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The use of electron transfer dissociation (ETD) fragmen-
tation for analysis of peptides eluting in liquid chromatog-
raphy tandem mass spectrometry experiments is increas-
ingly common and can allow identification of many
peptides and proteins in complex mixtures. Peptide iden-
tification is performed through the use of search engines
that attempt to match spectra to peptides from proteins in
a database. However, software for the analysis of ETD
fragmentation data is currently less developed than equiv-
alent algorithms for the analysis of the more ubiquitous
collision-induced dissociation fragmentation spectra. In
this study, a new scoring system was developed for anal-
ysis of peptide ETD fragmentation data that varies the ion
type weighting depending on the precursor ion charge
state and peptide sequence. This new scoring regime was
applied to the analysis of data from previously published
results where four search engines (Mascot, Open Mass
Spectrometry Search Algorithm (OMSSA), Spectrum Mill,
and X!Tandem) were compared (Kandasamy, K., Pandey,
A., and Molina, H. (2009) Evaluation of several MS/MS
search algorithms for analysis of spectra derived from
electron transfer dissociation experiments. Anal. Chem.
81, 7170–7180). Protein Prospector identified 80% more
spectra at a 1% false discovery rate than the most
successful alternative searching engine in this previous
publication. These results suggest that other search
engines would benefit from the application of similar
rules. Molecular & Cellular Proteomics 9:1795–1803,
2010.

The recently developed fragmentation approach of electron
transfer dissociation (ETD)1 has become a genuine alternative
to the more ubiquitous collision-induced dissociation (CID) for
high throughput and high sensitivity proteomic analysis (1–3).

ETD (4) and the related fragmentation process electron cap-
ture dissociation (ECD) (5) have been demonstrated to have
particular advantages for the analysis of large peptides and
small proteins (6–8) as well as the analysis of peptides bear-
ing labile post-translational modifications (9–11). The results
achieved through ETD and ECD analysis have been shown to
be highly complementary to those obtained through CID frag-
mentation analysis, both through increasing confidence in
particular identifications of peptides and also by allowing
identification of extra components in complex mixtures (10,
12, 13). As CID and ETD can be sequentially or alternatively
performed on precursor ions in the same mass spectrometric
run, it is expected that the combined use of these two frag-
mentation analysis techniques will become increasingly com-
mon to enable more comprehensive sample analysis.

Software for analysis of CID spectra is significantly more
advanced than that for ECD/ETD data. This is partly because
the behavior of peptides under CID fragmentation is better
characterized and understood so software has been devel-
oped that is better able to predict the fragment ions expected.
The fragment ion types observed in ETD and ECD are largely
known (5, 14, 15), but information about the frequency and
peak intensities of the different ion types observed is less well
documented.

We recently performed a study to characterize how fre-
quently the different fragment ion types are detected in ETD
spectra when analyzing complex digest mixtures produced by
proteolytic enzymes or chemical cleavage reagents of differ-
ent sequence specificity (16). These results were analyzed
with respect to precursor charge state and location of basic
residues, which were both shown to be significant factors in
controlling the fragment ion types observed. The results
showed that ETD spectra of doubly charged precursor ions
produced very different fragment ions depending on the lo-
cation of a basic residue in the sequence.

Based on this statistical analysis of ETD data from a diverse
range of peptides (16), in the present study, a new scoring
system was developed and implemented in the search engine
Batch-Tag within Protein Prospector that adjusts the weight-
ing for different fragment ion types based on the precursor
charge state and the presence of basic amino acid residues at
either peptide terminus. The results using this new scoring
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system were compared with the previous generation of
Batch-Tag, which used ion score weightings based on the
average frequency of observation of different fragment types
in ETD spectra of tryptic peptides and used the same scoring
irrespective of precursor charge and sequence. The perform-
ance of this new scoring was also compared with those
reported by other search engines using results previously
published from a large standard data set (17). The new scor-
ing system allowed identification of significantly more spectra
than achieved with the previous scoring system. It also as-
signed 80% more spectra than the most successful of the
compared search engines when using the same false discov-
ery rate threshold.

