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Phosphorylation of proteins is a key posttranslational
modification in cellular signaling, regulating many aspects
of cellular responses. We used a quantitative, integrated,
phosphoproteomics approach to characterize the cellular
responses of the yeast Saccharomyces cerevisiae to the
fatty acid oleic acid, a molecule with broad human health
implications and a potent inducer of peroxisomes. A com-
bination of cryolysis and urea solubilization was used to
minimize the opportunity for reorientation of the phospho-
proteome, and hydrophilic interaction liquid chromatog-
raphy and IMAC chemistries were used to fractionate and
enrich for phosphopeptides. Using these approaches,
numerous phosphorylated peptides specific to oleate-in-
duced and glucose-repressed conditions were identified
and mapped to known signaling pathways. These include
several transcription factors, two of which, Pip2p and
Cst6p, must be phosphorylated for the normal transcrip-
tional response of fatty acid-responsive loci encoding per-
oxisomal proteins. The phosphoproteome data were inte-
grated with results from genome-wide assays studying the
effects of signaling molecule deletions and known protein-
protein interactions to generate a putative fatty acid-re-
sponsive signaling network. In this network, the most highly
connected nodes are those with the largest effects on cel-
lular responses to oleic acid. These properties are consis-
tent with a scale-free topology, demonstrating that scale-
free properties are conserved in condition-specific
networks. Molecular & Cellular Proteomics 9:2076–2088,
2010.

In the face of dynamic cellular environments, cells must
detect and compute signals they receive and execute an
integrated and coordinated response involving multiple tran-
scriptional and morphological programs. The rapid transduc-

tion of signals to the nucleus is accomplished in large part by
altering the posttranslational states and thus activities of pro-
teins that form relay networks for signal transmission. Phos-
phorylation is a ubiquitous posttranslational modification occur-
ring on serine, threonine, and tyrosine aminoacyl residues that
provides a common mechanism through which protein activity
states are altered. Reversible phosphorylation is involved in
virtually all cellular processes in eukaryotes, modulating enzy-
matic activities, protein subcellular distributions, protein half-
lives, and protein-protein interactions (1, 2). The study of the
phosphorylome is, therefore, a central component of systems
approaches to understanding cellular processes.

We are interested in cellular responses to nutrient changes
that induce peroxisomes. Peroxisomes are ubiquitous intra-
cellular organelles responsible for many metabolic activities,
most notably fatty acid (FA)1 �-oxidation. In yeast, genes
encoding abundant peroxisomal proteins are repressed in
cells grown in glucose and highly induced in response to FA.
The induction process involves global reorganization of tran-
scriptional networks and activities (3, 4), peroxisome prolifer-
ation (5) (a process that highlights the dynamic nature of the
peroxisomal proteome (6, 7)), and a host of additional coor-
dinated cellular responses such as alterations to the cell cy-
cle, cytoskeleton, membrane dynamics, and chromatin. Sig-
naling molecules are key regulators of these complex and
coordinate responses. We previously used cell-based re-
porter studies of gene deletions to delineate a core FA re-
sponse signaling network governing the induction of peroxi-
somes in yeast (8). In an effort to both expand the network
beyond the focus on peroxisomes and to understand infor-
mation flow within the FA response network, we took a quan-
titative phosphoproteomics approach to characterize the
differences between the phosphorylated portions of the pro-
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teomes of glucose-grown (peroxisome-repressed) and oleic
acid-treated (peroxisome-induced) cells.

Phosphoproteomes are a subset of proteomes with given
phosphorylation events occurring at low stoichiometry (9).
Mass spectrometry-based approaches to comprehensively
identify phosphoproteomes have generally relied upon the
reduction of sample complexity through fractionation, either
gel-based (9, 10) or chromatographic (11–13), and enrichment
strategies, generally through the use of immobilized metal
affinity chromatography (IMAC) (14), titanium dioxide (TiO2)
(15, 16), or phosphoramidate chemistry (17, 18). Although
analysis of the phosphorylome remains a significant chal-
lenge, these approaches and improvements to mass spec-
trometers have significantly increased the number of identifi-
cations of phosphorylated peptides and their respective
proteins. Known phosphorylation events are now on the order
of several thousand (19).

Phosphorylation is a dynamic process with phosphorylation
states changing rapidly on the order of minutes or even sec-
onds (20–22). As mass spectrometry-based experiments rely
on ex vivo approaches, careful consideration must be given to
the cellular environment during the cell disruption procedures.
Ideally, the presence of a stimulus should be maintained until
the cells are processed to a point at which reorientation of the
phosphoproteome is unable to occur. Given the rapidity with
which phosphorylation states can reorient, we developed a
cryolysis-based disruption, urea solubilization methodology to
minimize the opportunity for kinase or phosphatase activity and
maintain the condition-specific phosphorylation status of the
proteome. We also combined stable isotope labeling with amino
acids in cell culture with orthogonal peptide fractionation pro-
cedures to identify proteins that are significantly responsive to
cell exposure to FAs. Using cryolysis, hydrophilic interaction-
based chromatography, and a combination of LC-MS2 and
multistage activation (MSA) approaches, we identified a global
data set of proteins that are differentially phosphorylated upon
transition from a glucose- to a FA-stimulated state.

Integration of this phosphoproteomics data set with data
from an analysis of signaling molecules regulating peroxisome
induction during the FA response (8) and known interactions
from the literature allowed for the identification of numerous
novel phosphorylated forms of signaling and transcription
factors and the derivation of an expanded FA-responsive
signaling network with properties indicative of scale-free to-
pology. Interestingly, the most highly connected nodes influ-
ence the response to FAs to the greatest extent. Taken to-
gether, these analyses provide a comprehensive view of the
network specifically responsive to the exposure of cells to FAs
and further demonstrate the conservation of common net-
work architecture within signaling networks with the feature of
a few hubs exerting the largest effects persisting at condition-
or phenotype-specific levels.

