets of physically
interacting RNAPII subunits as revealed by affinity purification
and mass spectrometry (Table III). We searched three major
large scale proteomics data sets (70, 71, 72) for all sets of
interacting components that consist of RNAPII subunits only.
We then disregarded sets of more than six subunits because
such large affinity purification sets are relatively uninformative
about the RNAPII structure (their inclusion does not signifi-
cantly alter the results of our calculations; data not shown). In
addition, because the majority of the sets (71 of the 103) were
found in the Krogan et al. (72) data set, we used only the
Krogan et al. (72) data set for our calculations. For affinity
purification data, we know that at least one copy of each
protein in a set directly interacts with at least one copy of
another protein in the set; however, affinity purification data
do not provide information on the stoichiometry of the pro-
teins in the set, the number of complexes with distinct stoi-
chiometry and configuration, or exactly which binary interac-
tions occur, thus resulting in a great deal of ambiguity in the
structural interpretation of the results. Because of this ambi-
guity, each affinity-purified set is encoded as a connectivity
restraint that optimizes the assignment of binary interactions
to proteins in the set along with the configuration of proteins
(39). A putative binary interaction network for the proteins that
best satisfies all available data for the system is assigned
during each evaluation of the connectivity restraint during the
optimization procedure.

Quality-of-fit Restraint from an Electron Density Map

The fit of a model into an assembly density map is usually
assessed by a cross-correlation measure between the as-
sembly density and the model smoothed to the resolution of
the map (22). Here, the configurations of the H-RNAPII sub-
units were restrained to fit an electron density map of the
H-RNAPII complex (50).

Excluded Volume Restraint

Molecules take up space that cannot be occupied by other
molecules. This space filling property provides a key restraint
on the conformations of the assembly. If the atomic structure
is known, as is the case for H-RNAPII, the van der Waals
radius for each atom is typically used to define the excluded
volume (73). When the structure of a molecule is not known, it
can be represented by a sphere; the volume of the sphere can
be estimated from its composition (e.g. the number of resi-
dues in a protein (74)).

Geometric Complementarity Restraint from First
Principles

Protein-protein interfaces are typically geometrically com-
plementary, characterized by tight packing with little space
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between them. This geometric complementarity is commonly
used as a restraint in protein-protein docking (75, 76). Be-
cause atomic models are used for H-RNAPII subunit struc-
tures, this consideration was enforced with an explicit re-
straint. The geometric complementarity restraint may be less
informative if used on coarsely represented subunits.

Additional Restraints

Although not applied in our integrative structure determina-
tion of H-RNAPII, many additional restraint types can also be
used.

Radial Distribution Restraint

An approximate radial distribution function of an assembly
can be measured by an SAXS experiment (24, 25). Corre-
spondingly, the SAXS restraint on a model can penalize the
difference between the experimental and computed radial
distribution functions (77). This restraint was used, for exam-
ple, to select among several putative configurations of do-
mains for the chaperone Hsp90 (78).

Symmetry Restraint

Symmetry is a recurrent theme in macromolecular assem-
bly structures (79–81). For example, cyclic, helical, dihedral,
and icosahedral symmetries are found in many important
molecular machines such as viruses, the NPC, and chaper-
onins. The similarity between corresponding particle configu-
rations in each symmetry unit can be enforced by imposing a
restraint that maintains the same particle-particle distances
within each unit (39, 82).

Physical Energy and Statistical Potential Restraints

Positions and orientations of interacting proteins can also
be restrained by potentials based on the laws of physics
(83–86) as well as statistical potentials extracted from da-
tabases of known protein structures (87–92). For example, a
statistical potential can be derived from the observed dis-
tance distributions or contact frequencies of different atom
type pairs in structurally defined proteins or complexes
(93–96).

Combining Restraints into a Scoring Function

Once the data sets are encoded as restraints, they are
combined into a scoring function, usually the sum of all the
restraints. In this sum, the degree of uncertainty encoded by
each restraint is effectively its weight. Ideally, the restraint on
a spatial feature should be a probability density function on
the feature given the corresponding measurement (39); for
example, the lower and upper bounds on a distance should
reflect the uncertainty of the corresponding distance mea-
surement and its interpretation.

Calculation of an Ensemble of Structures by Satisfaction
of Spatial Restraints

Next, all structural models that minimize the scoring func-
tion and therefore fit the original data must be found. An
optimization procedure performs a search through the space
of all possible macromolecular complex configurations by
minimizing the violations of all restraints simultaneously. It is
helpful to have many optimization methods available and to
choose one that works best with a given representation and
set of restraints. We have implemented several different op-
timizers as part of the Integrative Modeling Platform package.
These optimizers can be classified as whole-system and di-
vide-and-conquer optimizers.