EXPERIMENTAL PROCEDURES

Samples—All data analyzed in this study were derived from sam-
ples that have been described in previous publications (16, 17).
Briefly, the samples used to create the data for comparison of search
engine performance with different enzymes were in-solution digests
of a mouse synaptosomal preparation and a nuclear preparation from
a mouse stem cell line. These samples were analyzed by LC-MSMS
using an LTQ-Orbitrap (Thermo) where precursor ions were measured
in the Orbitrap and fragments were measured in the linear ion trap.
Sequential CID and ETD (with supplemental activation) spectra were
acquired of each precursor, but only the ETD spectra were used for
this study. The raw data and peak lists for these data can be down-
loaded from Tranche, https://proteomecommons.org/tranche/, using
the following hash: sNYKSLLfYxWfpTyf3qpB1ACy2HEwK-
gbudgpasiiIzSOI9BsM�Fm6ZNBx683DeGnVIrWBTHhyN1Gy8hfjb-
93LxlCjswYAAAAAAAAc/A��.

The samples for the search engine comparison were a tryptic
digest of a standard protein mixture (Universal Proteomics Standard
UPS1 from Sigma), a set of Lys-C phosphopeptides enriched from
either HEK293T cells or the p196 human pancreatic cancer cell line,
and strong cation exchange fractions from a tryptic digest of p196
cells. These data were acquired by LC-MSMS in an Agilent 6340
three-dimensional ion trap using supplemental activation.

Peak List Generation—Descriptions of peak list generation meth-
ods were described in previous publications (16, 17). For the search
engine comparison data set, the headers of the peak lists in the files
were edited slightly for ease of searching within Batch-Tag, but the
lists of masses were identical to the previous study.

Search Parameters for Enzyme Comparison Data—Data were
searched against a version of the UniProtKB database (combination
of Swiss-Prot and TrEMBL) downloaded on July 7, 2009 to which was
concatenated a sequence-randomized version of the database. Only
rodent entries were considered, leading to consideration of 187,236
database entries. Data were searched allowing a precursor mass
tolerance of �15 ppm and a fragment mass tolerance of �0.6 Da.
Cysteines were assumed to be carbamidomethylated, and the follow-
ing other modifications were considered: acetyl (protein N terminus),
acetyl � oxidation (protein N-terminal Met), Gln 3 pyro-Glu (N-
terminal Gln), Met loss (protein N-terminal Met), Met loss � acetyl
(protein N-terminal Met), and oxidation (Met). Different enzyme cleav-
age specificities were selected depending on the enzyme (or chemical
agent) used for cleavage, but in each case, up to one missed cleavage
was permitted.

False discovery rate (FDR) thresholds were calculated by importing
results into Excel, sorting results by expectation value and then
charge, and then reporting the number of hits to the normal part of the
database at the point at which the relevant FDR threshold was
reached, assuming the frequency of randomly matching peptides to

the normal and random database components is the same. The
estimated FDR � 2 � Ndecoy hits/Ntotal IDs, but the decoy hits are
known so they can be removed to give a list with an estimated
Ndecoy hits random assignments to the normal database sequences.

Search Parameters for Search Engine Comparison Data—Search
parameters were as close as possible to the previous publication (17).
Data were searched against the human subset of RefSeq from Sep-
tember 14, 2009 (the previously published search engine data were
queried against the same database and subset but from March 5,
2007). This database contained a total of 37,878 protein entries.
Separate searches were performed against a sequence-randomized
version of this database in the same way as the previous publication
(17). A precursor mass error tolerance of �2.5 Da and fragment mass
tolerance of �0.7 Da were considered. All cysteines were assumed to
be carbamidomethylated. The variable modifications considered
were oxidation (Met) and phosphorylation (Ser/Thr/Tyr) with up to five
modifications per peptide. Data were searched with the appropriate
enzyme cleavage specificity (either trypsin or Lys-C) allowing for up to
three missed cleavages.

A minimum peptide and protein score of 12 was used, and a
minimum discriminant score threshold of �0.8 was used. FDR thresh-
olds were calculated by combining the results from all searches
against normal and randomized databases in Excel, sorting results by
expectation value and then charge, and then calculating the esti-
mated FDR in the same way as described for the enzyme comparison
data above.

Differences between Batch-Tag Versions 5.3 and 5.4—The scoring
and expectation value calculation for version 5.3 have been described
previously (18, 19). Briefly, the scores listed in supplemental Table 1
for each ion matched are summed together to give a score for the
spectrum to peptide match; e.g. if four observed masses correspond
to z� ions and the score for each z� ion is 3.2, then the spectrum to
peptide match scores 4 � 3.2 � 12.8. The scores for all peptide
matches in the database with the correct precursor mass of each
spectrum are stored, and then the probability of a particular score
being part of this distribution of scores (where at best all but one are
random matches) is calculated by a linear tail fit to a survival plot of
this distribution.