EXPERIMENTAL PROCEDURES

Cell Growth and Media—A single colony of BY4742 arg4� lys1�
cells was grown overnight in 100 ml of rich medium to an A600 of 1.0
and then seeded into two 1-liter cultures of a minimal yeast medium
(0.17% yeast nitrogen base without ammonium sulfate or amino
acids, 0.5% ammonium sulfate) containing a full complement of
amino acids and supplemented with 20 mg/liter isotopically normal or
heavy arginine (13C6,15N4; Isotec) and lysine (13C6,15N2; Isotec). The
cells were grown for 18 h to an A600 of 1.8. The isotopically heavy
sample was pelleted and flash frozen in liquid nitrogen. The normal
sample was pelleted and reseeded into an oleic acid-containing me-
dium (isotopically normal arginine and lysine, 0.2% oleic acid (Sigma),
0.5% Tween 40), stimulated for another 85 min, pelleted, and flash
frozen. The total time between the exposure of the cells to oleic acid
and the flash freezing was 92 min. This yields an isotopically normal
(with respect to arginine and lysine) oleic acid-stimulated sample and
an isotopically heavy glucose-grown reference sample.

Cell Lysis, Isolation, and Fractionation of Peptides—1 ml of buffer
(phosphate-buffered saline (PBS; Invitrogen), 10% glycerol, enzyme
inhibitors (SigmaFAST Protease Inhibitor Tablets, Sigma), and HALT
Phosphatase inhibitors (Thermo Scientific)) was added to the frozen
pellets in liquid nitrogen. The frozen cell/buffer pellets were subjected to
cryolysis using a Retcsh PM100 Planetary Ball Mill grinder (three runs of
3 min each with immersion in liquid nitrogen between each run).

The resulting ground sample was solubilized by brief sonication
(2 � 10-s pulses) with a probe tip sonicator into 3 volumes of 8 M urea,
0.4 M ammonium bicarbonate (6 M urea final concentration). The
lysate was cleared by centrifugation at 13,000 � g for 5 min, and the
supernatant was reduced by incubation in 10 mM DTT at 37 °C for 1 h
and then alkylated by incubation in 10 mM iodoacetamide in the dark
at room temperature for 1 h. To validate incorporation of the heavy
isotopes, 100 �l of the reduced and alkylated lysate were digested with
trypsin, desalted with C18 Ultramicrospin columns (The Nest Group),
and analyzed by mass spectrometry. Incorporation of isotopically heavy
arginine and lysine was verified by a 10- and 8-Da shift in the respective
m/z spectra using the QTIPS methodology (23). The incorporation for
each amino acid was 98%. 11.5 mg of each protein sample (glucose
and oleate) were combined and diluted 4-fold with distilled H2O, and
proteins were digested with trypsin (Promega) for 16 h at 37 °C.

The trypsin-digested samples were acidified by the dropwise ad-
dition of 10% trifluoroacetic acid (TFA; Sigma) to a pH of 3. A white
precipitate formed and was removed by centrifugation at 4,000 � g
for 20 min. The cleared supernatant was passed through disposable
Whatmann 2.7-�m-pore glass fiber filters. The supernatant was di-
vided into four parts (�5 mg/aliquot), and the samples were desalted
by loading onto C18 columns (Waters Sep-Pak Vac 500 mg) (loaded in
0.1% TFA; eluted in 60% acetonitrile (ACN; Sigma), 0.1% TFA) and
then dried. Fractionation was done successively with 5 mg of peptides
on a TOSOH TSK-Gel Amide-80 4.6-mm � 25-cm analytical column
with a guard column under the following conditions: Solvent A, 98%
ACN, 0.1% TFA; Solvent B, 2% ACN, 0.1% TFA; load in 90% A over 20
min, 90–85% A over 5 min, 85–60% A over 40 min, 60–0% A over 5
min, and 0–90% A over 5 min. The flow rate was 1 ml/min, and fractions
were collected at 2-min intervals beginning at the 85–60% A gradient.
Fractions were pooled as follows and dried: Pool 1, Fractions 2, 3, 4,
and 5; Pool 2, Fractions 6 and 7; Pool 3, Fraction 8; Pool 4, Fraction 9;
Pool 5, Fraction 10; Pool 6, Fraction 11; Pool 7, Fraction 12; Pool 8,
Fractions 13, 14, and 15; Pool 9, Fractions 16, 17, 18, 19, and 20; and
Pool 10, Fractions 21, 22, 23, 24, 25, 26, and 27.

Enrichment of Phosphopeptides—Phosphopeptides were enriched
using PHOS-SelectTM Iron Affinity Gel (Sigma). Pellets were resus-
pended in 500 �l of a 250 mM acetic acid, 30% ACN load solution and
mixed using a Vortex mixer for 5 min. 15 �l of a 50% slurry (gel to load
solution) were added to each sample, and the samples were incu-
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bated for 30 min with end-over-end rotation. Samples were washed
four times with 500 �l of load solution and once with distilled H2O.
Peptides were eluted with 2–3 min washes of 50 mM Na2HPO4, pH 8.4
acidified to pH 3 with 5 �l of 100% formic acid; flash frozen in liquid
nitrogen; and dried. Phosphopeptides were resuspended in 200 �l of
0.1% TFA and cleaned on C18 columns. Eluted samples were dried
and resuspended in 20 �l of 0.1% formic acid. 2 �l were used per
mass spectrometric analysis.

Mass Spectrometry—Mass spectrometry was performed on a
Thermo Electron Orbitrap mass spectrometer equipped with an elec-
trospray ionization source and an Agilent HP1100 liquid chromatog-
raphy system. Samples were loaded onto a precolumn (packed with
2 cm of 200-Å-pore size Magic C18AQ resin (Michrom Bioresources))
in Solvent 1 (0.1% formic acid, 2% ACN) and eluted using a 60- or
210-min gradient of an increasing percentage of Solvent 2 (100%
ACN). The 77-min gradient was as follows: 2–4% over 10 min, 4–25%
over 50 min, 25–35% over 10 min, 35–80% over 5 min, and 80–2%
over 2 min. The 240-min gradient was as follows: 2–10% over 10 min,
10–25% over 170 min, 25–35% over 40 min, 35–80% over 10 min,
and 80–2% over 10 min. Peptides were eluted onto a 75-�m � 10-cm
fused silica capillary column packed with 100-Å-pore size Magic
C18AQ resin. Flow rates were held constant at 0.350 �l/min.

