
Peptide Identification from Mixture Tandem
Mass Spectra*□S
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The success of high-throughput proteomics hinges on the
ability of computational methods to identify peptides from
tandem mass spectra (MS/MS). However, a common limi-
tation of most peptide identification approaches is the
nearly ubiquitous assumption that each MS/MS spectrum
is generated from a single peptide. We propose a new
computational approach for the identification of mixture
spectra generated from more than one peptide. Capital-
izing on the growing availability of large libraries of single-
peptide spectra (spectral libraries), our quantitative ap-
proach is able to identify up to 98% of all mixture spectra
from equally abundant peptides and automatically adjust
to varying abundance ratios of up to 10:1. Furthermore,
we show how theoretical bounds on spectral similarity
avoid the need to compare each experimental spectrum
against all possible combinations of candidate peptides
(achieving speedups of over five orders of magnitude)
and demonstrate that mixture-spectra can be identified
in a matter of seconds against proteome-scale spectral
libraries. Although our approach was developed for
and is demonstrated on peptide spectra, we argue that
the generality of the methods allows for their direct
application to other types of spectral libraries and mix-
ture spectra. Molecular & Cellular Proteomics 9:
1476–1485, 2010.

The success of tandem MS (MS/MS1) approaches to pep-
tide identification is partly due to advances in computational
techniques allowing for the reliable interpretation of MS/MS
spectra. Mainstream computational techniques mainly fall
into two categories: database search approaches that score
each spectrum against peptides in a sequence database
(1–4) or de novo techniques that directly reconstruct the
peptide sequence from each spectrum (5–8). The combina-

tion of these methods with advances in high-throughput
MS/MS have promoted the accelerated growth of spectral
libraries, collections of peptide MS/MS spectra the identifica-
tion of which were validated by accepted statistical methods
(9, 10) and often also manually confirmed by mass spectrom-
etry experts. The similar concept of spectral archives was also
recently proposed to denote spectral libraries including “in-
teresting” nonidentified spectra (11) (i.e. recurring spectra
with good de novo reconstructions but no database match).
The growing availability of these large collections of MS/MS
spectra has reignited the development of alternative peptide
identification approaches based on spectral matching (12–14)
and alignment (15–17) algorithms.

However, mainstream approaches were developed under
the (often unstated) assumption that each MS/MS spectrum is
generated from a single peptide. Although chromatographic
procedures greatly contribute to making this a reasonable
assumption, there are several situations where it is difficult or
even impossible to separate pairs of peptides. Examples in-
clude certain permutations of the peptide sequence or post-
translational modifications (see (18) for examples of co-eluting
histone modification variants). In addition, innovative experi-
mental setups have demonstrated the potential for increased
throughput in peptide identification using mixture spectra;
examples include data-independent acquisition (19) ion-mo-
bility MS (20), and MSE strategies (21).

To alleviate the algorithmic bottleneck in such scenarios,
we describe a computational approach, M-SPLIT (mixture-
spectrum partitioning using library of identified tandem mass
spectra), that is able to reliably and efficiently identify peptides
from mixture spectra, which are generated from a pair of
peptides. In brief, a mixture spectrum is modeled as linear
combination of two single-peptide spectra, and peptide iden-
tification is done by searching against a spectral library. We
show that efficient filtration and accurate branch-and-bound
strategies can be used to avoid the huge computational cost
of searching all possible pairs. Thus equipped, our approach
is able to identify the correct matches by considering only a
minuscule fraction of all possible matches. Beyond potentially
enhancing the identification capabilities of current MS/MS
acquisition setups, we argue that the availability of methods
to reliably identify MS/MS spectra from mixtures of peptides
could enable the collection of MS/MS data using accelerated
chromatography setups to obtain the same or better peptide
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identification results in a fraction of the experimental time
currently required for exhaustive peptide separation.

EXPERIMENTAL PROCEDURES

Problem Formulation—A mixture spectrum is defined as an MS/MS
spectrum from two different peptides, and a spectral library is a
collection of identified MS/MS spectra. Analogous to the identification
of MS/MS spectra by comparison against a database of known
protein sequences, our goal is to identify mixture spectra by compar-
ison against a spectral library. More formally, we modeled a mixture
spectrum M as M � A � �B, where A and B are MS/MS spectra from
two different peptides and �, the mixture coefficient, indicates their
relative abundance. Without loss of generality, we assume that A and
B are scaled to Euclidean norm 1 and that 0 � � � 1 (i.e. A always
corresponds to the higher abundance peptide). We can now formu-
late the following computational problem:

Mixture Spectrum Identification Problem (MSIP):
Input: A putative mixture spectrum M and a spectral library L
Output: A constant 0 � � � 1 and pair of spectra A, B � L, maximizing
similarity (M, A � �B)

Although there are several ways to define similarity between two
peptide spectra (12, 14, 15, 22), the normalized dot product or cosine2

measure of spectral similarity is widely accepted to be robust and
makes no special assumptions concerning peptide mass spectra (14).
Moreover, as we show below and in the supplemental materials,
cosine similarity has a number of useful mathematical properties that
allow us to derive theoretical bounds to guide our approach.