Four changes were made in version 5.4. First, neutral loss peaks
from charge-reduced species are removed prior to database search-
ing in a way similar to that proposed by other researchers (20). For 1�
charge-reduced peaks, all masses within 60 Da were removed. For
multiply charged charge-reduced peaks, peaks corresponding to the
following mass differences were removed: �60, �59, �58, �45,
�44, �43, �29, �28, �17, �16, �2, �1, and �1 Da. These losses
were found to be the most common peaks observed when analyzing
more than 10,000 spectra in house (some of these are second isotope
peaks). Second, doubly charged fragment ions are now considered in
ETD data (for precursors of charge state 3� or higher). Third, new
scoring was introduced that gives different fragment ion type weight-
ing depending on the precursor ion charge state and presence of
basic residues at the peptide termini (scoring is listed in
supplemental Table 1). Finally, the calculation of the number of pre-
cursor ions considered when converting a probability into an expec-
tation value was altered such that PTM positional isomers counted as
a single precursor for this calculation (Protein Prospector still consid-
ers all the different site assignments; the change is only in the expec-
tation value calculation). This prevents a significant degradation in
expectation value calculation performance when a large number of
modifications per peptide is permitted, which is an increasing prob-
lem if larger peptides are analyzed with multiple modification types
considered.
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RESULTS

In a previous study, we acquired ETD spectra of peptides
produced using the enzymes trypsin, endoprotease Lys-C,
endoprotease Lys-N, and the chemical cleavage agent CNBr
(16). These data were acquired using an LTQ-Orbitrap where
precursor ions were measured with high resolution and mass
accuracy in the Orbitrap and ETD fragments were measured
at low resolution but high sensitivity in the LTQ linear ion trap.
These spectra were then analyzed to determine how fre-
quently the different fragment ion types were observed in
each data set. Data were also analyzed with respect to the
precursor ion charge state. Noticeable differences were ob-
served between the frequency of occurrence of different frag-
ment ion types in doubly charged spectra compared with
those from higher charge state precursors. There were also
dramatic differences between ion type frequencies observed
when different cleavage agents were used for peptide
production.

It was predicted that utilizing this information should allow
development of improved algorithms for performing database
searching to identify peptides from ETD fragmentation data.
Hence, a new scoring system was implemented in Batch-Tag
in Protein Prospector that uses different weightings based on
two parameters: 1) precursor ion charge state and 2) pres-
ence of basic residues at the N terminus, C terminus, both
termini, or neither terminus. These weightings are reported in
supplemental Table 1.

Effect of Implementation of Sequence- and Charge-de-
pendent Scoring—To test the effect of this new scoring sys-
tem, the spectra from the peptides formed by different protein
cleavage agents were reanalyzed. Results were compared
between two scoring systems, one that used score weight-
ings that were derived from the average frequency of obser-
vation of different ion types in ETD spectra of tryptic peptides

of all precursor charges and peptide sequences (Protein Pro-
spector version 5.3) and the sequence- and charge state-de-
pendent scoring system documented in supplemental Table 1
(Protein Prospector version 5.4). Data were searched against
a database with random sequences concatenated onto the
normal database to allow estimation of peptide FDRs (21). All
peptide identifications were considered independent; i.e.
there was no adjustment of scoring based on the presence of
other peptides from the same protein. Fig. 1a shows receiver
operating characteristic plots for the different enzymes and
scoring systems, and Table I reports the numbers of spectra
identified at an estimated peptide FDR threshold of 1%.

For all enzymes, a significant increase in the number of
spectra identified was observed. At the 1% FDR threshold,
the increased percentage of spectra identified was 18% for
Lys-C data, 15% for spectra of tryptic peptides, 26% for
CNBr products, and 39% for Lys-N peptide spectra. The
improvement for the Lys-N data stands out but is not partic-
ularly surprising as the weightings for the Protein Prospector
version 5.3 were trained on, and hence optimized for, data
from tryptic peptides as these are the most common type of
peptide being analyzed in proteomic studies. Hence, the pre-
vious weighting favored peptides with basic C-terminal resi-

FIG. 1. Receiver operating characteristic plots showing numbers of spectral identifications for given number of matches to decoy
part of database. a, results for all enzyme data. For each enzyme/chemical cleavage, the results for Protein Prospector (PP) version 5.3 are
represented by a dashed line, whereas results for the newer version 5.4 are represented by a solid line. b, results for Lys-C data when searched
using two versions of Protein Prospector and using X!Tandem allowing for c and z� ion (cz) or c, y, and z� ions (cyz).