The mass spectrometer was run in data-dependent acquisition
mode with switching automatically between MS and MS2 or MS,
MS2, and MSA modes with MSA mode triggered by neutral loss
peaks of 98, 46, 32.66, and 24.5 m/z. Each sample was run four times
with a 77-min gradient (twice with MS2 and twice with MSA) and twice
with 240-min gradients (one each of MS2 and MSA).

Processing of Spectral Data—XCalibur raw files were converted to
mzXML format using ReAdW (v4.2.0) using the readw profile and
default parameters. Peptide assignments were done using a combi-
nation of search engines. Spectral searches were done for tryptic
fragments using X!Tandem (24) (v2007.07.01.3 with the k-score
plug-in (25)) and Mascot (26) (v2.2). Searches were done against a
non-redundant Saccharomyces cerevisiae reference protein database
(the forward and reverse protein sequences from the union of the
Saccharomyces Genome Database, Ensembl, NCBI, and GenBankTM

databases plus keratin and trypsin) containing 13,616 entries. Parent
tolerance was �0.25 Da and the fragment mass tolerance used was
�0.4 Da for X!Tandem searches and �0.8 Da for Mascot searches
with a maximum of three missed cleavages. This large parent mass
tolerance was used in conjunction with the accurate mass model in
PeptideProphet for high confidence peptide identifications to boost
the probability of peptides that have a low mass error; the probability
of peptides that have a high mass error will be subsequently reduced
(27). Modifications included in the searches were as follows: static
modification of cysteine (at 57.021464 Da) and variable modifications
of methionine (at 15.994915 Da); serine, threonine, and tyrosine (at
79.96633 Da); lysine (at 8.014199 Da); and arginine (at 10.008269 Da).
Individual search results were processed using the Trans Proteomic
Pipeline (28). Search results were validated using PeptideProphet
(v3.0) (29) with the use of accurate mass modeling (27). Determination
of automated statistical analysis of peptide (ASAP) ratios (30), which
integrate the area under the peaks of an ion chromatogram, was used
to determine relative quantities of phosphopeptides from the glucose-
grown and oleic acid-incubated cultures. Scores of �1 and 0 (no
information) were excluded from the final quantitative analyses. Re-
sults falling outside of two standard deviations were confirmed by
visual inspection. Statistical accuracy of the ASAP method is de-
scribed elsewhere (30). As this analysis identified hundreds of quan-
titative differences, we relied upon data integration and network con-
struction to validate the biological significance of several of the
phosphoproteins.

A novel computational method, termed iProphet,2 was developed
and used to integrate results from multiple search algorithms. iProphet
takes as input PeptideProphet spectrum-level results from multiple
LC-MS/MS runs and then computes a new probability at the level of a
unique peptide sequence (or protein sequence (54)). This framework
allows for the combination of results from multiple search tools and
takes into account other supporting factors, including the number
of sibling experiments identifying the same peptide ions, the num-
ber of replicate ion identifications, sibling ions, and sibling modifi-
cation states. A model of iProphet performance with respect to the
number of correct identifications versus error is shown in supplemen-
tal Fig. S1. Only those peptides with phosphorylated serines, threoni-
nes, and tyrosines were considered further. An iProphet probability of
0.58 was used as the cutoff for phosphopeptides. This cutoff returned
15,123 spectra containing 148 decoy peptides for a false discovery
rate (FDR) of 1% (FDR � (148/(15,271 � 148) � 0.0099) for phos-
phopeptides. The selection of this cutoff was based on the accuracy
to error plotted for all spectral results shown in supplemental Fig. S1
that returned an FDR of 0.002% for all peptides (both phosphorylated
and non-phosphorylated) identified.

Processing of iProphet Results (MATLAB)—The details of the
MATLAB algorithm used to process the peptides are provided in
supplemental PhosPepAlign.m. Briefly, the algorithm counts the num-
ber of phosphorylation sites indicated on the peptide and then groups
the peptides based on the number of phosphorylation sites, se-
quence overlap, and mutual PeptideProphet-level assignment. This
program also returns the number of phosphorylation sites and the
mean ASAP scores for each group.

ASCORE Analysis—A custom version (31) of the ASCORE algo-
rithm (32) was implemented in the Python programming language to
compute the probability of phosphorylation localizing to a specific
residue. Peptides with scores greater than 19 (99% probability of
being correct) were visually inspected. In instances of multiple pos-
sible assignments, the peptides identified most frequently with the
highest probabilities and best localization scores were selected
(supplemental Table S1-II).

Motif Analysis—All unambiguously assigned peptides were cen-
tered on the position of the phosphorylated aminoacyl residue, and a
greedy search was used to identify highly enriched up- and down-
stream residues at specific positions compared with the proteome-
wide frequency of each amino acid residue. In the first pass, simple
“primary” patterns were identified in which a phosphorylated residue
was paired with a highly enriched residue (or group) at a specific
location (supplemental Table S3, primary feature). In a second pass,
these primary patterns were held constant, and secondary patterns
were identified using the same strategy (supplemental Table
S3, secondary feature). At the conclusion of the second pass, three-
part substrate patterns were identified: a phosphorylated residue, the
enriched amino acid residue or group from the first pass, and a further
amino acid residue or group identified in the second pass. Likelihood
was determined using the hypergeometric distribution of the fre-
quency of amino acids in the yeast proteome and the PhosphoPep
database (33). The motifs with significant p values (supple-
mental Table S3) were iteratively queried against the Human Protein
Reference Database using the PhosphoMotif Finder (34), identifying
homologous human kinase motifs (supplemental Table S3, se-
quence). To identify the putative corresponding S. cerevisiae ho-
mologs, the identified human kinases were used to search the
HomoloGene Database (35) (http://www.ncbi.nlm.nih.gov/sites/

2 D. Shteynberg, E. W. Deutsch, H. Lam, J. K. Eng, Z. Sun, N.
Tasman, L. Mendoza, R. L. Moritz, R. Aebersold, and A. Nesvizhskii,
manuscript in preparation.
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entrez?db�homologene) and the Saccharomyces Genome Database
(36) (http://www.yeastgenome.org/).