Simulation of Mixture Spectra—Because there are currently no pub-
licly available data with validated identifications of mixture MS/MS
spectra, we created a dataset of simulated mixture spectra to develop
and benchmark our approach. To this end, we used the human MS/MS
spectral library from the National Institute of Standards and Technology
(version 6/06) and grouped the spectra according to their identified
peptide. This resulted in 27,966 groups in the library, each containing

two or more spectra belonging to the same peptide. The spectral library
was then divided into two sets: 1) a set X, which has exactly one
spectrum per peptide, used to create the simulated mixture spectra and
2) a spectral library L containing all the remaining spectra, used for
searching. All spectra in the library are first scaled to norm 1; because
in a mixture the two peptides will most likely be present at different
abundances, mixture spectra were created by randomly selecting two
spectra AX and BX from X and linearly combining them using a pre-
defined mixture coefficient �. In other words, a mixture spectrum is of
the form M � AX � �BX, where M represents a simulated mixture
spectrum and AX and BX represent two single-peptide spectra, 0 � � �

1. Below we benchmark our approach for ��{0.1, 0.2, 0.5 ,1}.
Main Method—Although the MSIP formulation is simple, the rapidly

growing size of target spectral libraries (already on the order of
105-106 spectra) makes searching all possible pairs of spectra a
prohibitive approach (1011 comparisons per query spectrum). We
note that although one can prefilter the target spectral library to consider
only combinations of spectra with the same precursor mass as the
query spectrum, such an approach would currently not provide a real-
istic estimate of performance on quickly growing proteome-scale spec-
tral libraries. By not enforcing any parent mass filters on our perform-
ance estimates, we argue that the approach proposed here should
seamlessly scale to much larger spectral libraries and be directly appli-
cable to complex searches (e.g. metaproteomics studies). We propose
two ways to avoid the quadratic penalty of searching all pairs. First, we
use an efficient projected-cosine filter to eliminate a large fraction of
spectra in the library. After filtering, we use a branch-and-bound search
strategy to find the best-matching pairs by considering only a subset of
all possible pairs. The overall strategy is detailed in Fig. 1.

Filtering with Projected-Cosine—Although cosine is generally a good
measure of spectrum similarity, a mixture spectrum M derived from
peptides A and B may have limited similarity to the corresponding
single-peptide spectra; e.g. the presence of B in the mixture results in
many unmatched peaks between M and A. We address this with a
projected-cosine similarity, a modified cosine function that only consid-
ers a peak in M if the corresponding peak in A is not zero. More
precisely, for two vectors A and M, the projection of M on A (M(p)A) is
defined as:

Mp� A��i� � � M�i� if A�i� � 0
0 otherwise (Eq. 1)

The projected cosine between M and A is then simply the cosine of
the M(p)A and A:

2 Because all spectra were scaled down to norm 1, normalized
dot product simply reduces to estimating the cosine between two
unit vectors. In addition, we reduce the disproportionate influence
of high-intensity peaks by first applying the square-root transform
to all peak intensities (13) (preprocessing details provided in
Supplemental materials).

FIG. 1. Pseudocode for matching
strategy.
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cosp�M, A� �
Mp� A� � A

�Mp� A�� �A� (Eq. 2)

Given a spectrum M, the filtering step consists of computing the
projected-cosine similarity between M and all spectra in L and retain-
ing the top most similar matches. The filtering efficiency of pro-
jected-cosine similarity is determined by the highest (i.e. worst)
rank of a correct match of M to the library L. Note that a correct
match in L has the same peptide as M; single-peptide spectra have
one correct match, and mixture spectra have two correct matches.
As shown in Fig. 2a, the resulting ranks of correct matches indicate
that projected-cosine is an efficient filter that, in most cases, retains
the correct matches at ranks less than 500 in a library of approxi-
mately 27,966 spectra. In fact, for 95% of cases, the correct pair of
peptides in a mixture spectrum M can be identified by considering
only the top 100 library spectra with highest projected cosine
similarity to M (for � � 0.2).

Searching with Branch-and-Bound—To better describe the con-
cepts behind the branch and bound search strategy, let us assume
for the moment that a mixture spectrum M is obtained from two single-
peptide spectra with same abundance (i.e. � � 1; see sup-
plemental materials for analysis when � � 1). Therefore, for any pair of
spectra (A, B) we have the following relation for our objective function:

cos�M, A � B� �
M � �A � B�

�M� �A � B�

�
M � A � M � B

�A � A � B � B � 2A � B

�
M � A � M � B

�2 � 2A � B
(Eq. 3)

�
M � A � M � B

�2

thus we define: upperBound �M, A, B� �
M � A � M � B

�2

Assume that at certain a stage of our search, the best solution we
have seen so far is: A* � B* and, without loss of generality, let us also
assume cos(M, A*) � cos(M, B*). By the above equations, we do not
need to pair A* with any spectrum C such that upperBound(M, A*,
C) � cos(M, A* � B*) because upperBound(M, A*, C) is never less
than cos(M, A* � C). Moreover, a spectrum D with cos(M, D) � cos(M,
C) necessarily implies that upperBound(M, A* � D), � upperBound(M,
A* � C) thus implying that the pair (A, D) can be excluded from
consideration. This leads to the following search strategy: 1) sort
spectra in the library according to their cosine similarity to the query
spectrum M; 2) set A to the spectrum with highest cos(M, A) in the
library; 3) pair A with remaining spectra C � L until we find a spectrum
that has upperBound(M, A, C) � cos(M, A* � B*); 4) delete A from the
library, and repeat from step 2.

