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iTRAQ (isobaric tags for relative or absolute quantitation)
is a mass spectrometry technology that allows quantita-
tive comparison of protein abundance by measuring peak
intensities of reporter ions released from iTRAQ-tagged
peptides by fragmentation during MS/MS. However, cur-
rent data analysis techniques for iTRAQ struggle to report
reliable relative protein abundance estimates and suffer
with problems of precision and accuracy. The precision of
the data is affected by variance heterogeneity: low signal
data have higher relative variability; however, low abun-
dance peptides dominate data sets. Accuracy is compro-
mised as ratios are compressed toward 1, leading to un-
derestimation of the ratio. This study investigated both
issues and proposed a methodology that combines the
peptide measurements to give a robust protein estimate
even when the data for the protein are sparse or at low
intensity. Our data indicated that ratio compression arises
from contamination during precursor ion selection, which
occurs at a consistent proportion within an experiment
and thus results in a linear relationship between expected
and observed ratios. We proposed that a correction factor
can be calculated from spiked proteins at known ratios.
Then we demonstrated that variance heterogeneity is
present in iTRAQ data sets irrespective of the analytical
packages, LC-MS/MS instrumentation, and iTRAQ label-
ing kit (4-plex or 8-plex) used. We proposed using an
additive-multiplicative error model for peak intensities in
MS/MS quantitation and demonstrated that a variance-
stabilizing normalization is able to address the error
structure and stabilize the variance across the entire in-
tensity range. The resulting uniform variance structure
simplifies the downstream analysis. Heterogeneity of vari-
ance consistent with an additive-multiplicative model has
been reported in other MS-based quantitation including
fields outside of proteomics; consequently the variance-
stabilizing normalization methodology has the potential to
increase the capabilities of MS in quantitation across di-
verse areas of biology and chemistry. Molecular & Cel-
lular Proteomics 9:1885–1897, 2010.

Different techniques are being used and developed in the
field of proteomics to allow quantitative comparison of sam-
ples between one state and another. These can be divided
into gel- (1–4) or mass spectrometry-based (5–8) techniques.
Comparative studies have found that each technique has
strengths and weaknesses and plays a complementary role in
proteomics (9, 10). There is significant interest in stable iso-
tope labeling strategies of proteins or peptides as with every
measurement there is the potential to use an internal refer-
ence allowing relative quantitation comparison, which signif-
icantly increases sensitivity of detection of change in abun-
dance. Isobaric labeling techniques such as tandem mass
tags (11, 12) or isobaric tags for relative or absolute quanti-
tation (iTRAQ)1 (13, 14) allow multiplexing of four, six and eight
separately labeled samples within one experiment. In contrast
to most other quantitative proteomics methods where precur-
sor ion intensities are measured, here the measurement and
ensuing quantitation of iTRAQ reporter ions occurs after frag-
mentation of the precursor ion. Differentially labeled peptides
are selected in MS as a single mass precursor ion as the size
difference of the tags is equalized by a balance group. The
reporter ions are only liberated in MS/MS after the reporter ion
and balance groups fragment from the labeled peptides dur-
ing CID. iTRAQ has been applied to a wide range of biological
applications from bacteria under nitrate stress (15) to mouse
models of cerebellar dysfunction (16).

For the majority of MS-based quantitation methods (includ-
ing MS/MS-based methods like iTRAQ), the measurements
are made at the peptide level and then combined to compute
a summarized value for the protein from which they arose. An
advantage is that the protein can be identified and quantified
from data of multiple peptides often with multiple values per
distinct peptide, thereby enhancing confidence in both iden-
tity and the abundance. However, the question arises of how
to summarize the peptide readings to obtain an estimate of
the protein ratio. This will involve some sort of averaging, and
we need to consider the distribution of the data, in particular
the following three aspects. (i) Are the data centered around a
single mode (which would be related to the true protein quan-
titation), or are there phenomena that make them multimodal?
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(ii) Are the data approximately symmetric (non-skewed)
around the mode? (iii) Are there outliers? In the case of mul-
timodality, it is recommended that an effort be made to sep-
arate the various phenomena into their separate variables and
to dissect the multimodality. Li et al. (17) developed ASAP
ratio for ICAT data that includes a complex data combination
strategy. Peptide abundance ratios are calculated by combin-
ing data from multiple fractions across MS runs and then
averaging across peptides to give an abundance ratio for
each parent protein. GPS Explorer, a software package de-
veloped for iTRAQ, assumes normality in the peptide ratio for
a protein once an outlier filter is applied (18). The iTRAQ
package ProQuant assumes that peptide ratio data for a
protein follow a log-normal distribution (19). Averaging can be
via mean (20), weighted average (21, 22), or weighted corre-
lation (23). Some of these methods try to take into account the
varying precision of the peptide measurements. There are
many different ideas of how to process peptide data, but as
yet no systematic study has been completed to guide analysis
and ensure the methods being utilized are appropriate.