Site-directed Mutagenesis—PCR-based mutagenesis was per-
formed as described (37). The primers used are listed in supple-
mental Table S6. Mutagenized genes (PIP2 and CST6) were se-
quenced to confirm the fidelity of the mutagenesis.

Quantitative PCR—Quantitative PCR was done as described pre-
viously (38). Cells were grown overnight in YPBD (0.3% yeast extract,
0.5% peptone, 0.5% potassium phosphate buffer, pH 6.0, 2% glu-
cose) and then grown for 16 h in YPB-low glucose (0.3% yeast
extract, 0.5% peptone, 0.5% potassium phosphate buffer, pH 6.0,
0.15% glucose). Cells were pelleted by centrifugation and resus-
pended in YPBO (0.3% yeast extract, 0.5% peptone, 0.5% potassium
phosphate buffer, pH 6.0, 0.5% Tween 40, 0.2% oleic acid), and
samples were collected at 0, 30, and 90 min. Samples were
pelleted by centrifugation, and the resulting pellets were flash fro-
zen in liquid nitrogen. RNA was extracted using hot phenol extrac-
tion (39), and total RNA was enriched with a Qiagen RNeasyTM kit.
A RevertAidTM First Strand cDNA Synthesis kit (Fermentas) was
used to generate cDNA, and quantitative PCR was carried out using
a DynamoTM Flash SYBR Green quantitative PCR kit (NEB) on the ABI
7900 RT-PCR system. The data were normalized to expression of
YFL039C (actin), which does not change in expression significantly
during the FA response (this study and Ref. 39).

Cytoscape Network Construction—Known physical interactions
between these proteins were downloaded from the Saccharomyces
Genome Database (March 14, 2009). Each protein-protein interaction
was reduced to a single interaction, and self-interactions were re-
moved to reduce edge density. ASAP scores of glucose- and oleic
acid-enriched proteins were converted to log10 scores. Proteins in
which multiple phosphorylation events were detected were treated as
single species, and the maximal log10 phosphorylation score was
assigned to the protein. Proteins for which both glucose- and oleic
acid-enriched peptides were detected were treated as one protein
that was designated as “dual,” and no indication of enrichment of
phosphorylation was indicated. The network is available as
supplemental FA_Net_Saleem_MCP.cys, allowing the reader to inter-
actively view the network using Cytoscape (freely available at
http://www.cytoscape.org/).

Network Connectivity—The connectivity of the nodes in the FA
network were transformed to a normalized score between 0 (no
connections) and 1 (maximal connections), indicated by the red line in
Fig. 7, top (connectivity norm). Similarly, functional genomics data (8),
testing the effects of deletions of the same nodes on expression of an
FA-responsive locus, were transformed to range from 1 (enhance-
ment of gene expression) to ��0.7 (severe defect in expression),
indicated by the blue line in Fig. 7, top (deletion effect norm). A series
of normalized score values (supplemental Fig. S2) was tested to
determine the significance of the correlation between the connectivity
norm and the deletion effect norm. At a cutoff of 25% (0.25 of the
normalized score in Fig. 7, top) from maximum connectivity, a p value
of 7.6 � 10�9 for the enrichment of highly connected nodes, whose
respective gene deletions perturb expression of FA-responsive loci,
was obtained based on the cumulative hypergeometric distribution
function.

Microarray Analysis—A 100-ml culture seeded at an A600 of �0.05
into minimal yeast medium (described above) � 2% glucose was
grown at 30 °C for 8 h. One-half (50 ml) of the culture was harvested
at an A600 of 0.5 by centrifugation and washed once with induction
medium (minimal yeast medium with 0.2% oleate, 0.5% Tween 40)
prewarmed to 30 °C, and cells were transferred to 50 ml of pre-
warmed induction medium. This culture was induced for 90 min, and
then the cells were harvested by centrifugation and flash frozen. The
remaining 50 ml of the original culture were grown to an A600 of 1 and

harvested as for the induced sample. RNA was extracted and purified
as described above. Labeled cRNA was prepared with the Agilent
Quick AmpTM two-color kit using 0.5 �g of input RNA. Arrays were
Agilent 8 � 15K (AMAID). Analysis was performed as described
previously (39). The strains tested were BY4742, hog1�, and ste20�.
Deletion strains were obtained from the commercially available yeast
deletion library.

RESULTS

Experimental Strategy and Rationale—Our previous study
identified signaling molecules that are required for the normal
induction of loci encoding peroxisomal matrix proteins in re-

FIG. 1. Work flow for isolation and integration of phosphopep-
tides into signaling networks. SILAC, stable isotope labeling with
amino acids in cell culture.
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sponse to FA stimulation (8); however, that study did not
address the nature of changes in the phosphoproteome that
accompany FA exposure. We therefore sought to comple-
ment these initial efforts by developing a robust methodol-
ogy to quantitatively interrogate phosphoproteomes and
apply this approach to enumerate changes of the phosphor-
ylated proteome corresponding to a shift from glucose- (2%
glucose in YPB) to oleic acid (0.2% oleic acid, 0.5% Tween
40 in YPB)-grown S. cerevisiae. Our work flow is shown in
Fig. 1.