We determine the efficiency of this method by counting the number
of pairs that are evaluated before the algorithm terminates with the
optimal answer. As shown in Fig. 2b, in most cases, we consider only

FIG. 2. Effectiveness of filtering and branch-and-bound strate-
gies. a, cumulative distributions of maximum rank for correct
matches to the spectral library. Spectra in the library are first sorted
according to decreasing projected-cosine similarity to the mixture
spectrum (library containing 27,966 spectra). The rank of correct
matches are then determined. Correct matches are spectra identified
as one of the peptides in the mixture. Because each mixture spectrum
has two correct matches (i.e. it is generated from two peptides), we
take the maximum (i.e. worst) rank of the two matches. b, effective-
ness of the branch-and-bound strategy. To avoid considering all pairs
of spectra in the library, we derive a branch-and-bound search strat-
egy to eliminate a large fraction of all possible pairs. The number of
evaluated pairs of spectra is shown. Because the total number of
possible pairs is 3.9 � 108 and our approach never evaluates more
than 15,000 pairs, this self-adjusting strategy achieves speedups
of at least 2 � 104. c, combining the projected-cosine filter (a) with

branch-and-bound search (b). We first filter the spectral library with
projected-cosine and retain only the top 500 candidates; the branch-
and-bound search strategy is then applied to further reduce number
of pairs of spectra that needed to be evaluated. The curves for � � 0.1
clearly shows that projected-cosine is a effective pruning filter; note
that prefiltering the library with cosine results in the evaluation of more
pairs of spectra. The combined filters typically achieve speedups of
approximately 6 orders of magnitude (	(3.9 � 108)/500 � 7.8 � 105

speedups).
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hundreds to thousands of combinations, approximately 5 orders of
magnitude less than the total number of possible pairs (	3.9 � 108).
To take advantage of both the projected-cosine filter and the branch-
and-bound strategy, we first filter the library with projected-cosine to
retain only the top 500 candidates and then apply the branch-and-
bound strategy to limit the number of evaluated pairs. As shown in
Fig. 2c, only a few hundred pairs of spectra need to considered before
M-SPLIT finds the optimal answer. We also note that projected-
cosine is a better filter than cosine; as shown in Fig. 2c for � � 0.1,
prefiltering the library with cosine results in more pairs of spectra
being matched to each query spectrum (yellow line). A full compari-
son of the two filters is provided in supplemental materials.

Estimating the Mixture Coefficient �—When trying to identify a
mixture spectrum M � A � �B, the mixture coefficient � is generally
not known in advance. Because an incorrect � will distort the cosine
similarity between M and its correct library matches, it is important to
estimate it correctly. To distinguish the true and estimated values of
�, we denote the estimated mixture coefficient as �̂ and compare two
methods to compute �̂. In the residual-spectrum approach, we first
identify the dominant component in the mixture (A) and construct a
residual spectrum R by removing from the mixture spectrum all com-
mon peaks between A and M. It can be shown that �̂ is directly related
to the magnitude of the residual spectrum (�R�) and can be estimated
by solving the following equation:

�̂ �
�R�2

1 � �R�2 (Eq. 4)

In the optimal-cosine approach, �̂ is chosen to maximize the cosine
similarity between M and A � �̂B. By taking the derivative of the
cosine similarity function with respect to �̂, setting it to zero, and
solving for �̂ (details provided in supplemental materials), we get

�̂ �
M � B � �M � A��A � B�

M � A � �A � B��M � B�
(Eq. 5)

The performance of both methods is shown in Table I and
supplemental Fig. S1. Although the performance of the residual-
spectrum method is reasonable when � is large, the error becomes
quite substantial when � is small. By contrast, the optimal-cosine
method is robust in the presence of noise and delivers comparable
performance across different values of �.

Classifications of Spectral Library Matches—As with regular data-
base search of MS/MS spectra from isolated peptides, a spectral
library search will always identify some top-scoring pair for any given
query. To assess whether a match is significant, we consider three
possible outcomes when searching a given query spectrum S:

• No match: S does not match any spectrum in the library

• Single-peptide match: S matches one peptide in the library
• Mixture match: S is identified as a pair of peptides in the library

Let A* � �̂ B* be the best pair of spectra in the library returned by
M-SPLIT; we distinguish between the possible outcomes using P
and 
 defined as follows: P � Max(cos(S, A*), cos(S, B*)) and

 � cos(S, A* � �̂B*) � P.

Intuitively, if S is from a peptide not present in the library, both A*
and B* should have low cosine similarity to S. It follows that P should
be low in the no-match case but relatively high in the other two cases.
In addition, in mixture matches, the term B* should increase the
similarity to S by a significant amount, as determined by 
. We thus
determine the outcome of a particular match by a simple two-step
process: 1) a match is classified as no match if P is below a certain
threshold; 2) distinguish single-peptide and mixture matches by
checking whether 
 is below or above a chosen threshold,
respectively.

