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Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the
result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can
help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional
enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in
the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene
clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two
network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing
evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.

A current challenge in understanding biological
systems, especially those related to multicellular eu-
karyotic organisms, is the understanding of complex
gene-product interactions and resulting phenotypes.
Integrated studies at a systems biology level are crit-
ical for unraveling complex genotype-phenotype rela-
tionships. These studies are increasingly feasible with
high-throughput microarray assays, next-generation
sequencing technologies, proteomics, and the wealth
of accumulated functional and structural genomics
data across species. Rice (Oryza sativa) is one of the
world’s most important food crops and serves as a
model organism for the grass family. An improved
understanding of complex interactions among rice
genes is of great importance to improve nutritional
value, grain yield, cultivation range, and disease and
stress tolerance of rice and other cereals.
In silico-derived networks such as protein-protein

interaction, metabolism, transcription, and gene coex-
pression model real biological interactions and exhibit
naturally occurring properties such as small-world,
scale-free, modularity, and hierarchical characteristics

(Ravasz et al., 2002; Barabasi and Oltvai, 2004). Barabasi
and Oltvai (2004) provide a review of biological net-
works, and a brief description of relevant network
properties can be found in Supplemental Table S1.
One type of biological network, the gene coexpression
network, is constructed from microarray gene expres-
sion profiles (Stuart et al., 2003; Persson et al., 2005;
Luo et al., 2007). Nodes in the network represent
microarray probe sets (or genes), and edges between
nodes exist when gene expression profiles are signif-
icantly correlated (coexpressed) across all samples. In
many cases, the microarray samples encompass mul-
tiple tissue types, growth stages, and experimental
variables. Networks constructed from mixed sample
sets represent a “global” or meta-analysis view of gene
coexpression.

Gene coexpression networks can be applied to a
broad range of biological problems. Examples include
those constructed to identify functional gene modules
in humans (Lee et al., 2004), identification of genes
involved with cellulose synthase in Arabidopsis
(Arabidopsis thaliana; Persson et al., 2005), identification
of biomarkers for glycerol kinase-deficient mice
(MacLennan et al., 2009), identification of cis-regula-
tory elements in gene clusters for budding yeast
(Mariño-Ramı́rez et al., 2009), construction of a regu-
latory network of iron response in Shewanella oneidensis
(Yang et al., 2009), and identification of conserved gene
clusters across several species (Stuart et al., 2003). For
plants, global coexpression networks have been con-
structed for Arabidopsis (Persson et al., 2005; Wei
et al., 2006; Mentzen et al., 2008; Atias et al., 2009; Mao
et al., 2009; Wang et al., 2009), barley (Hordeum vulgare;
Faccioli et al., 2005), rice (Jupiter et al., 2009; Lee et al.,
2009), and tobacco (Nicotiana tabacum; Edwards et al.,
2010).
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Several online resources exist for plant coexpression
networks. For Arabidopsis, online resources for coex-
pression networks include the Arabidopsis Coexpres-
sion Tool, which allows users to mine genes with
similar coexpression patterns as well as functional terms
(Manfield et al., 2006), and the Arabidopsis trans-factor
and cis-elements prediction database, which provides
a visualization and online data-mining tool for coex-
pression networks in Arabidopsis (Obayashi et al.,
2009). The RiceArrayNet (Lee et al., 2009) and STAR-
NET 2 (Jupiter et al., 2009) provide similar function-
ality for rice. An online resource exists for poplar
(Populus species; Ogata et al., 2009), and a similar site
named the Coexpressed Biological Processes data-
base provides a searchable database of functional
associations for coexpression network modules across
multiple plant species including rice (Ogata et al.,
2010).

Gene coexpression networks do suffer from limita-
tions. First, they cannot provide a full understanding
of complex gene-gene interactions because they infer
only a single level of interaction: gene coexpression.
Also, coexpression can only be measured when genes
are consistently coexpressed or when genes are some-
times coexpressed but otherwise consistently silent
(Aoki et al., 2007). Additionally, the expression of all
genes in every environmental or temporal condition
cannot be measured, and hence coexpression net-
works do not capture all possible relationships. More-
over, genes that are not coexpressed but that may be
essential are not captured. Despite these limitations,
coexpression networks provide valuable glimpses into
complex gene-product interactions.