The quality of a quantitation method can be considered in
terms of precision, which refers to how well repeated mea-
surements agree with each other, and accuracy, which refers
to how much they on average deviate from the true value.
Both of these types of variability are inherent to the measure-
ment process. Precision is affected by random errors, non-
reproducible and unpredictable fluctuations around the true
value. (In)accuracy, by contrast, is caused by systematic bi-
ases that go consistently in the same direction. In iTRAQ,
systematic biases can arise because of inconsistencies in
iTRAQ labeling efficiency and protein digestion (22). Typically,
ratiometric normalization has been used to address this tag
bias where all peptide ratios are multiplied by a global nor-
malization factor determined to center the ratio distribution on
1 (19, 22). Even after such normalization, concerns have been
raised that iTRAQ has imperfect accuracy with ratios
shrunken toward 1, and this underestimation has been re-
ported across multiple MS platforms (23–27). It has been
suggested that this underestimation arises from co-eluting
peptides with similar m/z values, which are co-selected during
ion selection and co-fragmented during CID (23, 27). As the
majority of these will be at a 1:1 ratio across the reporter ion
tags (as required for normalization in iTRAQ experiments),
they will contribute a background value equally to each of
the iTRAQ reporter ion signals and diminish the computed
ratios.

With regard to random errors, iTRAQ data are seen to
exhibit heterogeneity of variance; that is the variance of the
signal depends on its mean. In particular, the coefficient of
variation (CV) is higher in data from low intensity peaks than in
data from high intensity peaks (16, 22, 23). This has also been
observed in other MS-based quantitation techniques when
quantifying from the MS signal (28–30). Different approaches
have been proposed to model the variance heterogeneity.

Pavelka et al. (31) used a power law global error model in
conjunction with quantitation data derived from spectral
counts. Other authors have proposed that the higher CV at
low signal arises from the majority of MS instrumentation
measuring ion counts as whole numbers (32). Anderle et al.
(28) described a two-component error model in which Poisson
statistics of ion counts measured as whole numbers dominate
at the low intensity end of the dynamic range and multiplicative
effects dominate at the high intensity end and demonstrated its
fit to label-free LC-MS quantitation data. Previously, in the
1990s, Rocke and Lorenzato (29) proposed a two-component
additive-multiplicative error model in an environmental toxin
monitoring study utilizing gas chromatography MS.

How can the variance heterogeneity be addressed in the
data analysis? Some of the current approaches include outlier
removal (18, 25), weighted means (21, 22), inclusion filters (16,
22), logarithmic transformation (19), and weighted correlation
analysis (23). Outlier removal methods, for example using
Dixon’s test, assume a normal distribution for which there is
little empirical basis. The inclusion filter method, where low
intensity data are excluded, reduces the protein coverage
considerably if the heterogeneity is to be significantly re-
duced. The weighted mean method results in higher intensity
readings contributing more to the weighted mean than read-
ings from low intensity readings. Filtering, outlier removal, and
weighted methods are of limited use for peptides for which
only a few low intensity readings were made; however, such
cases typically dominate the data sets. Even with a logarith-
mic transformation, heterogeneity has been reported for
iTRAQ data (16, 19, 22). Current methods struggle to address
the issue and to maintain sensitivity.

Here we investigate the data analysis issues that relate to
precision and accuracy in quantitation and propose a robust
methodology that is designed to make use of all data without
ad hoc filtering rules. The additive-multiplicative model men-
tioned above motivates the so-called generalized logarithm
transformation, a transformation that addresses heterogene-
ity of variance by approximately stabilizing the variance of the
transformed signal across its whole dynamic range (33). Hu-
ber et al. (33) provided an open source software package,
variance-stabilizing normalization (VSN), that determines the
data-dependent transformation parameters. Here we report
that the application of this transformation is beneficial for the
analysis of iTRAQ data. We investigated the error structure of
iTRAQ quantitation data using different peak identification
and quantitation packages, LC-MS/MS data collection sys-
tems, and both the 4-plex and 8-plex iTRAQ systems. The
usefulness of the VSN transformation to address heterogene-
ity of variance was demonstrated. Furthermore, we consid-
ered the correlations between multiple, peptide-level readings
for the same protein and proposed a method to summarize
them to a protein abundance estimate. We considered same-
same comparisons to assess the magnitude of experimental
variability and then used a set of complex biological samples
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whose biology has been well characterized to assess the
power of the method to detect true differential abundance.
We assessed the accuracy of the system with a four-protein
mixture at known ratios spanning a -fold change expression
range of 1–4. From this, we proposed a methodology to
address the accuracy issues of iTRAQ.

EXPERIMENTAL PROCEDURES

Table I summarizes the data sets used in this analysis. Detailed
experimental procedural information is available in supplemen-
tal Experimental Design document. To evaluate experimental varia-
bility in the iTRAQ system, we prepared same-same data sets for
which an aliquot of the same sample was labeled by each of the
available isobaric tags and then combined prior to peptide separation
and quantitation. Same-same data sets were collected for different
sample types, quantitation systems, MS/MS systems, and for both
the 4- and 8-plex labeling systems. To investigate iTRAQ accuracy,
an experiment was prepared with a background of proteins at an
unchanging level but with the addition of four spiked proteins of
known ratios (Table II). Two of the proteins were present at 1:1 to
allow data normalization to adjust for tag differences. To examine the
approach on a complex biological system with biological differences,
iTRAQ data were collected from yeast grown under various nutrition-
ally limiting conditions.

RESULTS

Raw Data Analysis

Data Sampling Characteristics of iTRAQ

Examining the peptide-level data highlights an unbalanced
peptide sampling; some peptides are sampled many times,
whereas the majority of peptides are only sampled once or
twice (supplemental Fig. 1). At the protein level, this leads to
some proteins having only one reading, whereas others have
hundreds. The majority of these peptide readings are low

volume, and hence to maximize the sensitivity of the study it
is desirable to keep these peptides for the data analysis
(supplemental Fig. 2). The volume distribution arises as sam-
pling of peptides is not random but rather occurs as a result
of a data-dependent selection process in the MS for the high
intensity peaks beyond any exclusion list/dynamic exclusion
process applied. This limits iTRAQ to relative level compari-
son only (i.e. comparing ratios).