To determine the actual threshold used in this process, we con-
structed two negative control datasets. One consisted of 5,000 mix-
ture spectra (with � � 1.0) in which the peptides used to create the
mixture spectra are deleted from the library. The second dataset
consists of 5,000 single-peptide spectra. These two datasets were
combined with another mixture dataset and searched against the
library for the best pairs of matches. As shown in Fig. 3, when the
peptides are not present in the library (no-match case), P has rela-
tively low values (green dots) and can thus distinguish these from
single or mixture-match cases by placing a threshold on P (see Fig. 4
left for precision/recall curves). In distinguishing single-peptide from
mixture matches, Fig. 3 shows that 
 is higher for mixture matches
than for single-peptide matches. However, Fig. 3 also shows that this
threshold depends on �. To build a general model, we first choose the
threshold for cases where ��{0.1, 0.2, 0.5, 1.0} and use linear regres-

FIG. 3. Comparison of spectral library search outcomes.
Searching a query spectrum S against a spectral library has three
possible outcomes: 1) no match when S matches no spectrum in the
library (green dots); 2) single-peptide match when S matches only one
peptide in the library (red dots); and 3) mixture match when S is
identified as a pair of peptides in the library (pink, blue, cyan dots
represent mixture matches when � � 1.0, 0.5, 0.1, respectively). As
illustrated by the colored sets, M-SPLIT can distinguish no match
from the rest by thresholding p � max(cos(M, A), cos(M, B)), shown on
the x axis. Likewise, single-peptide and mixture matches can be
distinguished by thresholding 
 � cos(M, A � B) � P, (shown on the
y axis as the distance from the main diagonal line).

TABLE I
Mean and S.D. of the log-2 ratios of estimated (�̂ and true (�) mixture

coefficients

Although both approaches are roughly equivalent when � � 0.5,
optimal-cosine estimation performs substantially better on the more
difficult cases of smaller mixture coefficients (see supplemental Fig. 2
for the complete distributions of log-2 ratios).

True �

Residual-spectrum
approach

Optimal-cosine
approach

Mean S.D. Mean S.D.

1.0 �0.1312 0.4278 �0.0393 0.4646
0.5 0.051 0.4449 �0.0103 0.4770
0.2 0.4592 0.6767 0.0816 0.5264
0.1 1.0139 0.9021 �0.0014 0.5317
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sion to obtain the relationship between 
 and �. During our experi-
ments, we also found low-complexity spectra (i.e. spectra dominate
by only a few peaks) can lead to artificially high P or 
, we computed
a measure similar to dot-bias used in Ref. 14 and use this to filter out
any significant matches that may be due to low-complexity spectra
(see supplemental materials for details).

RESULTS

Our running hypothesis is that a mixture spectrum can be
identified by matching it to a linear combination of single-
peptide spectra. To test this hypothesis, we simulated a
series of different mixture spectra (as described under “Ex-
perimental Procedures”) and verified whether the resulting
mixture matches correctly identified the peptides used to
construct each simulated mixture. As shown in Table II, the
performance of our approach varies with � but is able to
select the correct peptides in 90–99% of all cases. As
expected, as � decreases, it becomes more difficult to
identify both peptides in the mixture spectra because the
signal-to-noise ratio substantially decreases for the low-
abundance peptide. In addition, the accuracy decreases
faster at a ratio of 1:0.1, suggesting that this may be the

lowest � that can be handled without substantially decreas-
ing sensitivity. Of course, high MS/MS mass accuracy
should seamlessly elevate the performance of this approach
to lower values of �.

Because of multiple factors in MS/MS data acquisition, it is
possible that not all peaks in a single-peptide spectrum will
appear in a mixture spectrum containing the same peptide. It
is reasonable to assume that high-intensity peaks in the sin-
gle-peptide spectrum will be detectable, whereas low-inten-
sity peaks may not be observed. We simulate this scenario by
applying a window filter where a peak is kept if it has rank less
than or equal to N in a window of W Da around its mass. We
show that our method is robust against missing peaks using
different values of W and N (see supplemental materials). This
is consistent with previous studies showing that one does not
need all peaks in a spectrum for single-peptide identification
purposes: in X!Hunter (12), the authors speed up the compu-
tation by showing that it is generally enough to retain only the
top 20 peaks per spectrum.

Having observed that the highest abundance peptide in a
mixture can be identified as the top ranking match using
projected-cosine, one could reason that if the peaks from this
peptide are removed from the mixture spectrum, we are left
with a non-mixture spectrum. This leads to an iterative strat-
egy to identify peptides in mixture spectra: first, identify the
spectrum with top-scoring projected-cosine, remove shared
peaks between the top-scoring spectrum and the mixture
spectrum, and search the library a second time to identify the
second peptide in the mixture. The accuracy of the iterative
method is compared with that of M-SPLIT in Table II and
observed to be worse. Note that this is consistent with our
results on estimation of �: as � gets smaller, it is important to
consider both components in the mixture for accurate identi-
fication and quantification of both peptides.

Peptide Identification with Compressed Chromatography—
Whereas the simulation experiments demonstrate the ability
of M-SPLIT to reliably identify mixture spectra against large
spectral libraries, we further validated our method on experi-
mental data. The dataset consists of six bovine proteins (apo-

FIG. 4. Classification of spectral library matches. Left, precision/recall curves when distinguishing No-match from single-peptide and
mixture matches; decisions are made by checking whether p � max(cos(M, A), cos(M, B)) is above a predetermined threshold. Right,
precision/recall curves when distinguishing single-peptide from mixture matches; decisions are made by checking whether 
 � cos(M,
A � B) � P is above a predetermined threshold.