TABLE I
Identifications at 1% threshold when analyzing data produced using a

range of enzymatic or chemical cleavages

Results are presented from Protein Prospector versions 5.3 and
5.4, the latter of which uses new sequence- and charge state-de-
pendent scoring.

FDR Lys-N Lys-C CNBr Trypsin

%

v5.3 1 1091 2007 1027 1370
v5.4 1 1516 2359 1295 1570
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dues. It was shown in the fragment ion statistics results that
the ratio of N-terminal to C-terminal ions observed in Lys-N
digests, especially for spectra derived from doubly charged
precursors, differs most dramatically from those observed
from tryptic peptide spectra (16), statistically confirming the
ad hoc observations of other researchers (22). Thus, it was
expected that the original scoring would perform suboptimally
with Lys-N peptide fragmentation data. Nevertheless, the new
scoring yielded a dramatic improvement in the number of
spectra reliably identified.

For comparison with another search engine, the Lys-C data
set was searched using the latest version of X!Tandem (ver-
sion 2009.10.01). The data were searched with two different
settings, either allowing only for c and z� ions or allowing for c,
y, and z� ions. The results are shown in Fig. 1b. It can be seen
that X!Tandem performed better when not considering y ions,
but even this search only identified roughly half the number of
spectra compared with the improved version of Protein
Prospector.

Comparison of Results with Other Search Engines—En-
couraged by these results, a more in-depth investigation of
how Protein Prospector performance compared with alterna-
tive software for analyzing peptide ETD data was undertaken.
A study has been published comparing the results of four
different software search engines, Mascot (version 2.2) (23),
OMSSA (version 2.1.0) (24), Spectrum Mill (version 3.03.078)
(Agilent), and X!Tandem (version 2007.04.01.1) (25), on the
combination of three different data sets of ETD spectra (17).
These data sets included spectra produced from both trypsin
and endoprotease Lys-C enzymatic cleavages. Strong cation
exchange fractions and phosphopeptide data were also ana-
lyzed in the study. Hence, these data represent different types
of peptides in large enough numbers to allow assessment of
software performance when analyzing sequences with differ-
ent characteristics.

Search parameters used by Protein Prospector were
matched to those in the previous study, and FDR thresholds
were determined by separate searches of target and decoy
databases to match the approach used in the previously
published analysis of these data. Many measures of search
engine performance were reported for the different search
engines in the previously published analysis (17). Table II
reports the performance metrics of Protein Prospector version
5.3 and the new scoring system in version 5.4 at a 1% FDR
threshold and compares these values with the previously

generated results from the other search engines when ana-
lyzing the sum of all of the data. All of the spectral identifica-
tions by Protein Prospector are reported in supple-
mental Table 2, and supplemental Table 3 reports the spectral
identification overlap between Protein Prospector version 5.4
and the other search engines. The numbers of spectra re-
ported for Spectrum Mill and X!Tandem differ slightly from the
previously published values (17) but are the values we derived
when analyzing their results (in the supplemental table to their
paper).

These results show that the scoring system based on ion
frequency independent of charge state and sequence (Protein
Prospector version 5.3) fared well against the other search
engines, identifying 23% more spectra than the most suc-
cessful alternative software. The results from the newer scor-
ing system (Protein Prospector version 5.4) represent an even
bigger improvement with an additional 46% more reported
identifications at the 1% FDR threshold. Thus, the sequence-
and charge state-dependent scoring assigned 80–212%
more spectra than other search engines at this common
threshold.