Fragmentation Behavior

To assess biases and variability in fragmentation, we ex-
amined the ratio between reporter ion maximum intensity and
the 145-Da peak maximum intensity in the phosphorylase b
data set, whose high sampling depth allowed analysis at the
peptide level. The 145-Da peak arises from incomplete frag-
mentation and is composed of the balance group attached to
the 114–117-Da reporter group. The mass of 145 Da is com-
mon to all four 4-plex tags. We considered the top 31 sampled
peptides (which comprise 50% of the data set). The data were
filtered by removing peptide readings if they contained miss-
ing reporter ion values or if two or more of the reporter ion
peak maximum intensities were below 15 counts. First, we
found fragmentation efficiency to be peptide-dependent; this
is shown by the different ratios for different peptides between
the reporter ion and the 145-Da peak intensities (supple-
mental Fig. 8). Second, fragmentation efficiency was consis-
tent across tags within an experiment run (data not shown);
this is unsurprising because with the iTRAQ system fragmen-
tation of the four reporter ion occurs simultaneously. These
results provide further support for preferring relative level
comparisons over raw measurements.

Heterogeneity of Variance: Variance-Mean Dependence

The previous sections used the standard i-Tracker filtering
method. To understand the variance behavior fully, all quan-
tified peptides were included in the analyses from this point
on. Ratio-intensity (RI) plots were used to assess the distri-
bution of ratios as a function of average signal strength (Fig.
1). Although Fig. 1, A and B, show that the center of the
distribution of log ratios has no significant intensity-depen-

TABLE I
Summary of various data sets used within this study

Study type Sample type (data set name) iTRAQ system LC-MS/MS system Quantitation system

Same-same Erwinia (Erwinia B) 4-Plex QSTAR i-Tracker
Mascot

Erwinia (Erwinia C) 4-Plex QSTAR i-Tracker
Mascot

Erwinia 4-Plex OrbitrapXL Mascot
Phosphorylase B 8-Plex QSTAR Mascot

OrbitrapXL Mascot
Known ratio Proteins at known ratios 4-Plex QSTAR i-Tracker

Premier
Biologically unknown Yeast grown under nutritionally limiting conditions 4-Plex QSTAR i-Tracker

TABLE II
Breakdown of proteins included in known ratio preparation and level

of these proteins for each TRAQ reporter tag

Protein 114 115 116 117

BSA 1 2 3 4
Cytochrome c 1 1 1 1
Enolase 4 3 2 1
Phosphorylase b 1 1 1 1
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dent systematic bias in agreement with the findings of Hu et
al. (16), the width of the distribution is significantly larger at
low intensities than at high intensities. This heterogeneity of
variance has been seen previously in iTRAQ data collected
with a 4700 Proteomics Analyzer (Applied Biosystems) and
analyzed with GPS Explorer (Applied Biosystems) (16) and
independently with data collected with a QSTAR when ana-
lyzed with ProQuant v1.1 (21).

The logarithm transformation has been suggested previ-
ously for iTRAQ data with the objective of addressing the
heterogeneity of variance (19, 21). However, Fig. 1, A and B,
show that the logarithm transformation does not sufficiently
stabilize the variance. To further investigate the error struc-
ture, the relationship between the mean and the variance on
the log scale for the four tags for each peptide reading after
normalization was assessed for each data set; a representa-

FIG. 1. RI plots for log ratio of 115 to 114 reporter ions against average reporter ion signal in the Erwinia same-same data set B. These
plots are used to assess the distribution of ratios as a function of signal strength. In A and B, the y axis shows the logarithm (base 2) of the
ratios; in A, the x axis is proportional to the mean, and in B, the x axis is proportional to the rank of the mean. Choosing the rank of the mean
for the abscissa distributes the data points evenly along the x axis and helps with the visual assessment of distribution width; when the x axis
is simply the mean, the uneven distribution of the data along the x axis range can confound the visual assessment. In C and D, VSN ratios (or
generalized log ratios; see “Variance-stabilizing Transformation”) are shown on the y axis; in C, the x axis shows the mean, and in D, the x axis
shows the rank of the mean. For the display of A and B (logarithm transformation), data were filtered to remove zero and negative values,
whereas all data are shown in C and D (VSN transformation).
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tive case is shown in Fig. 2. The plot is consistent with the
additive-multiplicative (two-component) error model: a multi-
plicative component, with a leading exponent of 1 on the
log-log plot, dominates at high intensities. At low intensities,
the variance tends to be a constant, signal-independent value
because of an additive component.

Variance-stabilizing Transformation

Many measurements in physics and chemistry follow a
multiplicative error model. Consider a quantity whose true
value is x and measurements of which result in observed
values x(1 � �) where � represents small, positive or nega-
tive random numbers. Then the standard deviation of the
measurements is x times the standard deviation of �. When
transformed to the logarithmic scale, the measured values
are (to good approximation) log x � �, and the standard
deviation is simply the standard deviation of �, independent
of the true value x. This transformation is therefore referred
to as a variance-stabilizing transformation, and the concept
can be generalized to the additive-multiplicative error
model. The variance-stabilizing transformation in that case
is called the generalized logarithm (34–36), and it resembles
the usual logarithm transformation at the upper end of the
intensity scale (where multiplicative effects dominate), a
linear transformation at the lower end (where additive ef-
fects dominate), and interpolates smoothly in between
(supplemental Fig. 3). Furthermore, if we define the usual
log ratio between two peak intensities I1 and I2 as

q � log
I1
I2

(Eq. 1)

then a generalized log ratio can be defined as follows.