TABLE II
Selecting the correct pair of peptides from the spectral library; each
row indicates the percentage of cases in which the top-ranking pair is

correct

M-SPLIT is compared with an iterative approach in which one first
identifies the spectrum with the top-scoring projected-cosine, re-
moves shared peaks between the top-scoring spectrum and the
query spectrum, and finally searches the library a second time to
identify the second peptide in the mixture. As shown here, the itera-
tive approach is generally worse than M-SPLIT and especially error-
prone for low values of mixture coefficients, consistent with our
observations on estimation of mixture coefficients. For smaller values
of �, M-SPLIT gains an advantage by simultaneously considering
both peptides in the mixture.

Mixture coefficient (�) M-SPLIT Iterative approach

1:1 99.4 98.4
1:0.5 98.7 98.3
1:0.3 96.8 96.4
1:0.1 89.6 77.1
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transferrin, carbonic anhydrase, catalase, glutamate dehydro-
genase, lactoperoxidase, and serum albumin) from Michrom
Bioresources, Inc. (Auburn, CA). 500 pmol of each protein
were mixed in an equimolar ratio in a 50:50 mix of acetonitrile
and water, reduced, alkylated, and trypsinized. This same
sample was analyzed under two different chromatographic
time scales: one dataset was obtained with an 80-min chro-
matography (Long dataset), whereas the other dataset was
obtained with a Short 3-min chromatography (Short dataset).
MS data were acquired on an LTQ-Orbitrap XL (Thermo Fisher
Scientific) operating on an acquisition cycle of two consecu-
tive survey scans (first in the linear ion trap, second in the
Orbitrap at 60,000 resolution) followed by MS/MS scans at
unit resolution (linear ion trap, centroid mode, AGC on). We
note that although the high-resolution survey scans readily
provide accurate precursor masses, these particular settings
assign MS/MS precursor masses based on the low-resolution
survey scans, thus allowing us to verifiably test the perform-
ance of our approach as if operating in the (still) most com-
mon data acquisition mode. Peak lists in RAW files were
converted to mzXML using ReAdW. Excluding the initial load
and final wash periods, we obtain 251 MS/MS spectra in the
Short dataset that could possibly be mapped to spectra in the
Long dataset. Under these chromatographic conditions, we
assumed that each spectrum in the Long dataset comes from
only one peptide and used these as our library of single-
peptide spectra. Conversely, because the Short dataset was
obtained from the same sample with much less chromatog-
raphy time, we assumed that some spectra might contain
pairs of peptides that had been separated in the Long run; the
Short dataset was thus used as our set of query spectra
against the spectral library defined by the Long dataset.

The Long dataset was annotated using InsPecT (4) to
search SwissProt (ver.15.9) with parent mass tolerance of 2
Da and fragment mass tolerance of 0.5 Da; a 5% false dis-
covery rate was enforced using a standard target/decoy strat-
egy (10), and no modifications were allowed. We note that
although 5% FDR is generally too high for peptide identifica-
tion purposes, our main utilization of search results was in
grouping repeated spectra from the same peptide. To further
increase the coverage of peptide identification, we grouped
spectra in the library by assigning two spectra to the same
group if their parent masses were within tolerance (2 Da, 0.05
Da if precursor masses are corrected using the high accuracy
survey scans) and their cosine similarity is high. Then if any
spectrum in a group is annotated by InsPecT, annotations are
transferred to every member in the group. To reduce potential
errors, annotations are transferred only when coherent across
all identified spectra in the same group; otherwise, all spectra
in that group are considered unidentified. Spectra in the Short
dataset were annotated in two different ways: 1) M-SPLIT with
parameters determined from the simulation experiments and
2) by InsPecT using the same search parameters used for the
Long dataset. The results are shown in Fig. 5 and Table 3. Of

251 MS/MS spectra, M-SPLIT returned a total of 187 matches
and InsPecT returned 22 IDs. As a first level of validation, we
ran M-SPLIT without a parent mass filter and used parent
mass as an a posteriori independent test to estimate the
accuracy and sensitivity of our approach. The lack of a parent
mass filter also allowed us to estimate the performance of
M-SPLIT on a much larger spectral library (e.g. proteome-
scale spectral library) in which searches would be conducted
only against spectra with matching parent masses, thus re-
sulting in a comparable number of candidate matches. We
manually compared the MS1 isotopic profile of the query
spectra to the MS1 isotopic profile of the top match(es) re-
turned by M-SPLIT and verified whether these were the same.
Two isotopic profiles were considered the same if both indi-
cated the same peptide charge and if isotopic peaks had a
difference in m/z of less than 0.05 Da. We also manually visu-
alized both the MS1 and MS/MS spectra of mixture match
cases to verify that the matches are valid (details for all mixture
matches from the Short dataset are provided in sup-
plemental materials). The estimated accuracy for both single-
peptide and mixture matches are shown in Table III, Part A.

Of all 251 MS/MS spectra in the Short dataset, 64 did not
match any spectra in the Long dataset (Table III, Part B). After
manual investigation of the Long dataset, it turned out that for
most cases (54/64), M-SPLIT did not find a match because
either the corresponding peptide was missing (i.e. no corre-

FIG. 5. Classification of spectral library matches between Short
(3-min) and Long (80-min) chromatography runs of the same
sample. We assumed that each MS/MS spectrum in the Long dataset
comes from only one peptide and used these as our library of single-
peptide spectra. On the other hand, because the Short dataset was
obtained from the same sample with compressed chromatography,
we would expect that some MS/MS spectra might contain pairs of
peptides that were separated in the Long run and thus use this as our
set of query spectra. Each spectrum in the Short dataset was
searched against the Long dataset for the best pair and labeled as
mixture, single-peptide and no match, shown here as purple, green,
and blue dots, respectively.
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sponding MS1 isotopic profile was found) or it was not se-
lected for MS/MS (MS2 not found). Hence, these unannotated
spectra are likely a limitation in the library derived from the
Long dataset and not a shortcoming of M-SPLIT, which cor-
rectly classifies them as no-match cases. Considering the
remaining 10 cases as false negatives leads to a 	94%
(186/196) estimate of M-SPLIT’s sensitivity. Note that these
numbers, although not identical, are close to those seen in our
simulated dataset and thus indicate that our simulation is able
to capture important aspects of mixture spectra in real chro-
matographic settings.