The overlap between confident spectral identifications as-
signed by the new scoring compared with the other four
search engines is summarized in Table III, and Fig. 2 plots the
membership of different search engines in each level of agree-
ment among the search engines. These results show that a
total of 15,985 spectra were assigned a confident result by
one or more search engines, but for only 1815 of these did all
the search engines confidently assign the same spectrum. In
the previous comparison of the four search engine results, it
was shown that about 45% of all the identifications were
reported by only one search engine (17). The inclusion of
Protein Prospector results significantly reduced this number.
The majority of the single search engine matches are now to
Protein Prospector. Excluding these matches, the inclusion of
Protein Prospector reduced the single search engine matches
from 45% to about 10% (although it should be noted that
results here are reported at a 1% FDR threshold, whereas a
5% FDR threshold was used in the previously published study
(17)). This shows that Protein Prospector results overlap with
many of the unique results from other search engines.

Fig. 2 shows that Mascot was the most common search
engine to miss out when all other search engines agreed.
However, as one examines lower levels of overlap, OMSSA
and X!Tandem were the least consensual. There were very

TABLE II
Acceptance criteria corresponding to 1% FDR threshold for all search engines and corresponding number of spectra identified using these

parameters

The values for search engines other than Protein Prospector (PP) were derived from reanalysis of searches performed by Kandasamy et al.
(17).

OMSSA Mascot Spectrum Mill X!Tandem PP v 5.3 PP v 5.4

All data, 1% FDR threshold 3.7 � 10�3 41.2 10.1, 10.3, 12.5, 12.5 �2.797 0.075 0.028
Total spectral identifications at 1% FDR threshold 4,491 5,529 7,779 4,997 9,589 14,028
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few instances at any level where multiple search engines
agreed on an interpretation and Protein Prospector did not
return the same result. Protein Prospector also dominated the
set of single search engine results.

Influence of Charge State on Results—The difference be-
tween the performances of the other search engines was
shown in the previously published analysis to be heavily due
to the ability of the different softwares to identify spectra from
doubly charged precursor ions (17). Fig. 3 presents pie charts
showing the numbers and percentages of identifications at
each charge state for the two versions of Protein Prospector
and each of the other search engines. Identifications of spec-
tra from doubly charged precursors make up roughly 35% of
the results from both versions of Protein Prospector, which
shows a good agreement with the results reported by Spec-
trum Mill, the most successful of the compared search en-
gines. However, the newer scoring system assigned more
than twice as many quadruply charged precursors and dra-
matically more 5� precursor ion spectra than version 5.3.

The increased number of higher charge state precursors
identified raises the question of whether the reliability of re-
sults for different charge states is the same; indeed, separate

thresholds are reported for Spectrum Mill results because of
this recognized concern. Table IV reports E-value thresholds
for 1% FDR estimates for the two versions of Protein Pro-
spector when the thresholds were separately calculated by
charge state. These values show that the older scoring sys-
tem exhibited little bias in terms of reporting precursors of
different charge states with differing reliability, but the intro-
duction of charge state-dependent scoring required lower
expectation value thresholds to be applied for higher charge
state precursor ions to maintain a given FDR threshold. This
indicates that the application of a global expectation value
threshold in the newer version of Protein Prospector caused
some reliable doubly charged assignments to not be reported
(referred to as false negatives in database searching terms)
but also led to some 4� and 5� precursors of lower reliability
being confidently reported (potential false positives). Hence,
charge state-dependent thresholds were applied to all of the
Protein Prospector results, and Table V compares the number
of spectra identified at each charge state when using the
global 1% FDR threshold and when using the charge state-
specific FDR thresholds. These results show that the more
lenient threshold for doubly charged precursors more than

FIG. 2. Bar charts plotting overlap in spectral identifications for each search engine at each level of agreement between search
engine results. The total height of the plot is the number of spectra matched at each level of agreement, and the dark bar is the number of
spectra at a given level of agreement for which the particular search engine is one of the members. M, Mascot; O, OMSSA; P, Protein
Prospector; S, Spectrum Mill; X, X!Tandem.

TABLE III
Overlap of spectral identifications between Protein Prospector version 5.4 and the four compared search engines at 1% FDR threshold

Values for search engines other than Protein Prospector were derived from filtering of the results created by Kandasamy et al. (17). M,
Mascot; O, OMSSA; P, Protein Prospector; S, Spectrum Mill; X, X!Tandem.