� � log
I1 � �I1

2 � c2

I2 � �I2
2 � c2 (Eq. 2)

Here c is a data-dependent constant; more specifically, it
depends on the mean and standard deviation of the additive
error component. For values of I1 and I2, both much larger
than c, the generalized log ratio � simplifies to the usual log
ratio. � is compressed toward 0 compared with q; i.e. its
absolute value ��� is always smaller than �q�. The size of this
shrinkage depends on the size of I1 and I2, becoming more
pronounced as I1 or I2 gets smaller. The VSN software (33) can
be used to fit the parameter c of the generalized logarithm. In
addition, it allows a simultaneous affine-linear (shift and scale)
normalization to adjust the data for systematic, label-, or
sample processing-associated biases. Like other global nor-
malization methods, the VSN algorithm uses the assumption
that the majority (50% or more) of intensity values are truly not
changing in expression.

The result of the generalized log (VSN) transformation on
the Erwinia same-same data set is shown in Fig. 1, C and
D: the variation of the generalized log ratio is independent of
the signal strength. The CV is frequently used as a measure of
variability. Fig. 3 shows, with the grey dots, the heterogeneity
of the CV as a function of average signal seen with log2-
transformed data. In the proteomics community, techniques
are frequently compared via single CV summary values (21).
However, as Fig. 3 shows, because of the heterogeneity and

FIG. 2. Relationship between logarithm (base 2) of mean signal
and logarithm (base 2) of its variance. The solid line shows a
smooth regression line calculated by local polynomial regression.
Shown is Erwinia data set B. No prior intensity-based data filtering
was performed.
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FIG. 3. CV versus signal intensity comparison for log2-(grey) and
VSN (black)-transformed data for Erwinia data set B. No prior
intensity-based data filtering was performed.
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intensity dependence of the CV, summaries such as “median
CV” are generally too simplistic and may be misleading. Fig. 3
also contrasts this behavior with that of the data transformed
by the VSN transformation: their CV is approximately con-
stant, and it coincides with the CV of the logarithm-trans-
formed data at high intensity levels. For medium or low inten-
sities, the CV of the VSN-transformed data is reduced
compared with that of the logarithm-transformed data.

In the Erwinia data set of Fig. 3, the high intensity conver-
gence is not reached, which suggests that the MS data were
not collected over the full dynamic range. However, it was
seen with the phosphorylase b data set (supplemental Fig. 4).
The phosphorylase b sample is a simpler sample with individ-
ual peptides at much higher signal strengths. The CV follow-
ing VSN transformation was smaller with the phosphorylase b
data set compared with the Erwinia data sets but was similar
between the Erwinia experiments. This is unsurprising as the
Erwinia data sets had an additional separation stage (SCX)
and were derived from a more complex sample.

To demonstrate that the phenomena reported here are
independent of the analysis software and MS/MS collection
system, the phosphorylase b QSTAR 4-plex data were repro-
cessed with Mascot v2.2.0 (Matrix Science, London, UK), and
the LTQ-OrbitrapXL 4-plex data were processed with Pro-
teome Discoverer (Thermo Fisher) and Mascot v2.2.0 (Matrix
Science) using the default settings for quantitation. For both
packages, the data behavior was essentially identical to that
reported above: no significant systematic intensity-depen-
dent bias of the mean, presence of heterogeneity of variance,
consistency with the additive-multiplicative error model, and
variance stabilization by the generalized logarithm transfor-
mation as fit by the VSN software (supplemental Figs. 4–6).

To increase throughput, an 8-plex iTRAQ version has been
released (Applied Biosystems). The 8-plex version relies on
the same amine-labeling chemistry of peptides as with the
4-plex reagents. The 8-plex version has a modified tag com-
pared with the 4-plex version and a larger balance group.
Additional reporter ions at 113, 118, 119, and 121 m/z are
liberated during CID of the 8-plex tags enabling increased
multiplexing of samples in experiments quantifying protein
expression. To ensure that the behavior being addressed is
universal to iTRAQ irrespective of which sets of tags are
used, same-same phosphorylase b 8-plex labeled sample
was injected on the LTQ-OrbitrapXL. The data were pro-
cessed with Mascot v2.2.0 (Matrix Science) for quantitation
using the default settings for quantitation. Again, data be-
havior was essentially identical to that reported above
(supplemental Fig. 7).

From Peptides to Protein: Complex Structure

Although the measurements are made at the peptide level,
interest often lies at the protein level, and a method is needed
to summarize the peptide-level readings into a single, robust

relative abundance estimate for each protein. A variety of
approaches have been suggested for this task; they differ in
how they address the different potential biases and the po-
tentially different amount of confidence (precision) in each
peptide-level reading. Here, we first discuss these issues and
then present our approach.

Issues within Reducing Peptide Measurements to a Value
per Protein

We have broken down issues surrounding the combining of
peptide-level measurements to form a single protein mea-
surement into four subsections as follows.