Whole-system Optimizers

In this class of optimizers, an algorithm usually starts with a
random initial configuration. The space of conformations is
then explored iteratively by computing the next assembly
configuration based on the values of all restraints for the
configuration in the current optimization step with the intent of
moving closer to the minimum value of the scoring function.
Optimizers in this class include traditional conjugate gradients
(97), quasi-Newton (98) and molecular dynamics schemes
(99), Monte Carlo procedures as well as more sophisticated
methods such as self-guided Langevin dynamics (100), and
the replica exchange protocol (101). Because of the stochas-
tic nature of these optimizations and the need to find all
good scoring solutions, many independent runs are gener-
ally performed, each starting with a different random initial
configuration.

Divide-and-conquer Optimizers

Divide-and-conquer optimizers can separate the particles
and restraints in a system into smaller “suboptimizations,”
ultimately resulting in more rapid sampling of structures. We
have recently suggested a general divide-and-conquer ap-
proach to more efficiently sample protein assembly configu-
rations (32). In this approach, the set of variables is decom-
posed into relatively uncoupled but potentially overlapping
subsets that can be sampled independently of each other (i.e.
are not required to be sampled together in a single calculation
and can be sampled in parallel) and then efficiently gathered
to compute the global minimum. The strength of this ap-
proach is derived from the decomposition procedure, which
helps to reduce the size of the search space from exponential
in the number of components in the whole system to expo-
nential in the number of components in the largest subset.
Similar ideas have been used for various modeling tasks such
as side chain packing (102–104), sequence-structure thread-
ing (103), ab initio RNA folding (105), and prediction of qua-
ternary structures of multiprotein complexes (106).
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Use of Restraints to Restrain the Search Space for
Optimization

Efficiency can be increased by designing an optimization
scheme to avoid considering configurations that clearly vio-
late a subset of the data. Examples include segmenting an
electron density map for the entire assembly into components
that likely correspond to individual proteins prior to fitting the
assembly proteins into the map (32), eliminating geometrically
unlikely protein-protein docking solutions (75, 107), and re-
stricting the search space to symmetric configurations (108,
109).

Human RNAPII Optimization

For our H-RNAPII example, we used the sum of the dis-
tance, connectivity, EM quality-of-fit, and geometric comple-
mentarity restraints described above as a scoring function.
The configuration of the subunits in H-RNAPII was optimized
using an extension of the divide-and-conquer MultiFit proto-
col (Fig. 2) (32, 33).2 We began by segmenting the electron
density map into 12 regions, each one of which served to
localize one of the 12 constituent H-RNAPII proteins. This
procedure resulted in 479,001,600 (12!) possible H-RNAPII
subunit configurations. Next, we eliminated all H-RNAPII sub-
unit configurations that did not satisfy a majority of the pro-
teomics restraints (Table III), keeping only 2,576 configura-
tions for further refinement. We then refined each of these
2,576 configurations to optimize the EM quality-of-fit and
geometric complementarity restraints using the standard
MultiFit protocol (32); 63 of the 2,567 configurations resulted
in refined models with “good” scores. These models had equiv-
alent positions for Rpb1, Rpb2 and Rpb3; however, the models
varied in the positions of the remaining subunits. Finally, we
filtered the 63 models by all proteomics restraints, resulting in a
single model that satisfied all proteomics restraints as well as
the EM quality-of-fit and geometric complementarity restraints
(Fig. 3).

Analysis of the Ensemble

Precision

There are three possible outcomes of an optimization pro-
cedure. First, if only a single structural model satisfies all
restraints and thus all input information, there is probably
sufficient data for prediction of the unique native state. Sec-
ond, if two or more different models are consistent with the
restraints, the data are insufficient to define the single native
state, or there are multiple significantly populated states. If the
number of distinct models is small, the structural differences
between the models may suggest additional experiments to
narrow down the possible solutions. Third, if no models sat-
isfy all input information, the data or their interpretation in

terms of the restraints are incorrect. For example, it might be
that a complex exists in several functional states and that the
available data cover more than one of them.