No. search engines
that identified

spectrum
Total

Search engine
combination

No.
spectra

Search engine
combination

No.
spectra

Search engine
combination

No.
spectra

Search engine
combination

No.
spectra

All 5 1815
Only 4 1489 O, P, S, X 676 M, P, S, X 469 M, O, P, S 246 M, O, P, X 82

M, O, S, X 16
Only 3 2320 M, P, S 924 P, S, X 559 O, P, S 409 O, P, X 211

M, P, X 105 M, O, P 48 M, O, S 32 M, S, X 17
O, S, X 13 M, O, X 2

Only 2 3976 P, S 1344 M, P 1195 O, P 613 P, X 585
M, S 122 S, X 36 O, S 36 M, O 24
O, X 16 M, X 5

Only 1 6385 P 4724 S 790 M 427 X 239
O 205

Improving Software Performance for Peptide ETD Data Analysis

Molecular & Cellular Proteomics 9.9 1799



compensates for the more conservative thresholds for qua-
druply and quintuply charged precursors to lead to a total of
14,346 reported spectral matches. This value represents 318
identifications more than the number reported using the glo-
bal FDR acceptance criterion.

Analysis of Phosphopeptide Spectra—Table VI reports the
number of phosphopeptides identified in the total data set.
Two sets of values are included for Protein Prospector results,
those using the global 1% FDR E-value threshold listed in
Table II and also a 1% FDR threshold calculated based solely

on peptides reported as being phosphorylated. To obtain this
second value, all the results were filtered to only list phosphor-
ylated peptides matched to the normal or random database,
and then appropriate expectation values for a 1% FDR thresh-
old were estimated from this data subset. Also listed are
numbers of phosphopeptides reported by other search en-
gines using the global 1% FDR thresholds listed in Table II.
Using the global thresholds, Protein Prospector version 5.4
reported twice as many identifications as any other search
engine. However, we believe the values reported using these
global thresholds are inaccurate for PTM results, so they are
only reported for the purpose of comparison with the other
search engine values.

The two methods used for calculating FDR values reported
significantly different numbers of phosphopeptide spectra,
but we believe the lower values are more accurate estimations
of the number of phosphopeptides reported at a 1% FDR. The
difference between the values results because these searches
considered significantly more potential phosphopeptides than
unmodified peptides. This causes random matches to phos-
phopeptides to be more common than to unmodified pep-
tides. This phenomenon is described in more detail under
“Discussion.”

DISCUSSION

Because of the relatively recent availability of ETD on com-
mercial instruments, the software for analyzing this type of
data is still being developed. In this study, the results of a
systematic analysis of how often different fragment ion types
are observed in ETD data were used to develop a charge

FIG. 3. Total numbers and distribu-
tion of spectra identified to precur-
sors of different charge states by
search engines OMSSA, Mascot,
Spectrum Mill (SM), X!Tandem, and
two versions of Protein Prospector
(PP). The values for search engines
other than Protein Prospector were de-
rived from filtering of the results created
by Kandasamy et al. (17). For each
charge state, the total number and per-
centage of identifications are indicated.

TABLE IV
Expectation value thresholds corresponding to 1% FDR calculated for
results from precursors with different charge states for Protein Pro-

spector (PP) versions 5.3 and 5.4

Charge

2� 3� 4� 5�

PP v 5.3 0.037 0.096 0.083 0.082
PP v 5.4 0.036 0.031 0.025 0.011

TABLE V
Comparison of number of spectra identified at each precursor charge
state when using global or charge state-specific 1% FDR thresholds

for Protein Prospector version 5.4

Charge Global 1% FDR Charge state-dependent 1% FDR

2� 5,238 5,553
3� 7,034 7,127
4� 1,483 1,457
5� 273 209

Total 14,028 14,346
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state- and sequence-dependent scoring system in the pro-
gram Batch-Tag, which is part of the Protein Prospector soft-
ware package.

The new results, when compared with results obtained
using a scoring system that used average ion frequencies
independent of peptide sequence and precursor charge,
showed improved performance on data derived from all four
different protein cleavage specificities examined. The most
significant improvement was observed with data derived from
peptides formed by cleavage with the endoprotease Lys-N.
Researchers who promote the suitability of endoprotease
Lys-N in combination with ETD for peptide analyses have
commented that one current drawback to their approach is
that search engines are not optimized for analysis of such
spectra (22). The new scoring system presented is now tai-
lored for use with different enzymes, so it should provide
sensitive results for different cleavage options. With the opti-
mized scoring, among the data sets used for testing the
software performance, the endoprotease Lys-C digestion was
comfortably the most effective preparation for subsequent
peptide identification using ETD fragmentation.