Once constructed, a gene coexpression network can
be examined for subnetworks of coexpressed and
possibly cofunctional genes. A reduced-bias subnet-
work discovery method can be performed using
knowledge-independent approaches that employ sta-
tistical methods to circumscribe nonrandom gene set
interactions. In contrast, gene-guided methods use a
priori selected “bait” genes to define gene sets con-
sisting of closely connected neighbors (Persson et al.,

2005; Aoki et al., 2007). A knowledge-independent
approach provides inferences into the interaction set
that might be obscured from gene-guided methods
that filter genes based on prior assumptions of the
biological system under scrutiny. Using a knowledge-
independent method, coexpression networks can be sub-
divided into tightly connected genemodules. Modules
are defined as sets of highly correlated (connected)
genes that form subnetworks and are often connected
to the global network through a few connections.

It has been shown that modules often consist of
genes that participate in similar functions (Stuart et al.,
2003; Lee et al., 2004). As a result, genes of unknown
function or genes not previously known to participate
in molecular pathways can be identified through a
“guilt-by-association” inference with genes of known
function (Wolfe et al., 2005). Alternatively, function-
enriched gene clusters withinmodules can be identified
by counting annotated terms, such as Gene Ontology
(GO; Ashburner et al., 2000), in a set of genes. Func-
tional enrichment of a given term occurs if the term is
significantly more abundant in the module relative to
its occurrence in the genome background and implies
that the module is associated with the mixture of
enriched function. Furthermore, gene subsets within
modules can be identified that nonrandomly share
functional terms (cofunctional clusters). Modules may
consist of hundreds of nodes with numerous func-
tional terms and multiple cofunctional clusters. Pub-
licly available tools such as DAVID (Dennis et al., 2003;
Huang et al., 2009), EASE (Hosack et al., 2003), FatiGO
(Al-Shahrour et al., 2007), and Blast2GO (Gotz et al.,
2008) represent some of the tools that exist for func-
tional enrichment analysis.

Recent studies show that coexpression networks can
be used to identify a set of candidate genes underlying
specific phenotypes. Mutwil et al. (2010) demonstrate
a novel clustering method for coexpression networks,
coupled with associated phenotypic terms, to predict
gene sets in Arabidopsis for lethality. Lee et al. (2010)
show the predicative power of a network for Arabi-
dopsis composed of a diverse set of data (including

Figure 1. Network construction flow
chart. The data pipeline for construc-
tion of the rice coexpression network
involves RMA normalization (Bolstad,
2010), outlier detection and removal
(Kauffmann et al., 2009), construction
of adjacency matrix andmodules using
WGCNA (Langfelder and Horvath,
2008), hard-threshold determination
using RMT (Luo et al., 2007), and final
culling of nodes below the threshold.
[See online article for color version of
this figure.]
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coexpression data) to predict gene sets associated with
lethality and pigmentation. By prioritization of genes
through guilt by association, Lee et al. (2010) also show
a 10-fold improvement over screens of random inser-
tion mutants. Both studies demonstrate the applica-
bility of this systems genetics approach for predicting
biologically meaningfully relationships.
Here, we describe the construction and functional

partitioning of a rice gene coexpression network to
associate multiple coexpressed gene sets with com-
mon molecular functions and experimentally verified
phenotypes. The underlying implication is that gene
sets enriched for known gene lesions may be causal
to a specific phenotype, and the molecular functions
that are coenriched for phenotype-associated genes
may provide clues to the molecular mechanisms that

lead to the phenotype. Each cluster or module is a
candidate gene set for studying complex traits where
multiple genes may have an effect on phenotypic
expression.

RESULTS

The Rice Network

Construction of the rice coexpression network began
with a total of 508 Affymetrix rice arrays downloaded
from the National Center for Biotechnology Informa-
tion’s (NCBI’s) Gene Expression Omnibus (GEO; Sup-
plemental Table S2), which were filtered for outliers
and Robust Multichip Average (RMA; Irizarry et al.,

Figure 2. Rice coexpression network. The rice network consists of 4,528 nodes, 43,144 edges, and 45 modules. The nodes are
color coded by modules.
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2003) normalized (see “Materials and Methods”).
Pearson correlation between gene expression profiles
was used as the underlying metric for coexpression.
This study used the strengths of the Random Matrix
Theory (RMT; Luo et al., 2007) and weighted correla-
tion network analysis (WGCNA; Langfelder and
Horvath, 2008) methods to construct the gene coex-
pression network. WGCNA was used for module
detection and RMT for automatic threshold (signal-
to-noise) identification. Figure 1 provides a schematic
of steps involved in network construction, including
RMA normalization, outlier detection and removal,
calculation of Pearson correlation values, module de-
tection using WGCNA, and determination of a thresh-
old value using RMT.