In the case of the H-RNAPII model, optimization resulted in
a single model that satisfied all the data. Thus, sufficient
information was available to predict the positions and orien-
tations of the H-RNAPII subunits. The ensemble of possible
models in the absence of proteomics data was much larger
(2,576 coarse configurations) and defined the structure far
less precisely. Therefore, proteomics data were crucial for
providing an unambiguous determination of a precise molec-
ular architecture of H-RNAPII.

Accuracy

Assessing the accuracy of a structure, defined as the dif-
ference between the model and the native structure, is difficult
but important (45). It is impossible to know with certainty the
accuracy of the proposed structure without knowing the real
native structure. Nevertheless, our confidence can be modu-
lated by five considerations: (a) self-consistency of indepen-
dent experimental data; (b) structural similarity among all con-
figurations in the ensemble that satisfy the input restraints; (c)
simulations where a native structure is assumed, correspond-
ing restraints are simulated from it, and the resulting calcu-
lated structure is compared with the assumed native struc-
ture; (d) confirmatory spatial data that were not used in the
calculation of the structure (e.g. a criterion similar to the
crystallographic free R-factor (110) can be used to assess
both the model accuracy and the harmony among the input
restraints); and (e) patterns emerging from a mapping of in-
dependent and unused data on the structure that are unlikely
to occur by chance (13, 39).

In the case of H-RNAPII, we can estimate the accuracy
directly because we know the crystallographic structure of the
yeast RNAPII, which is likely to be highly similar to that of
H-RNAPII (50) (c.f. the high degree of sequence similarity
between yeast and human subunit orthologs (Table II) and the
high correlation coefficient of 0.65 between the crystallo-
graphic yeast RNAPII structure and the electron density map
of H-RNAPII). The H-RNAPII model clearly recapitulates the
molecular architecture of yeast RNAPII (Fig. 3), preserving all
of its protein interactions. More quantitatively, the subunits in
the H-RNAPII model share a C� root mean square deviation
(RMSD) of only 11.4 Å with the human subunits individually
superposed on their orthologs in the yeast RNAPII structure.

Dealing with Incorrect Data, Incomplete Data, and
Multiple States

Proteome-wide protein-protein interaction maps have been
produced by high throughput assays, such as affinity purifi-
cation (11, 71) and yeast two-hybrid system (111–116). How-
ever, these data sets can be limited in three respects (117–
119). First, the data can be incomplete in the sense that a2 K. Lasker, unpublished data.
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number of interactions insufficient to describe the studied
system were detected. Second, the data can be inaccurate in
the sense that some detected interactions do not apply to the
studied system. Third, the data can be “frustrated” in the
sense that different subsets of the data apply to composition-
ally and/or conformationally different states of the studied
system. For example, prior to filtering, a significant fraction of
the affinity purification data for RNAPII subunits corresponds
to false positive interactions (defined as a set of interacting
subunits that do not have a connecting interaction path in the
crystallographic structure of the complex (51)). In particular,
31, 35, and 0% of the 71, 26, and six affinity purification sets
with two or more RNAPII subunits as reported by Krogan et al.
(72), Gavin et al. (71), and Ho et al. (70) were false positives,
respectively. In addition, 33% of the 12 reported binary inter-
actions extracted from the BioGRID database were false
positives.

A reasonable goal of structural modeling is to find the
minimum number of system states that account for the ob-
served data. If the data sets are correct and complete and
describe a single state of the system, the optimization proce-
dure should, in principle, result in a single solution that satis-
fies the data. If the data sets are inaccurate or incomplete,
irrespective of the number of system states, the sampling
should result in different states, some of which may or may
not satisfy all the data. Next, we describe these possible
outcomes in more detail.

Correct, Complete Data, Single State—The optimization
procedure should result in a single solution that satisfies all
restraints. If the data set is redundant, it is possible to cross-
validate the solution by rerunning the modeling procedure
using only random subsets of the data (120).

Correct, Incomplete Data, Single State—The optimization
procedure should produce multiple solutions, all of which
should satisfy all restraints. For example, this situation may
occur when the proteomics data do not apply to all subunits
of a system or only cover a small subset of interactions. It is
possible to identify the least precisely localized components
of the system within the set of solutions, directing future
experiments for the largest possible gain in the next iteration
of integrative modeling.

Incorrect, Complete Data, Single State—The optimization
procedure should produce multiple solutions, each satisfying
a fraction of the restraints. If there are redundant correct data,
it may be possible to identify the conflicting incorrect data by
cross-validation.