After cryolysis and urea solubilization of the cells, the pro-
teome was digested to peptides, and the peptides were
fractionated using hydrophilic interaction liquid chromatog-
raphy (HILIC). HILIC-based fractionation works in a manner
orthogonal to reverse-phase chromatography and has been
used effectively in the enrichment of phosphorylated peptides
(11, 12). Peptides with net hydrophobic properties elute first
from the HILIC column followed by peptides with net hydro-
philic properties. The charged nature of phosphate groups

tends to increase the hydrophilic properties and the retention
time of phosphorylated peptides on the column.

The largest percentages of phosphopeptides were delayed
in their elution from the column and appeared near the end of
the chromatographic trace (Fig. 2), although phosphopep-
tides were detected in other fractions as well. HILIC frac-
tions were pooled for enrichment by IMAC based on the
overall peptide abundance estimated from the chromato-
graphic trace (Fig. 2).

Mass spectrometric data were searched with both X!Tandem
(24) and Mascot (26) and processed with the Trans-Proteomic
Pipeline (28) using the spectral intensities of the isotopically
different amino acids to compute quantitative differences be-
tween ion pairs in the glucose-grown and oleic acid-incubated
cells (30). These spectral search data were integrated using
iProphet,2 which uses PeptideProphet spectrum-level results
from multiple MS runs to compute a new probability at the level
of a unique peptide sequence (supplemental Fig. S1). Using this
approach, 13,941 phosphorylated peptides were identified, and

FIG. 2. Fractionation and analysis of
phosphoproteome. A, HILIC fraction-
ation of tryptic peptides retains phos-
phopeptides until later in the elution
profile. Chromatographic traces at 214
(black) and 280 nm (gray) and the gradi-
ent profile are shown with the percent-
age of Solvent A (“Experimental Proce-
dures”) indicated above the gradient.
Pools of the HILIC-based fractionation
for IMAC-based enrichment of phos-
phopeptides are shown on the x axis.
Combined Fractions 8, 9, and 10 have
the highest percentage of phosphopep-
tides. B, Venn diagram of the number of
non-redundant peptides identified by
MS2- and MSA-based mass spectrom-
etry. The majority of the phosphopro-
teome can be identified by MS2 analysis
alone. C, number of phosphorylation
sites (N Phos) per peptide. The majority
of the peptides identified were doubly
phosphorylated (60%).
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the relative abundances were quantified at an FDR of 1% (using
a decoy database to establish the FDR).

Identification of Phosphopeptides—Phosphorylated pep-
tides were identified by mass spectrometric analyses of both
MS2 experiments and MSA analyses. Once redundant pep-
tides were removed from the entire data set, 3,898 unique
species of phosphorylated peptides remained. Peptides with
the same primary sequence and different assignments of
phosphorylated residues were counted as unique species and
are included in supplemental Table S1A. Phosphopeptides
that were ambiguously assigned to proteins were removed,
leaving a total of 3,788 non-redundant phosphopeptides that
were confidently assigned to proteins. The bulk of the identi-
fications came from MS2 data (Fig. 2B), but a unique subset
of the phosphoproteome was identified only through the use
of MSA-based spectrometry. MSA analysis increased the

number of peptide identifications by 12%. To account for
instances where the same peptide would be counted multiple
times due to missed cleavages, peptides that overlapped
significantly (�50%), mapped to the same protein, and con-
tained the same number of phosphates were grouped to-
gether (supplemental PhosPepAlign.m), yielding a total of
1,324 non-redundant peptides (supplemental Table S1B) that
mapped unambiguously to 697 proteins (supplemental Table
S1C). Most peptides were multiply phosphorylated peptides:
414 peptides (32%) with single phosphorylation sites were
identified compared with 770 that were doubly phosphoryla-
ted (60%) and 109 that were triply phosphorylated (8%) (Fig.
2C and supplemental Table S1B, inset). A small number of
peptides containing more than three phosphates were also
identified (supplemental spectra). To assign the specific site
of phosphorylation, a modified version of ASCORE was

FIG. 3. Specific subsets of phospho-
proteome enriched from cells incu-
bated in oleic acid- or glucose-con-
taining medium. A, comparison of the
number of unique phosphopeptides,
the number of phosphoproteins, and the
number of unique phosphoproteins for
oleic acid-enriched, glucose-enriched,
and non-enriching phosphopeptides. B,
Venn diagram showing the overlap be-
tween identified proteins with peptides
increasing in phosphorylation in oleic
acid and those proteins with peptides
increasing in phosphorylation in glucose.
C, subcellular localizations for proteins
enriched in either oleic acid or glucose.
D, functional annotations of the proteins
as a kinase or phosphatase (Signaling), a
transcription factor, or other. ER, endo-
plasmic reticulum.

TABLE I
Kinases for which motifs are significantly enriched in this phosphopeptide data set

Statistical information for the identified motifs is provided in supplemental Table S3. The highly enriching motifs were queried against the
Human Protein Reference Database using the PhosphoMotif Finder (34). Putative yeast homologs of the human kinases were identified through
the HomoloGene Database (35) and searches of the Saccharomyces Genome Database (36).

Feature of motif described in literature Instances S. cerevisiae homolog

Casein kinase II substrate motif 155 Yck1p, Yck2p, Yck3p, Cka1p, Cka2p, Ckb1p, Ckb2p
Casein kinase I substrate motif 77 Hrr25p
G-protein-coupled receptor kinase 1 substrate motif 57 Gpr1p, Gpa2p, Gpb1p, Gpb2p
MAPKAPK2 kinase substrate motif 52 MAPK
PKA kinase substrate motif 48 Tpk1p, Tpk2p, Tpk3p, Bcy1p
GSK3 kinase substrate motif 26 Mck1p, Rim11p, Mrk1p, Ygk3p
PKC kinase substrate motif 25 Pkc1p
GSK-3, ERK1, ERK2, CDK5 substrate motif 22 Mck1p, Rim11p, Mrk1p, Ygk3p, Fus3p, Kss1p, Pho85p
Calmodulin-dependent protein kinase II substrate

motif
8 Cmk1p, Cmk2p

Unknown 3

Phosphoproteomics of Fatty Acid-stimulated Cells

Molecular & Cellular Proteomics 9.9 2081

http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1
http://www.mcponline.org/cgi/content/full/M000116-MCP201/DC1


applied to the search results. This resulted in the unambig-
uous assignment of 892 phosphorylated residues for 527
peptides identified at a 99% confidence cutoff (supple-
mental Table S1-II).