Coexpression network construction yielded 4,528
nodes (mapped to 4,502 rice loci) connected by 43,144
edges within 45 modules, some of which were later
removed after thresholding. Supplemental Table S3
provides a list of all edges in the coexpression net-
work. The network follows the properties of natural
biological networks, namely that it is small world,
scale free, modular, and hierarchical. The network
demonstrates small-world characteristics with an av-
erage distance between any two nodes (path length) of
11. Scale-free behavior is indicated by a negative linear
correlation between the number of edges, log(k), and
the probability of finding a node with k edges, P(k)
(Supplemental Fig. S1A). A negative correlation be-
tween the number of edges, k, and the clustering
coefficient for nodes with k edges, C(k), indicates
hierarchical and modular behavior (Supplemental
Fig. S1B) The average clustering coefficient, ,C.,
was 0.318. A graphical representation of the network,
generated using Cytoscape (Shannon et al., 2003), can
be seen in Figure 2. Nodes in the network are color
coded according to the modules.

In order to explore the relationship between mod-
ules, the WGCNA package was used to calculate
eigenvectors, or first principle components, for each
module. The eigenvector, or eigengene, acts as a
representative expression profile for the module
and allows for a meta-analytic view of the entire
module set. All eigengenes were clustered using
WGCNA. Figure 3 provides a view of the modules
in the form of a dendrogram that indicates the
“closeness” of expression similarity of the 45 mod-
ules. Each module is numbered from zero to 44 and
prefixed with “ME,” meaning “module eigengene.”
Adjacent modules are more highly similar in terms of
expression. It should be noted that these eigenvectors
were computed fromWGCNAmodules prior to edge
removal that were below the RMT-derived hard
threshold.

Mapping of Microarray Probe Sets to Rice Loci

Prior to functional enrichment, the mapping of
network nodes (microarray probe sets) to annotated
rice gene models was necessary to ensure that anno-
tation terms were not overcounted. The Michigan
State University (MSU) Rice Genome Annotation
version 6.0 contains 56,797 protein-coding sequence
loci. Of the 57,381 probe sets on the rice microarray,
50,468 mapped to 46,498 loci. Of those mappings,
34,028 probe sets mapped directly with all 11 probes
from a single probe set to a gene locus. Of those
mappings, 26,382 are unique one-to-one mappings
between a probe set and locus. Redundant mappings
are those where multiple probe sets map to a single
locus. Ambiguous mappings are those where a probe
set maps to multiple loci. The distribution of probes,
probe sets, and loci within the mappings can be

Figure 3. Module eigenvector cluster-
ing. The rice network consists of 45
modules. The eigenvectors for each
module were calculated and clustered
using the WGCNA software. The ei-
genvectors for each module are pre-
fixed with ME in the dendrogram and
are calculated prior to thresholding of
the network. Adjacent modules are
more highly similar in terms of expres-
sion.
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observed in the charts of Supplemental Figure S2.
There are 17,762 redundant mappings and 4,769 am-
biguous mappings. Ambiguity was removed from

the mappings, and the remaining redundancy was
addressed with a weighted counting method (see
“Materials and Methods”).

Figure 4. Screen shots of the online rice coexpression network browser for cluster M6C2. A, The list of loci and probe sets and
their mappings. B, The subnetwork graph with navigation toolbox. C, The subnetwork graph superimposed on the genome. D,
Loci (feature) details including genome alignments from the MSU Rice Genome Browser. The site is located at http://www.
clemson.edu/genenetwork.
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Functional Enrichment and Clustering

A functional enrichment analysis was performed to
examine the enrichment of annotated terms. After
counting GO (Ashburner et al., 2000), KEGG (Kanehisa
et al., 2008), InterPro (Apweiler et al., 2001), and Tos17
mutant phenotype (Hirochika et al., 1996; Miyao et al.,
2003) terms for each module and for the genome back-
ground, Fisher’s test comparisons were performed for
each module to identify functionally enriched terms.
Cofunctional gene clusters with overlapping function
were then identified. Clusters are subnetworks within
modules. Nodes in modules are coexpressed, and
nodes within clusters are both coexpressed and co-
functional. Some modules had multiple clusters, while
others had none. Functional enrichment yielded 2,412
unique enriched terms in all network modules, with
939 of these aggregating into clusters. Of the total
enriched terms, 21 were unique mutant phenotype
terms that associated with 25 clusters. Four mutant
phenotype terms were enriched only at the module
level (Supplemental Tables S4–S7).