FIG. 3. Comparison of the crystallographic structure of yeast
RNAPII and the integrative model of human RNAPII. I, a–d, atomic
representations of the integrative model of H-RNAPII and the refer-
ence structure in two views; the reference structure is composed of
human subunits individually superposed on their orthologs in the
yeast RNAPII structure. The configuration of the H-RNAPII subunits (a
and c) is very similar to that in the reference structure (b and d); the C�
RMSD is only 11.4 Å. II, e–h, coarse representations of the H-RNAPII
model (e and g) and the reference structure (f and h) in the

same two views as in a–d further illustrate the high similarity between
the model and the reference. In the coarse representation, sets of 30
contiguous residues are shown as a single bead. III, i and j, protein
contact maps for the H-RNAPII model and the reference structure
(white, no contact; gray, weak contact; black, contact). The maps are
essentially identical, differing only in the interactions of Rpb6 with
Rpb2 and Rpb3, and Rpb1 with Rpb12.
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Incorrect, Incomplete Data, Single State—The optimization
procedure should produce multiple solutions, each satisfying
a fraction of the restraints. It is difficult to identify the incorrect
data as well as to detect a solution corresponding to the
correct state. This situation arose in a preliminary attempt to
model the molecular architecture of the 19 S regulatory par-
ticle of the 26 S proteasome (46). In that case, we have
concluded that additional data are required.

Multiple States—Even when all data are correct and com-
plete, the optimization procedure may be inadequate and
produce multiple solutions, each satisfying only a fraction of
the restraints. The same outcome is obtained when using
incorrect data. Thus, multiple states are difficult to deconvolve
from incorrect data (such as false positive interactions from
proteomics).

In conclusion, when no solution is found that satisfies all
data, it is difficult to identify the correct state(s). Formally, a
similar problem exists in protein structure determination
based on NMR spectroscopy. There, structural features, such
as interatomic distances and dihedral angles, are obtained
experimentally and used in the form of spatial restraints for
finding the set of structural models that satisfies these re-
straints. One approach to dealing with incorrect data for one
or more states looks at the frequency with which each re-
straint is violated in an ensemble of calculated structures (121,
122); if a given restraint is violated often, the bounds on the
distances allowed by the restraint can be loosened. Other
approaches use cross-validation to assess the completeness
of the experimental restraints (123). Another development, the
inferential structure determination method, formulates struc-
ture determination as an inference problem, handling incor-
rect and incomplete data as well as multiple states in a
Bayesian framework (43). Adaptations of these methods and
development of new methods should improve future handling
of incorrect and incomplete data in integrative structure de-
termination of conformationally and compositionally hetero-
genous assemblies.

DISCUSSION

As illustrated above, proteomics techniques can now facil-
itate the characterization of the structure of macromolecular
assemblies via integrative modeling. We have demonstrated
that by using atomic subunit structures, an electron density
map of their assembly, and proteomics data restraining rela-
tive subunit proximities we can extend the scope of macro-
molecular structure determination beyond what is possible
with single methods. Specifically, using the RNAPII structure
as an example, we have shown that proteomics data, al-
though traditionally not considered a source of formal struc-
tural information, can play a key role in assembly structure
determination.

One key challenge for integrating proteomics data into
structure determination remains the treatment of assemblies
that exist in multiple functional states, corresponding to dif-

ferent configurations and compositions of the assembly. Al-
though integrative methods can already restrain the structure
of the modeled assembly based on all available information,
some of the proteomics data may in fact apply to only a
subset of all functional states of the assembly. For example,
proteomics techniques often detect peripheral interactions
that are not part of the core assembly but could be vital for
one of the biologically relevant states. Thus, future protocols
need to be able to simultaneously determine structures for all
biologically relevant states. These methods will need to asso-
ciate specific interactions with specific functionally relevant
states of an assembly as well as remove false positive inter-
actions that are not relevant to a given state.

As the quantity and variety of experimental data about
macromolecular assemblies grows, integrative structure de-
termination will be vital for characterization of these machines
and the corresponding cellular processes. Methods are
needed that are more accurate in translation of heterogenous
data into spatial restraints as well as combination of these
restraints into a scoring function. New sampling and optimi-
zation schemes should improve the accuracy and level of
detail with which we can describe assembles. In addition, as
a generalization of treating systems with multiple configura-
tions and compositions, we should address the challenge of
characterizing the dynamics of macromolecular assemblies
by satisfying both spatial and temporal restraints for a system
of multiple components. As integrative structure determina-
tion techniques advance, we will be able to describe an in-
creasing number of key cellular structures, progressing to-
ward a comprehensive structural, temporal, and logical model
of the cell.
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