A thorough comparison of the performance of four different
search engines when analyzing ETD data acquired in a three-
dimensional ion trap has been published previously (17). The
same data sets now were analyzed using the two generations
of scoring systems of Batch-Tag to evaluate their perform-
ance in comparison with these other tools. The results
showed that both scoring systems outperformed other soft-
ware with the new scoring (version 5.4) identifying 46% more
spectra than version 5.3 at a 1% peptide FDR threshold.
Conceptually, comparable levels of improvement may be ob-
tainable with other search engines through the application of
sequence- and/or charge state-dependent adaptations to
their scoring systems.

The improvements in the search engine comparison were
significantly higher than those observed in the comparison of
the two scoring systems using spectra from peptides pro-
duced by different enzymes or chemical cleavages. We pre-
dict that the cause for this disparity is that the enzyme cleav-
age comparison data were acquired in an LTQ-Orbitrap where
precursors were measured at high mass accuracy. In con-
trast, the published software comparison data set was ac-
quired with low resolution and low mass accuracy precursor
ion mass measurement where precursor charge state deter-
mination was not known prior to database searching. Hence,
the search engines had to consider many more precursors for

each spectrum with the latter data set because of both the
wider precursor mass tolerance and the consideration of sev-
eral potential charge states. This makes it much more difficult
to discriminate between correct and random results with the
second data set, meaning that there was more potential for
improvement in the analysis of these data.

The overlap between search engine results was investi-
gated. The numbers in the present study differ slightly from
those published in the previous analysis due to our only
querying whether the spectra were assigned and not differ-
entiating between alternative modification site assignments
(17). For only about 11% of reported identifications did all
search engines agree on a given spectrum, a surprisingly low
number but similar to the observations when the four search
engines were compared previously (17). However, a marked
reduction in the number of spectra identified by only one
search engine was observed, indicating that the new scoring
in Protein Prospector assigns many of the spectra that were
previously only identified by one search engine. It should be
noted that these values do not simply represent whether
search engines reported the same peptide result but also
require the assignment to meet the 1% FDR threshold; the
overlap in peptide assignments is actually much greater than
these values indicate. For example, of the sixteen assign-
ments that were reported by all search engines except Protein
Prospector, the same peptide was also reported by Protein
Prospector in 14 of the cases but did not meet the 1% FDR
acceptance criterion.

A bias was discovered with the new scoring on the search
engine comparison data set that gave peptide identifications
to higher charge state precursors slightly elevated confidence
when a global expectation value threshold was applied. This
is a phenomenon that is apparently also present in results
from Spectrum Mill as it uses different acceptance thresholds
for each charge state. It is also a well recognized situation in
CID spectral identifications returned by the search engine
Sequest (26). It may also be present in other search engine
ETD results but to our knowledge has not been evaluated. We
believe this bias was mainly caused by the inability to deter-
mine the precursor ion charge state for spectra in this data
set. A higher charge state precursor matches to a significantly
longer peptide and will generally score higher than the best
match to a lower charge state interpretation of the same
spectrum because of the higher number of potential fragment
ions possible. We investigated whether this same bias existed
in the enzyme comparison data set where the precursor ions

TABLE VI
Number of phosphopeptides reported by different software at 1% FDR threshold

For Protein Prospector (PP), two values are reported, one value using a global threshold as acceptance criteria and one value using
thresholds calculated using only phosphopeptide identifications.

FDR OMSSA Mascot Spectrum Mill X!Tandem PP v 5.4

Global 1% FDR 996 562 916 549 1839
1% FDR for reported phosphopeptides 1480
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were measured in the Orbitrap and did not observe a notice-
able bias.

Finally, the performance of Batch-Tag at identifying phos-
phopeptides was evaluated. Using the same global FDR
threshold criteria for comparison with the other search en-
gines led to the new version of Protein Prospector reporting
roughly twice as many identifications as any compared search
engine. However, we then demonstrated that this method of
FDR estimation provides a poor measure of reliability for
phosphopeptide identifications when the majority of peptides
present are not modified. In database searches where post-
translational modifications are considered, all of a particular
amino acid(s) are considered as either being unmodified or
modified with each possibility given equal likelihood. Because
of the potential combinations of modified residues within a
peptide, when allowing for a modification of common amino
acids such as serine and threonine, the number of modified
peptides considered is dramatically higher than unmodified
peptides. Permitting phosphorylation in these database
searches increased the average number of precursor ions
(with or without modifications) considered per spectrum from
roughly 30,000 (when phosphorylation was not considered) to
around 260,000. Hence, nearly 90% of all peptide sequences
considered are phosphorylated. Assuming an equal likelihood
of matching all peptides at random, one would predict that
nearly 90% of the random matches to the normal database
are to phosphopeptides.