The average connectivity, ,k., was used for rank-
ing clusters and is the average number of connections
per node in the cluster subnetwork. Additionally, an
enrichment score, en-score, was determined that is
the inverse log of the geometric mean of the Fisher’s
P values in each cluster. For easy reference, clusters
hereafter are named as follows: MxCy, where x is the
module number (e.g. 1 for module 1) and y is the cluster
number (e.g. 2 for cluster 2). Modules are named as
Mx. Module numbers originate from WGCNA, and
cluster numbers are ordered sequentially in descending
order of ,k..

Online Coexpression Network Browser

An online resource has been created to facilitate
coexpression network browsing. The Web site is avail-

able at http://www.clemson.edu/genenetwork. This
Web site allows users to browse the list of probe sets,
loci, and enriched terms of modules and clusters.
Additionally, visualizations are provided for each
cluster including free-standing interactive network
graphs and cluster networks superimposed onto the
rice genome. Users can search for functional terms,
loci, probe sets, or other keywords to findmodules and
clusters that may relate to genes, pathways, functions,
or phenotypes of interest. The site shows genome
alignments for each locus, including InterPro domains
and alignments with Affymetrix probes. Annotation
terms (e.g. GO, InterPro, KEGG) link out to external
sites. Figure 4 shows various screen shots of cluster
M6C2 from the Web site.

Functional Significance of Select Modules and Clusters

The largest of the 45 modules is M6 (large module in
the top left of Fig. 2), which consists of 26 clusters. A
majority of M6 clusters contain enriched function
associated with translation and photosynthesis, in-
cluding carbon fixation and related processes. Many of
these clusters are also enriched for terms referencing
the plastid, suggesting that M6 consists of genes
involved in processes that occur in the chloroplast.
For example, cluster M6C1 is ranked highest in aver-
age connectivity for the whole network. M6C1 consists
of 75 enriched terms, 43 loci, 52 nodes, ,k. = 17.54,
en-score = 2.61, and 456 edges. The highest ranked
(lowest P value) term in this cluster is the GO term
for translation (GO:0006412; P = 7.80e-27). Other
terms in this cluster include ribosome, plastid, trans-
lation elongation, and rRNA binding. Several M6
clusters are enriched with the mutant phenotypic
terms “low tillering,” “extremely dwarf,” “lethal,”
“sterile,” and “yellow.” A complete accounting of M6
edges, loci, probe sets, clusters, and enriched terms

Table I. Enriched terms from cluster M13C1

,k. = 12.86, en-score = 10.64, 135 edges, 21 nodes, and 16 loci. GO and IPR accession numbers are
from Gene Ontology and InterPro, respectively.

Term Accession No. Description P

IPR006106 Cereal seed allergen/grain softness/trypsin
and alpha-amylase inhibitor

6.28E-23

IPR006105 Cereal seed allergen/trypsin and alpha-amylase
inhibitor, conserved site

1.05E-18

GO:0004867 Serine-type endopeptidase inhibitor activity 1.55E-18
GO:0016068 Type I hypersensitivity 2.22E-17
IPR002411 Cereal allergen/alpha-amylase inhibitor, rice type 1.36E-16
IPR016309 Alpha-amylase inhibitor/seed allergen 1.36E-09
GO:0005615 Extracellular space 6.93E-09
IPR001954 Gliadin/low-molecular-weight glutenin 5.22E-07
IPR013771 Bifunctional trypsin/alpha-amylase inhibitor 1.04E-05
IPR003612 Plant lipid transfer protein/seed storage/trypsin

and alpha-amylase inhibitor
3.20E-04

IPR016140 Bifunctional inhibitor/plant lipid transfer
protein/seed storage

6.73E-04

GO:0045735 Nutrient reservoir activity 6.71E-03

Ficklin et al.
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can be found on the coexpression network browser
and in Supplemental Tables S3, S4, S5, S6, and S7,
respectively. A total of 127 loci are coexpressed in
M6 but have no known ascribed function (Supple-
mental Table S8).
Another interesting cluster is M13C1. M13C1 has

the second highest ranked en-score and the second
highest ,k., indicating that it is highly coexpressed
and cofunctional. M13C1 consists of 12 enriched
terms, 16 loci, 21 nodes, ,k. = 12.86, en-score =
10.64, and 135 edges. The highest ranked enriched
term is the “cereal seed allergen/grain softness/
trypsin and alpha-amylase inhibitor” protein domain
(IPR006106; P = 6.28e-23; Table I). Other terms related
to lipid transfer and seed storage are also enriched
in M13C1. Appropriately, Genevestigator analysis
(Hruz et al., 2008) shows high levels of expression
in the milk and dough stages as well as in inflores-
cence, seed, and embryo developmental stages (Fig.
5). Additional heat maps for the top 10 connected
clusters (excluding M13C1) are available in Supple-
mental Figure S3. It should be noted that at the time
of this study, Genevestigator incorporated approxi-
mately 151 samples of the Affymetrix rice platform
from GEO, while 508 samples from GEO were used
for our network construction. Genevestigator has not
incorporated newly available rice arrays. It should be
noted that there is a difference in the number of
samples for each tissue type between the Genevesti-
gator arrays and the network arrays. However, there
are several biological replicates across the various
samples for each tissue type and developmental stage
in the Genevestigator data set. The only exceptions
are stamen, anther, and embryo, which have one
sample each. Therefore, we expect that Genevestigator
results can provide support to the correctness of the
functional clusters in the majority of tissues and stages.
One cluster enriched for phenotypic terms is M2C2