The phosphopeptide data set was queried against the
PhosphoPep yeast database (33) (www.phosphopep.org/
index.php) (supplemental Table S2-I). Based on primary
sequence comparisons, the majority (92%) of the proteins
identified in this study were present in the PhosphoPep
database, validating the approach; however, several new
phosphopeptides and phosphoproteins were also identified
(supplemental Table S2-II). Among the previously identified
179 phosphoproteins in the data set, 213 novel phosphor-
ylation sites were identified; in addition, 54 novel phospho-
proteins were identified (59 phosphorylation sites).

In an effort to understand kinase-substrate relationships in
this data set, phosphopeptides were analyzed for enriching
motifs by primary sequence analysis. These motifs were
matched to known motifs using PhosphoMotif Finder (34).

Each query motif and the possible submotifs identified are
listed in supplemental Table S3. As reported in other studies
(10, 40), these motifs included substrates for casein kinases I
and II, G-protein-coupled receptor kinase I, and PKA/PKC.
The S. cerevisiae homologs for kinases for which motifs were
identified are listed in Table I.

Quantitative Comparison of Carbon Source-specific Phos-
phoproteomes—Cells were grown in glucose-repressing or
oleic acid-inducing medium in the presence of isotopically
different amino acids (41), allowing the downstream quantifi-
cation of phosphopeptides by ASAP ratio in the MS1 spectra
of identified phosphopeptides (30). Peptides were considered
enriched in glucose-repressing medium if they had an ASAP
ratio (log2-based) less than 0.5 and were considered enriched
in oleic acid-inducing medium if they had an ASAP ratio
greater than 2. There were 467 peptides, corresponding to
350 proteins enriched in the oleate-inducing medium. 249
peptides, corresponding to 197 proteins, were enriched in the
glucose-repressing condition (Fig. 3A). When both the oleic

FIG. 4. Detection of known signaling pathway proteins. Pathways identified in the literature were compared with proteins that were
detected by mass spectrometry-based phosphoproteomics analysis.
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acid and glucose data sets were combined, 67 proteins showed
dual enrichment; i.e. they contained at least one phosphopep-
tide that was enriched in oleic acid and at least one different
phosphopeptide that was enriched in glucose (Fig. 3B).

The data set of 480 oleate-, glucose-, and dual enriched
phosphoproteins was uploaded via the Firegoose interface
(42) into the Protein Information and Property Explorer (43),
and subcellular localizations were obtained for proteins in
the data set (Fig. 3C). The data set was also queried for
significantly enriching gene ontology annotations and
showed enrichment for signaling/kinase activity (Fig. 3D and
supplemental Table S4), regulation of actin, and the pres-
ence of plasma membrane proteins.

Within the oleate- or glucose-enriched phosphoprotein
data set were a number of proteins that were previously
identified as nodes in the core FA response signaling network
governing the induction of peroxisomes (8). For example,
phosphorylated forms of the transcription factors Adr1p and
Pip2, which are known to be key transcriptional regulators of
the FA response (3, 4), were enriched in oleic acid-induced
cells. Enrichment of the glucose repression signaling mole-
cule (Yck3p) was also detected in oleate-inducing medium.
Interestingly, of six known negative effectors of derepression,
three showed increased phosphorylation in oleic acid-in-
duced cells (Hsl1p, Ypk1p, and Apl5p). Nine signaling mole-
cules thought to act as positive effectors of oleic acid-induced
expression were also identified: four with increased phosphor-
ylation in oleic acid (Inp52p, Ste20p, Tps3p, and Ypk2p), four
with increased phosphorylation in glucose-repressed condi-
tions (Cdc19p, Gin4p, Lcb4p, and Tor1p), and Reg1p, which
showed dual enrichment (different phosphorylated sites in
glucose versus oleic acid). Signaling molecules known to be
involved in the morphology of peroxisomes were also differ-
entially phosphorylated. Pbs2p exhibited increased phosphor-
ylation in glucose, whereas Rck1p, Ssk1p, and Yck1p exhib-
ited increased phosphorylation in oleate-inducing medium;
Akl5p showed dual enrichment.

The phosphorylated proteins detected by this study were
compared with known signaling pathway components identi-
fied in the literature and by querying against the Kyoto Ency-
clopedia of Genes and Genomes for relevant pathways (8, 39,
44, 45) (supplemental Table S5). Remarkably, combining
these phosphoproteomics data with the results from the func-
tional genomics study (8) showed involvement of numerous
signaling pathways, which must be coordinated during the
response. Some pathways such as glucose sensing, G-pro-
tein signaling, and quiescence pathways were particularly
evident in the data with as much as 60% of the known
components identified (Fig. 4).

Mutational Analysis of Transcription Factor Phosphorylated
Amino Acid Residues—To test novel predictions arising from
the identification of phosphorylation sites in these data, we
focused on two novel phosphorylated transcription factors,
Pip2p and Cst6p. Pip2p is a well characterized central regulator

of oleate-responsive loci but has not been previously reported
to be phosphorylated, and models of the transcriptional re-
sponse involving Pip2p do not consider its potential posttrans-
lational modifications (3, 4). Phosphorylated Pip2p was enriched
in oleate-induced conditions but barely above the statistical
cutoff used. On the other hand, phosphorylated Cst6p was
strongly enriched in the oleate-induced state and has not been
previously implicated in the transcriptional response to oleate.