To quantify the peptide identification gain in M-SPLIT, we
further compared the number of spectra and unique peptides
identified in the Short dataset with those obtained by InsPecT.

Although this comparison violates the common assumption of
database search methods (i.e. that each spectrum comes
from a single peptide), it nevertheless mimics the typical setup
in MS/MS experiments and allows us to estimate the ex-
pected gains from using M-SPLIT. The 187 matches from the
Short dataset to the Long dataset are divided into four groups
in Table III, Part B, according to their InsPecT annotations.
Although InsPecT was able to annotate only 22 spectra in the
Short dataset, M-SPLIT was able to successfully annotate
approximately four times as many spectra in the same data-
set. When comparing the number of unique peptides identi-
fied in the Short dataset, InsPecT identified only 	6% of the
peptides identified in the Long run, whereas M-SPLIT
matches recover approximately 	20% of all identifications in
the Long dataset, including IDs from mixture spectra.

Peptide Identification in Yeast—To illustrate the utility of our
method in a typical scenario, we further tested M-SPLIT on a
larger experimental yeast dataset (23), generously made pub-
licly available in Tranche/ProteomeCommons (24) by re-
searchers at the University of Vanderbilt. In brief, a tryptic
digest of Saccharomyces cerevisiae was analyzed on an LTQ
Orbitrap XL mass spectrometer (Thermo Fisher Scientific),
and MS/MS spectra were acquired using a data-dependent
scanning mode in which one full MS scan (m/z 300–2000) was
acquired on the Orbitrap at a resolution of 60,000, followed by
eight MS/MS scans collected on the LTQ (see Ref. 23 for full
details). To retain the utility of accurate precursor masses for
a posteriori validation of search results, InsPecT was run with
2.5-Da parent mass tolerance and 0.5-Da fragment mass
tolerance on the Saccharomyces Genome Database (version
5/8/2009); a 1% false discovery rate was enforced using a
target/decoy strategy, and no modifications were allowed.
M-SPLIT was run with default parameters against the yeast
spectral library from NIST (version 5/4/2009); a 3-Da parent
mass filter was used to prefilter the library before the search.
The results are summarized in Table IV. In short, InsPecT was
able to identify a total of 19,297 spectra and 4,486 unique
peptides. On the other hand, M-SPLIT was able to identify
28,993 single-peptide spectra, 1,505 mixture spectra, and a
total of 6,089 unique peptides. Because the yeast dataset was
acquired with high-accuracy survey scans, this information
was further used to validate our annotations by comparing the
theoretical m/z value of the peptides returned by InsPecT/M-
SPLIT and the observed precursor m/z in the corresponding
survey scans. An annotation is considered correct if the the-
oretical precursor m/z is within 10 ppm of the observed m/z;
the estimated accuracies are summarized in Table IV. The
comparison between M-SPLIT and InsPecT further reveals
that their annotations are same in 	99% of the cases for
which both make an annotation, thus demonstrating the co-
herence of these two independent methods.

M-SPLIT identifications indicate that mixture spectra con-
sist of approximately 5% of all identifiable spectra in the yeast
dataset, suggesting that these constitute a modest but sig-

TABLE III
M-SPLIT results on the compressed-chromatography (Short) data set

Of 251 spectra, 186 have a match to the spectral library obtained
from an 80-minute run of the same sample (Long dataset). In Part A,
precision was estimated by comparing the MS1 isotopic profile of
each query spectrum and the top matches returned by M-SPLIT in the
Long dataset. Two isotopic profiles are considered matched if they
indicate the same peptide charge, have correlated intensities and
isotopic peaks have m/z difference � 0.05 Da. In Part B, M-SPLIT
matches are divided into four categories according to whether the
spectra were identified by InsPecT. In Part C, the 64 spectra that did
not match to the Long data set were further investigated manually.
For most cases (54 of 64), this was due to missing data in the Long
data set; either there was no MS/MS spectra for the corresponding
MS1 precursor or no matching MS1 precursor was found. In Part D,
the number of unique peptides identified by M-SPLIT and InsPecT is
reported.

Category Precision

A. All M-SPLIT matches

Single-peptide matches 97% (174/179)
Mixture matches 87% (7/8)

B. Identified M-SPLIT matches

Identified by InsPecT
Counts

Long dataset Short dataset

No No 95
Yes No 73
No Yes 8
Yes Yes 11

C. Spectra in the Short dataset not matched to the Long
dataset

Category Counts

MS1 not found 17
MS2 not found 37
MS1 and MS2 found 10

D. Unique peptide identifications

Method
No. of peptides identified

Long dataset Short dataset

InsPecT 211 14
M-SPLIT NA 43

NA, not available.
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nificant fraction of identifiable spectra in typical proteomics
experiments. It should be emphasized that even though the
number of mixture spectra is not large, these result in more
than one peptide identification per spectrum and thus carry
more information than single-peptide spectra. In the yeast
dataset, there are a total of 28,993 single-peptide spectra
identified by M-SPLIT as 5,873 unique peptides. In addition,
M-SPLIT further identifies 1,505 mixture spectra as 1,627
unique peptides, 239 of which are identified only in mixture
spectra; a summary of the overlap between the two methods
is shown in Fig. 6.