By filtering the results to list only those that are reported as
phosphorylated in the normal and random database searches
and then determining the FDR threshold, a much more accu-
rate estimate of the number of phosphopeptides reliably iden-
tified could be derived. This is a filtering step that should be
used in all analyses that consider modifications that lead to a
significant increase in the database search space if the ma-
jority of the peptides present are not modified. It is important
to note that even for the results with the stricter acceptance
criteria we are not claiming that the reported phosphorylation
sites are necessarily correct, merely that the peptide se-
quence and modification state are reliable. Either manual
verification or the use of a secondary program to evaluate site
assignments would be necessary prior to publication of mod-
ification sites (21).

Comparison of different database search engines always
produces biases introduced as a result of the different param-
eters and processing of results by each search engine. Also,
attempts to use as similar parameters as possible for each
software invariably lead to compromises in the performance
of each program. The parameters used in this search engine
comparison were not sensible options for searching the ma-
jority of the data. For example, the consideration of up to five
phosphorylations per peptide when the majority of the data
were from samples that were not expected to contain many
phosphopeptides led to elevated numbers of false matches to
phosphopeptides. If all the data other than the phosphopep-

tide-enriched data set had been searched without considering
phosphorylation a higher number of spectra would have been
identified (even though the few phosphopeptides in these
other data sets would no longer have been reported).

Permitting five modifications per peptide leads to the con-
sideration of nearly 10 times as many precursors compared
with a search not considering phosphorylation. We have al-
ready highlighted that PTM site assignments returned by
search engines are not as reliable as the reporting of peptide
with PTM state. Many of the considered precursors are the
same peptide with the same modification state but are PTM
positional isomers. The new version of Protein Prospector
counts these variants as one precursor for the expectation
value calculation but still considers all of the modification
combinations for spectral assignment. If the search engine
reduced the effort in trying to assign the sites reliably and
focused more on just identifying the peptide and PTM state it
would be possible to noticeably accelerate search times with
minimal effect on the reliability of peptide results. To demon-
strate this theory, the data were re-searched restricting the
number of PTM permutations per peptide to 64 on the phos-
phopeptide data set in this study. Adding this threshold re-
duced the duration of the search to one-eighth of the original
time and led to the loss of only three phosphopeptide identi-
fications. Combining results from a search like this with soft-
ware for determining PTM site assignments and reliabilities
(21) would significantly reduce data analysis times while hav-
ing minimal impact on results.

All of the results presented here were analyzed under the
assumption that peptide identifications are independent of
each other. In reality, a peptide is more likely to be matched to
a protein that has already been identified in the sample, and
most search engines have different strategies for converting
peptide results into protein assignments that may include
reporting peptides below a given threshold if they are from
proteins already confidently identified. This conversion of
peptide identifications to protein identifications and assess-
ment of the reliability of this process were not addressed in
this study.

CONCLUSIONS

The implementation of a scoring system adapted to differ-
ent precursor charge states and peptide sequences for anal-
ysis of ETD data led to a significant increase in the number of
spectra identified in a variety of different data sets. The new
scoring appeared to be particularly beneficial for peptides
produced by digestion with endoprotease Lys-N. It also
proved to have a larger effect on the number of components
identified in data that were acquired with poor mass accuracy
and resolution measurement of precursor ions than equivalent
fragmentation data where the precursor ions were measured
in an LTQ-Orbitrap. Problems with the use of global FDR
estimation approaches when there are different peptide pop-
ulations within the data set were highlighted, particularly the
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issues when reporting phosphopeptide results (or other anal-
yses that consider multiple modifications per peptide).

The results assigned using the new scoring showed major
improvements over other search engine performances. This is
probably largely because other search engines have not yet
been optimized for ETD data analysis. The results presented
here will hopefully spur other softwares to also improve their
performance. The software described here is freely available
through the web at http://prospector.ucsf.edu.
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