Pip2p was determined to be phosphorylated in oleate at
position Ser-783. Therefore, a serine to alanine (S783A) mu-
tation was introduced, and the induction of oleate-responsive
loci was tested. By comparison with wild-type cells, the
S783A mutant led to a sharp increase in the levels of tran-
scription after 30 min of oleate induction (Fig. 5). By 90 min,
this effect was much less dramatic (data not shown), lead-
ing to the hypothesis that phosphorylation of Pip2p at Ser-783
tempers the levels of transcription of oleate-responsive loci at
the early stages of the response.

A similar effect was observed with Cst6p. Cst6p is a phos-
phoprotein with several phosphorylation sites (33); however,

FIG. 5. Quantitative PCR reveals a role for oleate-enriched
phosphorylation of Pip2p and Cst6p. A, yeast cells carrying a
S783A-mutagenized version of Pip2p were tested for expression of
oleate-responsive loci POT1, CTA1, FOX2, and POX1. Shown are the
levels of induction after 30 min in oleate-inducing medium. By 90 min,
the differences between wild type and the Pip2p S783A strain were
not significant (data not shown). B, at 90 min of oleate induction,
increased expression of oleate-responsive loci (POT1, CTA1, FOX2,
and POX1) is detected in the two Cst6p mutagenized strains. Cst6-1
is multiply mutated (S396A,S399A,T401A), whereas Cst6-2 is singly
mutated (T401A). Error bars show the standard deviation.
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the biological relevance of these phosphorylation states is not
clear. A doubly phosphorylated Cst6p peptide (at positions
Ser-399 and Thr-401 with Thr-401 being a novel phosphosite)
was enriched in oleate. Both singly (T401A) and multiply
(S396A,S399A,T401A) mutated species of Cst6p were gener-
ated, and the effect of these mutations on expression of
peroxisomal, FA-responsive loci was examined. As shown in
Fig. 5, mutant Cst6p cells also showed an increase in expres-
sion of POT1, CTA1, FOX2, and POX1 compared with wild
type, suggesting that Cst6p is a novel transcriptional regulator
of oleate-responsive loci and that its phosphorylation damp-
ens the response.

Nodes within Fatty Acid-responsive Signaling Network
Show High Correlation of Connectivity and Influence—A net-
work was constructed from the interactions between the
phosphoproteins identified in this study and the kinases and
phosphatases implicated in the core response to FA-medi-
ated peroxisome induction (8) (Fig. 6). This network repre-
sents the known components and potential interactions be-
tween the components that regulate the response of S.
cerevisiae to glucose and oleic acid and includes the core
transcription factors Adr1p, Pip2p, Oaf1p, and Oaf3p, which
differentially bind fatty acid-induced loci (4). The majority of
the nodes in the network show few connections with a small
number of highly connected nodes (Fig. 7, top). The degree of
distribution of the network follows the power law, which is
indicative of a scale-free network (Fig. 7, middle). The con-
nectivity of this network was compared with the effect of node
deletions on the regulation of FA-responsive loci (Fig. 7, bot-
tom). The nodes with the greatest effect (more than one
standard deviation from wild type) on the expression of FA-
responsive loci showed significant enrichment for high con-
nectivity (p value � 7.6 � 10�9) (supplemental Fig. S2).

DISCUSSION

Signal transduction via the reversible phosphorylation of
proteins is a universal mechanism in virtually all cellular pro-
cesses (1, 2). Here, quantitative mass spectrometry was used
to reveal the changes of the phosphoproteome that accom-
pany the transition of cells from conditions that repress (glu-
cose) or induce (oleate) peroxisome proliferation in yeast.
Integration of these data with physical and ontological data
from the literature enabled the identification of an extensive
phosphoproteome network governing the response. From
more than 1,300 peptides mapping to 697 proteins, this study

identified 480 proteins in which phosphorylation significantly
changed when cells were transferred from glucose to oleic
acid. From this study, 54 novel phosphoproteins were identi-
fied, and another 214 new phosphopeptides were identified in
179 previously known phosphoproteins. We note that this
assay does not measure absolute protein levels but rather
quantitatively interrogates the relative changes in the phos-
phoproteome. Using these data alone, it is not always possi-
ble to distinguish between changes in protein abundance and
changes in the posttranslational state of a protein. We can,
however, rule out dramatic changes in gene expression as
underlying the vast majority of the changes in the phospho-
proteome. Microarray analysis under the same conditions
demonstrated that there is no correlation, on a genome-wide
level, between the changes in expression and changes in the
phosphoproteome (supplemental Fig. S3).

We previously mapped the signalome portion of the FA-
responsive network using a representative protein of the per-
oxisomal matrix (8); viable deletions of signaling molecules
were individually assayed to determine the contribution of
each signaling molecule to the FA response. Many of the
kinases and phosphatases identified in that study as regulat-
ing peroxisome biogenesis were also found here to be differ-
entially phosphorylated. These key components of the FA
response include regulators of glucose repression (Hsl1p,
Ypk1p, and Apl5p) and regulators required for robust activa-
tion of an FA-induced gene encoding a peroxisomal reporter
(Inp52p, Ste20p, Tps3p, Ypk2p, Cdc19p, Gin4p, Lcb4p,
Tor1p, and Reg1p).