Fraction Effect—We define a “fraction effect” within a pep-
tide as a significant dependence between the measured ratio
and the fraction in which the reading was taken. The top 10
sampled peptides from Erwinia data sets B and C were ex-
amined for a fraction effect by grouping the VSN-transformed
data by fraction and using a one-way analysis of variance to
assess a significant difference in the mean between groups.
Only fractions that were sampled more than three times were
included in the analysis. 45% of the peptides had a statisti-
cally significant difference between fraction groups, and the
percentage of the variance explained by the fraction effect
varied between 37.0 and 86.5% (average, 57.1%). From this
analysis, we concluded for these peptides that the fraction
effect was significant. With the phosphorylase b data set, no
statistically significant differences were seen between repeat
injections, indicating that the fraction effect arose not from the
repeat injections but rather from the separation (SCX) stage.
Note that a fraction effect was also seen with log-trans-
formed or raw data when a Kruskal-Wallis test was used
(data not shown). These results indicate that the error within
a fraction group for a peptide is smaller than the error
between fraction groups and is arising not from the repeat
injections but from additional variance from the repeated
SCX separation.

Peptide Effect—We define a “peptide effect” within a pro-
tein as a significant dependence between the measured ratio
and the precursor ion (i.e. peptide). Because of the fraction
effect, insufficient numbers of readings were obtained per
peptide to consider a peptide effect for the Erwinia data sets.
The phosphorylase b data sets, however, were designed to
get multiple readings for each peptide, and an analysis of
variance was used to test for a significant difference in the
mean ratio between peptides. Only peptides that were sam-
pled more than three times were included in the analysis. The
percentage of the variance explained by the peptide effect
varied between 13.1 and 78.5% (average, 54.0%) depending
on the tag combination examined. This peptide effect was
observed for both MS instrumentations and for all software
packages analyzed. These results indicate that the measure-
ment error within a peptide group for a protein is smaller than
the error between peptide groups.
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Intensity Effect—As described in the previous section, the
variance and hence the confidence intervals of the readings
are different in different parts of the dynamic range. It is
uncommon to have a large number of replicate readings for
each peptide; hence estimating that variance directly is im-
practical. We proposed applying the VSN, which puts the data
on a scale on which intensity effects on the variance are
removed but are traded for an intensity-dependent conserv-
ative bias, that is, shrinkage toward ratios of 1 when the
intensities are small.

Data Distribution—To investigate the data distribution and
ensure the appropriate application of statistical tools, we plot-
ted frequency histograms and normal quantile-quantile plots
for the readings of the top 10 sampled peptides from the
phosphorylase b data set after VSN normalization (Fig. 4). The
data distributions were localized and unimodal, resembling a
combination of a normal distribution with outliers. This was
found for data obtained with or without the i-Tracker standard
low volume filter which discards a precursor ion if fewer than
three of the resulting reporter ions are above a threshold of 15
counts (37).

Estimating Protein Ratio

First, we compute a robust central tendency measure for
each protein, such as the trimmed average of the VSN-trans-
formed peak intensities of all the peptides belonging to the
protein. Differences between these quantities for different
conditions then measure the differential abundance of the
protein between the conditions. In doing so, we ignore the
fraction and peptide effects described under “Fraction Effect”
and “Peptide Effect” and accept the conservative variance-

bias trade-off of the generalized log-ratio described under
“Intensity Effect.” Although it is conceivable that a mathemat-
ical model could be constructed that explicitly models and
adjusts for these effects, such an approach would likely be
complicated by unbalanced data structure (“Data Sampling
Characteristics of iTRAQ”), often with few readings at each
level, and by fragility to outliers and model misspecification.
Here we argue that although ignoring these effects might
potentially incur suboptimal estimates the disadvantage is by
far offset in practice, at least with data from current experi-
ments, by the simplicity and robustness of the above
approach.

Fig. 5 shows the CV, at the protein level, of protein abun-
dance estimates where peptide data were combined with a
20% trimmed mean. The CV was calculated at the protein
level using the ratio obtained from the six different possible
tag combinations. For comparison, the CVs of protein abun-
dance estimates are also shown when the ordinary logarithm
transformation was used instead of the generalized logarithm
of VSN. With VSN, the CV showed no signal strength depen-
dence and was generally lower than with the logarithm.

Selecting Significance Threshold

In the simplest situation, iTRAQ is used in a pairwise com-
parison (10, 18, 21, 38, 39). A protein is deemed to be differ-
entially abundant if measured ratios exceed a certain thresh-

FIG. 4. Example normal quantile-quantile plot as typical distri-
bution profile for peptide from the phosphorylase b data set with
standard i-Tracker low volume filtering.

FIG. 5. Comparison of CV versus mean behavior for log2- versus
VSN-transformed data at protein level when trimmed mean (20%)
approach was used. The solid line shows a moving average calcu-
lated with a local polynomial regression. One data point from the log
data set was removed for visual clarity as it had a high CV of 1.5. This
analysis was completed on Erwinia data set B where no intensity-
based data filtering had been performed beyond the peptides being
unique for a protein and the peptide being confident in its assignment
to a protein.
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old. The threshold is chosen such that it encompasses the
majority of technical variation in a same-same comparison.
This analysis approach assumes that the samples being com-
pared are representative of the population and takes no ac-
count of biological variation. The thresholds that encompass
90 and 95% of the experimental variation were found to be
reproducible across different tag combinations (Fig. 6 and
Table III). For the Erwinia data sets a �1.1-fold change thresh-
old encompassed 95% of the experimental variation after a

trimmed mean estimation of protein ratio using VSN-trans-
formed data was used. Thus, the experimental variation is so
low that proteins with low changes in expression will be
detectable in a pairwise comparison, although the researcher
will need to assess whether such a change is biologically
significant.