DISCUSSION

Despite the success of mainstream software for peptide
identification from MS/MS spectra, the ubiquitous assump-
tion that each spectrum arises from only one peptide is often
not valid, making the interpretation difficult in such scenarios.
To address this computational bottleneck, we propose the
first spectral library-based approach (M-SPLIT) to the identi-
fication of mixture spectra generated from pairs of peptides.
Theoretical bounds were derived to prune the search space
using branch-and-bound techniques and further improved
using a new projected-cosine metric. Thus, M-SPLIT dramat-
ically reduces the search space by 6 orders of magnitude and
is able to deliver results at an average of 2 s/spectrum (on a
regular laptop with a Pentium Core2 Duo, 1.6 GHz, 2 GB
RAM), even when searching against proteome-scale spectral

libraries. Despite considering only a tiny fraction of the whole
search space, our benchmarks on both simulated and exper-
imental data consistently show that M-SPLIT has both high
sensitivity (	94%) and high accuracy (up to 98%).

In addition to accurate peptide identification, M-SPLIT ro-
bustly quantifies the relative abundance of coeluting peptides
at the time of MS/MS acquisition, as determined by the frac-
tion of MS/MS ion current assigned to each peptide. In prin-
ciple, extending this approach to relative peptide abundance
per run (e.g. in Data Independent Acquisition setups (25))
could be as simple as adding the estimated intensities over
consecutive MS/MS scans followed by a posteriori computa-
tion of per-run relative abundance. It should be noted that, as
in other label-free MS-based quantification approaches (26),
there are MS-specific confounding factors that may result in
distortion of the observed relative abundance (e.g. peptide-
specific ionization efficiencies) and thus require follow-up ex-
periments to validate the observed relative abundance.

We further note that M-SPLIT makes no assumptions about
the type of query or library spectra. Although M-SPLIT was
developed and tested on peptide MS/MS spectra, the current
implementation is readily applicable to any type of spectra. In
particular, it would be straightforward to extend any target
spectral library to include spectra of common peptide and
chemical contaminants and thus reduce their negative effect
on peptide identifications (by matching experimental contam-
inant spectra to library contaminant spectra). However, as
with other spectral library search approaches, M-SPLIT do
assumes that experimental spectra are acquired under con-
ditions prone to generate spectra comparable with those
available in the spectral library. Although our yeast results

FIG. 6. Peptide identifications in yeast dataset with M-SPLIT
and InsPecT. Peptides identified by M-SPLIT and InsPecT are com-
pared in a Venn diagram indicating the numbers of unique peptides in
each category.

TABLE IV
M-SPLIT and InsPecT search results on the Yeast dataset [24]

Part A reports numbers of identified spectra (single-peptide and
mixture) and unique peptides. Part B reports the precision of peptide
identifications was estimated by comparing the theoretical precursor
m/z of peptides returned by M-SPLIT or InsPecT and the observed
precursor m/z values in the corresponding MS1 scan (isotopic profile).
An identification is considered correct if the difference between the-
oretical and observed precursor m/z values is less than 10 ppm. For
mixture spectra the overall precision is computed by dividing the
number of correct peptide identifications by the total number of
identifications (i.e. twice the number of mixture spectra). The preci-
sion for the second-peptide identifications is also shown (in paren-
theses); this precision is lower because the second peptide in the
mixture is usually of low abundance (average � � 0.3) and thus harder
to identify.

Method
Spectrum identifications Unique

peptidesSingle-peptide Mixture Total

A. Spectrum and peptide identifications in the yeast
dataset

InsPecT 19,297 NA 19,297 4,486
M-SPLIT 28,993 1,505 30,498 6,089

B. Estimated precision in the yeast dataset

Method Single-peptide matches Mixture
matches

InsPecT 98% NA
M-SPLIT 98% 95.7% (91.4%)

NA, not available.
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demonstrate that standard NIST spectral libraries can be
used to identify independently collected spectra from an
unrelated research group, we note that all spectra were
acquired using similar tandem mass spectrometry (CID/
IonTrap) instruments and settings. By blindly identifying the
best pairs in a given spectral library, M-SPLIT automatically
classifies each query spectrum as a mixture match, single
match, or no match; thus it is a general self-adjusting tool
that can be used on experimental setups promoting the
acquisition of either/both single-peptide or/and mixture
spectra.

The development of mass spectrometry algorithms typi-
cally requires large datasets with validated identified spec-
tra that are difficult to obtain. The unavailability of datasets
with validated identifications of mixture spectra was a lim-
iting factor that we addressed in two different ways: by
generating large datasets of simulated mixture spectra and
by acquiring MS/MS spectra from the same sample using
different chromatographic time scales. The level of control
afforded by the generation of simulated mixture spectra was
instrumental in determining spectrum identifiability over a
range of relative abundance of coeluted peptides. These
results were then corroborated using an experimental data-
set in which it was possible to provide exhaustive manual
validation. As such, we were able to determine both the
accuracy and sensitivity of our approach—a commonly dif-
ficult task because the set of true positives (and its com-
plementary false negatives) is typically not known in ad-
vance. After our validation, we estimated that M-SPLIT
delivers a false negative rate of only 5% at accuracy levels
of up to 98%.