A key goal of this quantitative analysis of the phosphopro-
teome was the generation of new hypotheses that would have
otherwise remained obscured. Importantly, oleate-specific
enrichments in the phosphorylation status of two transcription
factors, Pip2p and Adr1p, which are known to be essential for
activation of oleate-responsive loci, were detected. Mutagen-
esis of the novel phosphorylated residue on Pip2p revealed its
role in modulating the oleate-mediated transcriptional re-
sponses of Pip2p targets. Although previously not linked to
the oleate response, Cst6p is known to be involved in the
utilization of non-optimal carbon sources (46) and was iden-
tified as a strongly enriching component of the oleate-induced
phosphorylome. This raises the possibility that Cst6p is en-
riched in response to the detergent used to solubilize the oleic
acid rather than oleic acid itself. Although this detergent alone
has no observable effect on peroxisome induction, the sen-

FIG. 6. FA signaling network. Integrated network of enriching phosphoproteins, signaling proteins known to regulate responses to FAs, and
regulatory proteins. Proteins are indicated by nodes, and protein-protein interactions are shown by edges between the nodes. Green nodes
indicate enrichment in oleic acid, red nodes indicate enrichment in glucose, blue nodes indicate enrichment of different sites in glucose and
oleic acid, and white nodes indicate no information on phosphorylation status. The node border indicates the role of the protein as a positive
(red), negative (green), or neutral (gray) effector of expression of FA-responsive loci. Diamond-shaped nodes indicate kinases, parallelogram-
shaped nodes indicate phosphatases, octagonal nodes indicate regulators, circular nodes indicate transcription factors, and rounded
rectangular nodes indicate phosphorylation substrates. The network is provided as a Cytoscape file (supplemental FA_Net_Saleem_MCP.cys)
to facilitate interactive viewing.
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sitivity of the proteomics approaches may identify molecular
changes not evident at the morphological level. Nonetheless,
analysis of the role of Cst6p demonstrates a role in the ex-
pression of oleate-responsive loci. Indeed, like Pip2p, the
phosphorylation of Cst6p modulates the response of oleate-
induced genes; however, it appears that these posttransla-
tional modifications play different time-dependent roles. As
the transcriptional regulation of oleate-induced peroxisome
proliferation is used as a paradigm for understanding tran-
scriptional network dynamics, it will be important to incorpo-
rate these new insights into future models (3, 4, 47–49).

Although signaling pathways are often depicted as discreet,
linear pathways, it is increasingly recognized that dense net-
work architectures actually underlie signaling processes (50,
51) and that cells must naturally coordinate activities in re-
sponse to a myriad of complex molecular stimuli. This ap-
pears to be a feature of the network governing the response to
FAs. Through analyses of the signalome (8) and the phos-
phorylome (this study), a number of pathways were observed
to be activated in response to exposure to FAs. These include
networks responsible for glucose sensing, alterations in cell
cycle, and mediators controlling the phosphorylation status of
lipids. By phosphoproteomics analysis, not only were key
signaling molecules of the FA-responsive network detected,
but also signaling molecules previously shown to be involved
in the signal transduction of a number of other pathways (Fig.
4), including Hog1p and Ste20p of the MAPK pathways, were
discovered. This study demonstrates that the phosphorylation
status of these components changes in response to stimula-
tion with glucose or oleic acid, highlighting the integration of
these components into what forms the larger FA-responsive
network (Fig. 5). However, it should be noted that multiple
factors have the potential to influence the network response,
and the challenge remains to determine to what extent such a
complex network response can be deconvolved into its com-
ponent responses. Indeed, whether the activation of these
pathways is required for the response to oleate-inducing me-
dium or is a dispensable secondary effect due to cross-talk of
network components remains an active area of investigation.
Microarray analyses of HOG1 and STE20 deletion strains indi-
cate that the effects of these two genes are at least partially
integrated; a number of oleate-responsive loci are down-regu-
lated in comparison with wild-type cells when either of these
deletions strains is exposed to FAs (data not shown).

FIG. 7. Network analysis. Top, the most highly connected nodes
are the nodes that tend to exert the greatest effect on the expression
of FA-responsive loci. The x axis indicates proteins from the network
for which there are data on the role of the protein in expression of
FA-responsive loci. The y axis is the normalized score for connectivity
with 1 indicating the most highly connected node in the network. The
red line indicates node connectivity (connectivity norm), whereas the
blue line (deletion effect norm) indicates the role of the network
protein as a negative effector (positive score on the y axis) or positive
effector (negative score on the y axis) of the FA response. Middle,

most nodes in the network have few connections. The x axis indicates
the number of connections (k); the y axis indicates the number of
nodes with a given number of connections (P(k)). Bottom, the degree
of distribution of the FA network follows the power law. The x axis is
the log10 of connectivity (k); the y axis represents the log10 of the
number of nodes in a given bin (P(k)). Each red dot represents a given
number of connections (k) from the x axis of the middle panel. This
connectivity shows that this network has topology consistent with
scale-free networks.
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Finally, beyond the hypotheses generated from the interac-
tions within the network, the architecture of this nutrient-
responsive network itself reveals additional biological insight.
Within the FA-responsive network, highly connected nodes
correspond to genes that when deleted show the most dra-
matic phenotypes with respect to peroxisome biogenesis and
oleate-responsive gene expression. In other data sets, highly
connected nodes correlate with essentiality (52). This quality
of a few, highly influential nodes, representing network hubs,
with numerous less influential nodes is a trait of scale-free
networks and is a common network organization in biological
systems (53). This FA-responsive network extends the con-
cept of highly connected nodes being essential for cell viabil-
ity, showing the same topology at the nutrient utilization level.
Thus, although the network presented herein is dense and
contains pathway components that encompass all the requi-
site programs for S. cerevisiae to respond to FAs as a nutrient
source, scale-free properties are conserved in the signaling
network governing responses to FAs (Fig. 6C).

This FA-responsive network represents a potential, static
map of the components of the network and provides an
extensive framework from which to map FA signaling in a
dynamic manner, including temporal organization and infor-
mation flow via network perturbations. The comprehensive
and quantitative nature of this phosphoproteomics analysis
suggests that identification of large numbers of phosphory-
lated peptides in the various states is not sufficient to define
the cellular response. Analogous to an expression microarray,
it is the relative abundance of the phosphorylated peptides in
different conditions that defines the cellular state, and deci-
phering this code is a major collective challenge. Understand-
ing cellular behaviors at a systems-wide level will require the
elucidation of these networks and ultimately derivation of the
information flow within the network. Global phosphoproteom-
ics analyses of these cell states provide an opportunity to
generate the data necessary for such a systems-level view of
these networks.
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