Validation: Application to Real Data

Both a log transformation with ratiometric normalization
and the VSN transformation were applied to data from a
biological study comparing yeast grown under various nutri-
tionally limiting conditions (40). The variability of the data from
yeast samples was found to be higher than in the Erwinia
study (Table IV). For both the VSN- and log-transformed data,
when biological differences were present, they were reflected
by the protein ratios (Fig. 7). For example, for the carbon-
versus nitrogen-limited samples, the top 10 proteins, as
judged by the largest -fold change, were searched for function
information in the Saccharomyces cerevisiae genome data-
base. Eight of the 10 proteins had database information indi-
cating change in expression triggered by carbon or nitrogen
source change limitation. The findings were also in agreement
with the transcriptome, endometabolome, and exometabo-
lome metabolic control analysis of yeast grown under nutri-
tionally limiting conditions by Castrillo et al. (40).

The VSN-transformed data identified considerably more
proteins as having significant change in expression compared
with the log-transformed data (Table V). The greater sensitivity
with the VSN method arose from the reduced variability of the
peptide readings used to estimate the protein ratio (sup-
plemental Fig. 9) and was also reflected by the lower sensi-
tivity threshold with VSN (Table IV).

Accuracy

The above analysis focused on the precision of the iTRAQ
technology. Concerns have been raised that iTRAQ might
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FIG. 6. Example of reproducibility of protein VSN ratio in same-
same experiment across various tag combinations. The protein
ratio was estimated by calculating a 20% trimmed mean using all the
unique peptide readings for a protein. This analysis was completed on
Erwinia data set B where no filtering was done beyond the peptides
being unique for a protein and the confidence of the peptide to protein
assignment. The tag combinations are represented as follows: dot,
115-114; triangle, 116-114, plus, 117-114, �, 116-115, diamond,
117-115; and upside-down triangle, 117-116.

TABLE III
Average experimental thresholds as VSN ratio and -fold change that would encompass either 95 or 90% of naturally occurring technical variation

for both same-same Erwinia data sets

The average threshold was calculated for each data set as with four tags there are seven possible pairwise comparisons, and a 95%
confidence interval is reported to give a measure of consistency. This analysis was completed where no filtering had occurred beyond the
peptides being unique for a protein and the peptide being confident in its assignment to a protein.

Percentile Mean log ratio (VSN1�VSN2)

95% confidence
intervals for the
mean log ratio Mean-fold change

95% confidence
intervals for mean

-fold change

Lower Upper Lower Upper

Erwinia B
2.5 �0.15 �0.16 �0.13 0.90 0.89 0.91
5 �0.12 �0.13 �0.10 0.92 0.92 0.93
95 0.11 0.11 0.12 1.08 1.08 1.09
97.5 0.14 0.14 0.15 1.11 1.10 1.11

Erwinia C
2.5 �0.12 �0.13 �0.11 0.92 0.91 0.93
5 �0.09 �0.10 �0.09 0.94 0.93 0.94
95 0.09 0.09 0.09 1.06 1.06 1.06
97.5 0.11 0.11 0.12 1.08 1.08 1.09
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have problems with accuracy by systematically underestimat-
ing ratios (23–27). To assess this question, we prepared a
sample with proteins at known ratios. Our findings confirmed
that there is systematic ratio underestimation in iTRAQ quan-
titation. However, we observed a linear relationship between
the observed and the expected ratios at the protein level
over the 4-fold range difference examined (Fig. 8). Consistent
with underestimation, the gradient of the linear relationship
was less than 1, and the underestimation became more ob-
vious for larger ratio changes. This effect was seen on both
data collected with a QSTAR and with a QTof Premier, sug-
gesting that the effect is ubiquitous and not dependent on the
MS technology used. It has been suggested that this under-
estimation arises from contaminating peptides with similar
m/z ratios during ion selection prior to collision-induced dis-
sociation (23, 27). A quantitative model reveals that when the
relative amount of contamination is the same within an exper-
iment a linear relationship between observed and true ratios is
expected and would be independent of signal strength. We
observed this in our data: RI plots at the peptide and protein
levels show no systematic deviations in the ratio observed
with signal strength (data not shown). If the relative amount of
contamination increases, the underestimation becomes more
pronounced. In fact, this was seen when the isolation width
was increased in a study of iTRAQ-labeled BSA digest (23). To

investigate the effect of contamination within the ion selection
process, the selection window settings used with the QTof
Premier were changed as described under “Experimental Pro-
cedures.” No statistically significant difference was seen be-
tween the three settings (data not shown); in agreement with
that, the quantitative model predicted that even a 2-fold in-
crease in the contamination (10–20%) would only result in a
minor impact on the linear relationship seen (supple-
mental Fig. 10). We conclude that we were not able to achieve
such strong changes in contamination levels with the ranges
of ion selection parameters we used, suggesting that factors
other than the ion selection window give rise to this effect.

The underestimation could arise from the MS, the protein,
the sample complexity, or a mixture of all three. Our results,
although limited to two proteins changing in ratio, indicate
that the underestimation is independent of the protein. The
peptides for a protein were found to be scattered randomly
around the estimated ratio, suggesting that a peptide-specific
component is not significant in the degree of underestimation.
No difference was seen between the ratios when three differ-
ent amounts of sample were injected, suggesting that
peptide ion abundance is not a crucial component to the
degree of underestimation. Although it is conceivable that
larger changes in sample complexity might trigger differ-
ences, in the system used in this study, the sample complex-
ity was reasonably high in all cases with utilization of minimal
prefractionation of the peptides by a single short chromatog-
raphy run prior to MS analysis. Further studies to pinpoint the
true source of underestimation are beyond the scope of this
work.