Focusing M-SPLIT on the identification of mixture spectra
from pairs of peptides allowed us to derive theoretical
bounds and filtration techniques that can be extended for
spectra from more complex mixtures. In particular, the utility
of the projected-cosine metric is likely to increase as mix-
ture spectra become more complex. In addition, although
M-SPLIT is already able to reliably annotate mixture spectra
with inaccurate fragment masses (still the dominant MS/MS
acquisition mode), its performance is very likely to further
improve for high accuracy MS/MS data. Such data could
seamlessly enable the identification of coeluted peptides at
more disparate relative abundance ratios and would prob-
ably greatly simplify the extension to mixture spectra from
more than two peptides.

Acknowledgments—We thank NIST, ProteomeCommons, and
Vanderbilt University for the public availability of the mass spec-
trometry data used in this research and the reviewers for insightful
suggestions.

* This work was supported in part by National Institutes of Health
Grant 1-P41-RR024851 from the National Center for Research
Resources.

□S This article contains supplemental material and supplemental
Fig. S1.

� To whom correspondence should be addressed: 9500 Gilman
Drive, Mail Code 0404, La Jolla, CA 92093-0404; Tel.: 858-534-8666;
Fax: 858-534-7029; E-mail: bandeira@ucsd.edu.

REFERENCES

1. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to
correlate tandem mass-spectral data of peptides with amino acid se-
quences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989

2. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999)
Probability-based protein identification by searching sequence data-
bases using mass spectrometry data. Electrophoresis 20, 3551–3567

3. Craig, R., and Beavis, R. C. (2004) TANDEM: matching proteins with tan-
dem mass spectra. Bioinformatics 20, 1466–1467

4. Tanner, S., Shu, H., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner,
P. A., and Bafna, V. (2005) InsPecT: identification of posttranslationally
modified peptides from tandem mass spectra. Anal. Chem. 77,
4626–4639

5. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., and
Lajoie, G. (2003) PEAKS: powerful software for peptide de novo se-
quencing by tandem mass spectrometry. Rapid Commun. Mass Spec-
trom. 17, 2337–2342

6. Frank, A., and Pevzner, P. (2005) PepNovo: de novo peptide sequencing via
probabilistic network modeling. Anal. Chem. 77, 964–973

7. Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer, P.,
Gruissem, W., and Buhmann, J. M. (2005) NovoHMM: a hidden Markov
model for de novo peptide sequencing. Anal. Chem. 77, 7265–7273

8. Mo, L., Dutta, D., Wan, Y., and Chen, T. (2007) Msnovo: a dynamic pro-
gramming algorithm for de novo peptide sequencing via tandem mass
spectrometry. Anal. Chem. 79, 4870–4878

9. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical
statistical model to estimate the accuracy of peptide identifications made
by MS/MS and database search. Anal. Chem. 74, 5383–5392

10. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for in-
creased confidence in large-scale protein identifications by mass spec-
trometry. Nat. Methods 4, 207–214

11. Frank, A. M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S. P., Smith, R. D.,
and Pevzner, P. A. (2008) Clustering millions of tandem mass spectra. J.
Proteome Res. 7, 113–122

12. Craig, R., Cortens, J. C., Fenyo, D., and Beavis, R. C. (2006) Using anno-
tated peptide mass spectrum libraries for protein identification. J. Pro-
teome Res. 5, 1843–1849

13. Frewen, B. E., Merrihew, G. E., Wu, C. C., Noble, W. S., and MacCoss, M. J.
(2006) Analysis of peptide ms/ms spectra from large-scale proteomics
experiments using spectrum libraries. Anal. Chem. 78, 5678–5684

14. Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E., and
Aebersold, R. (2007) Development and validation of a spectral library
searching method for peptide identification from MS/MS. Proteomics 7,
655–667

15. Bandeira, N., Tang, H., Bafna, V., and Pevzner, P. (2004) Shotgun protein
sequencing by tandem mass spectra assembly. Anal. Chem. 76,
7221–7233

16. Savitski, M. M., Nielsen, M. L., and Zubarev, R. A. (2006) Modificomb, a
new proteomic tool for mapping substoichiometric post-translational
modifications, finding novel types of modifications, and fingerprinting
complex protein mixtures. Mol. Cell. Proteomics 5, 935–948

17. Bandeira, N., Tsur, D., Frank, A., and Pevzner, P. A. (2007) Protein identi-
fication via spectral networks analysis. Proc. Natl. Acad. Sci. U.S.A. 104,
6140–6145

18. Phanstiel, D., Brumbaugh, J., Berggren, W. T., Conard, K., Feng, X., Lev-
enstein, M. E., McAlister, G. C., Thomson, J. A., and Coon, J. J. (2008)
Mass spectrometry identifies and quantifies 74 unique histone H4 iso-
forms in differentiating human embryonic stem cells. Proc. Natl. Acad.
Sci. U.S.A. 105, 4093–4098

19. Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A., and Yates, J. R., 3rd
(2004) Automated approach for quantitative analysis of complex peptide
mixtures from tandem mass spectra. Nat. Methods 1, 39–45
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