Kuzyk et al. (26) reported that an intensity-dependent bias
was seen at high ratio changes (�5:1) with the QSTAR and
was possible with an LC-MALDI-TOF/TOF instrument at a
10:1 ratio. This bias led to greater underestimation. For the
QTof Premier known ratio mixture data, no significant intensity-
dependent bias was seen (supplemental Fig. 11); however, an

FIG. 7. Box percentile plot comparing protein ratio distribution across various sample comparisons where protein ratio was
calculated as 20% trimmed mean from peptides contributing to that protein. A, VSN-transformed data. B, log2-transformed data with
ratiometric normalization. x versus y indicates that sample x values have been divided by sample y values.

TABLE IV
Thresholds calculated from same-same sample comparison of pooled
sample in yeast study for various percentile positions for both log- and

VSN-transformed data

Percentile
position

log2-transformed VSN-transformed

Protein
ratio

-Fold
change

Protein
ratio

-Fold
change

2.5 �0.37 0.77 �0.25 0.84
5 �0.29 0.82 �0.2 0.87
95 0.27 1.2 0.2 1.15
97.5 0.33 1.26 0.24 1.18
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intensity-dependent deviation in the ratio reported was ob-
served in the QSTAR data, including peptides at a ratio of 1:1
(supplemental Fig. 12). The bias was not seen in the 1:1 ratio
with the Erwinia sample that has a more typical sample com-
plexity and dynamic range (“Heterogeneity of Variance: Vari-
ance-Mean Dependence”). This issue with the QSTAR needs
further investigation that is beyond the scope of this study but
highlights a need to be cautious with high signal intensity data
that arise when relatively large amounts of a few proteins are
labeled using standard protocols.

DISCUSSION

Both accuracy and precision of measurements in quantita-
tive analyses rely on reproducible and exact values being
returned from the experiment. The iTRAQ ratio data exhibit
heterogeneity of variance where the variance is higher for low
intensity signals. This is a significant problem as low signals
dominate the data sets, and in a typical iTRAQ experiment,

many proteins have only a few peptide readings. Furthermore,
the commonly used requirement of a minimum of two pep-
tides for confident identification of a protein results in the
desire to keep as many readings as possible in an analysis.
Consequently, methods that discard peptide readings below
a threshold significantly limit the depth of proteins sampled in
a study. Other methods, such as weighted mean or weighted
regression, also aim to address the issue of heterogeneity of
variance; however, these methods do not work well for pro-
teins with few peptide readings that dominate iTRAQ studies.

A two-component error model consisting of additive and
multiplicative components is proposed to account for the
variance structure. The presence of both components was
verified with both the 4-plex and 8-plex iTRAQ tag systems
independently of the analytical software and LC-MS/MS in-
strumentation used. The additive-multiplicative error model
suggests that an appropriate data transformation will be use-
ful, the so-called generalized logarithm (glog) transformation,
which stabilizes the variance across the entire intensity range.
After such transformation, the decoupling of the variance from
the signal significantly simplifies the downstream analysis as
each peptide reading for a protein can be treated equally.
Furthermore, it allows using low intensity readings (rather than
discarding them). In data from a biological system, low inten-
sity readings may be among the most interesting readings
when a peptide is seen at low abundance in some of the
biological samples and at higher abundance in others. The
price that we pay for using variance stabilization is that ratios
of small peak areas are compressed toward 1 (or glog ratios
are compressed toward 0). This is a conservative effect and is
called the “variance-bias” trade-off where a (hopefully large)
improvement in precision is traded for the (hopefully small)
cost of a bias. For the data sets of interest, we feel that this
trade-off is justified, giving the benefit of being able to include
all peptides and having robust estimates for all proteins even
if few peptides are present.

The additive-multiplicative error structure has also been
reported with quantitation by other MS-based methodologies,
and the additive component may arise from the integration of
count-based signal inherent with the majority of MS instru-
mentation (29, 31, 32) and/or the presence of a small basal
unspecific background signal. As a consequence, heteroge-
neity of variance is, to varying degree, likely to be an inherent

FIG. 8. Observed versus expected protein ratio for VSN-nor-
malized data from known ratio samples processed with QSTAR.
The dotted line indicates the equivalence relationship between the
observed and expected. No intensity-based data filtering was
performed.

TABLE V
Percentage of proteins identified as having significant changes in expression between various samples compared when 97.5 and 2.5%

threshold were used

Samples compared

Number of proteins Protein identified as having significant
changes in expression (%)

VSN log
log2 VSN

Up-regulated Down-regulated Up-regulated Down-regulated

Nitrogen-limited versus carbon-limited 1042 1038 7.10 17.18 14.26 22.74
Carbon-limited versus sulfate-limited 1042 1040 21.02 11.13 25.29 14.23
Nitrogen-limited versus sulfate-limited 1042 1036 7.10 4.51 5.89 5.41
Sulfate-limited versus phosphate-limited 923 923 2.71 1.63 0.29 0.18
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feature of all peptide quantitation methodologies, and estima-
tion that uses the glog transformation may play a useful role
for these techniques.

The VSN software for fitting the error model and transfor-
mation parameters is available freely and with open source as
a package for the statistics and programming environment R,
downloadable from the Bioconductor web site. To apply this
software, all that is required are the raw reporter ion areas at
the peptide level.

iTRAQ, like other MS-based quantitation techniques, faces
the problem of how to combine readings from multiple pep-
tides to estimate an abundance ratio for the parent protein.
Nesvizhskii and Aebersold (41) have suggested that inconsis-
tent relative abundance ratios from distinct peptides may
point to the presence of novel biologically significant forms
(e.g. novel splice variants, a product of protein degradation,
post-translational modification, etc.). It is thus worth consid-
ering the distribution of readings for a protein at the peptide
level. This has been incorporated into a freely available visu-
alization package for the R environment that compares ex-
pression changes for the peptides from the same protein (13).
In our same-same data, all differences arose purely from
technical effects. Some substructure was identified in peptide
readings where readings from a specific peptide or fraction
clustered. Ideally, a hierarchical process that takes a central
tendency measure at each level would be used to estimate
the overall protein ratio. In our opinion, there are too few
readings in a typical study at each level for this approach to be
robust; outliers would be too influential on the result. We
therefore propose the use of a trimmed mean as a robust
measure of central tendency for the VSN-transformed peptide
readings for a protein as these readings were found to be
unimodal in distribution with some outliers. In the case of
proteins with only a few peptides, a standard mean would be
calculated as there is no alternative in this situation. This can
be combined with visual inspection to assess whether the
assignment of peptides to a parent protein is appropriate.

The simplest iTRAQ experiment is a pairwise comparison
between sample types looking for changes above a threshold
determined from experimental variation assessed by looking
at a same-same comparison. For both raw and log-trans-
formed data, the threshold is difficult to determine as it should
have an intensity-dependent element. This is complicated
even more by the fact that on the protein level the estimated
protein ratios are obtained from peptides at various intensi-
ties; consequently, the majority of current methodologies fail
to consider this problem. With the VSN transformation, this
intensity dependence is removed, and 90 and 95% thresholds
were found to lead to reproducible results across tag combi-
nations. The thresholds varied with sample type but were low
and indicated the sensitivity of the technology to expression
changes. In practice, of course, the experimenter will use
larger thresholds that also take into account biological varia-
tion. The thresholds reported here are not intended as a

universal benchmark, and the reality is that for each new
system (be it MS, chromatography, or sample) a new same-
same sample study should be run. If the compared samples
are such that “most” protein abundances are the same across
samples, then the distribution of observed glog ratios can also
be used to set the significance threshold. A threshold meth-
odology was applied to a biological study, and the iTRAQ
findings were in keeping with those published for this system.

Compared with the previous iTRAQ data processing meth-
odologies, we showed that the VSN processed data are more
precise and sensitive to detecting changes. The advantages
of the VSN methodology will be greatest in situations where
hypothesis tests are used to detect changes in expression.
Such tests are particularly useful in studies that include bio-
logical replicates to ensure the differences highlighted arise
from a treatment difference rather than from a sampling effect.
Underlying the more powerful hypothesis tests are assump-
tions such as normality and homogeneity of variance, which
tend to be more appropriate with the VSN-transformed data.

The study on a sample with known ratios in two indepen-
dent MS systems confirmed that the iTRAQ technology does
have an accuracy problem: ratios tend to be underestimated.
The experiments here, spanning a 1–4-fold ratio, suggest that
this effect is independent of signal strength and leads to a
linear relationship between the observed ratio and the ex-
pected ratio, which goes through the origin. Data modeling
supports the suggestion of Bantscheff et al. (23) that this
under-estimation arises from contamination in the precursor
ion selection process and indicates that a linear relationship
would be obtained when the proportion of contamination is
consistent within an experiment. With this linear relationship,
a single correction factor can be calculated to adjust for this
underestimation from readings of known proteins that span a
range of expected ratios. Therefore, we recommend that for a
typical sample an experiment similar to that described here is
carried out and that a gradient value estimated from the linear
relationship is used as a correction factor for the system.
Alternatively, if sample complexity is thought to influence this
relationship, we envisage that a kit could be developed that
consists of a mixture of proteins at known ratios that are
added to samples prior to iTRAQ labeling and that would
allow the calculation of the correction factor.

To support further development in data analysis, raw data
for an example same-same study (Erwinia C), the yeast study,
and the spiked study are downloadable from the PRIDE da-
tabase (42) (http://www.ebi.ac.uk/pride/, accession numbers
9266–9283 (Erwinia C study), 8761–8763 (yeast study), and
10635–10637(spike study)). Excel spread sheets including
both raw and normalized quantitation data are also available
in the supplemental material.

In summary, this study proposes methodologies to address
the precision and accuracy limitations of iTRAQ. The accuracy
issue, arising from contamination during precursor ion selec-
tion specific to MS/MS quantitation, can be addressed by
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calculation of a correction factor from spiked samples,
whereas the precision issue can be addressed by the VSN
transformation. This then allows a robust estimation of the
ratio at the protein level as all peptides have near equivalent
precision. Together these methodologies will allow iTRAQ to
provide robust quantitative data even when a protein is quan-
tified from only two peptides. The potential application of the
VSN method in MS studies is not restricted to iTRAQ quanti-
tation or even to proteomics as many MS-based applications
have reported precision problems related to heterogeneity of
variance.
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Hecker, M., and Becher, D. (2006) Gel-free and gel-based proteomics in
Bacillus subtilis: a comparative study. Mol. Cell. Proteomics 5,
1183–1192

11. Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn, K., Hochstrasser, D. F.,
Burkhard, P. R., and Sanchez, J. C. (2008) Relative quantification of

proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric
tags. Anal. Chem. 80, 2921–2931
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