(11 loci, ,k. = 4.33, en-score = 4.93, 12 nodes, and 26
edges). This cluster is enriched with three mutant
phenotype terms: “sterile,” “dwarf,” and “high tiller-
ing.” The cluster is also enriched with the “cyclin
A/B/D/E” (IPR014400; P = 1.25e-10) and “G2/mitotic-
specific cyclin A” (IPR015453; P = 9.96e-4) protein
domains and other terms related to cyclin in the mitotic
cell cycle. Four loci in this cluster have mutant pheno-
type associations, including two, LOC_Os01g59120 and
LOC_Os05g41390, annotated as “cyclin, putative, ex-
pressed” and two expressed proteins with no known
function: LOC_Os02g10490 and LOC_Os02g35230.
Another cluster, M8C1, is enriched for processes

related to defense response. This cluster is enriched
with multiple mutant terms: “extremely dwarf,”
“late heading,” “lazy,” “short panicle,” and “wide leaf.”
The gene products in this cluster include powdery
mildew resistance proteins, nucleotide-binding site-
Leu-rich repeat proteins, stripe rust resistance pro-
teins, and one protein with unknown function. The
protein of unknown function, LOC_Os02g06790, is
also enriched for lazy and late heading. Many of the

other M8C1 loci are associated with multiple mutant
terms that are not enriched.

A list of all clusters enriched for mutant phenotype
terms can be found in Table II. Phenotype terms
enriched at the module level can be found in Table
III. A detailed list of clusters, associated probe sets,

Figure 5. Cluster M13C1 with Genevestigator analysis. A, The subnet-
work for cluster M13C1 (,k. = 12.86, en-score = 10.64, 135 edges,
21 nodes, and 16 loci). B, Heat map showing expression levels by
anatomical locations. C, The Genevestigator analysis heat map show-
ing expression levels in microarray sets categorized by development
stage. [See online article for color version of this figure.]

In Silico Rice Gene-Phenotype Associations

Plant Physiol. Vol. 154, 2010 19



gene accessions, clusters, and all enriched terms for
eachmodule can be found in the Supplemental Data or
through the coexpression network browser.

DISCUSSION

The major objective for this study was to use a
global, meta-analysis, knowledge-independent ap-
proach to construct a rice gene coexpression network
that predicts clusters of candidate genes involved in
complex genotype-phenotype interactions. We hy-
pothesized that tightly coexpressed gene modules,
enriched in shared functional annotation, would pro-
vide the most fruitful predictions of candidate gene
sets that might underlie a given biological process.
Using mutant phenotype terms in functional enrich-
ment provides a hypothetical association between
phenotype and the gene sets of modules and clusters.
Coenrichment of phenotypes with molecular function
terms in a tightly coexpressed gene module suggests
a direct association between the functional units car-
ried on genes (e.g. protein domains, GO terms, etc.)
and phenotype. When mutant phenotype terms are
enriched in a highly connected gene cluster, the
phenotypic association can also be extended to the
neighboring coexpressed genes within the confines of
a given module. Thus, the circumscribed gene sets
become candidate factors underlying the expression of
complex traits, and their annotated functions provide

insight into molecular pathways associated with the
expression of empirically defined phenotypes. For
instance, module M6 contains 127 loci that have no
known function. It can be inferred that these loci may
be involved in some aspect of photosynthesis or trans-
lation, given the M6 enrichment for photosynthesis/
translation-related annotations. In the case of the 26
M6 clusters enriched with phenotype terms, it can be
predicted through guilt by association that other genes
in the cluster may also contribute to the enriched
phenotypes.

Many clusters in our network can be examined for
possible genotype-phenotype interactions. For exam-
ple, the previously mentioned cluster M2C2 is en-
riched for cyclin and mitosis as well as the mutant
phenotypes “dwarf,” “high tillering,” and “sterile.”
Two of the genes in this module were shown to have
no known function (see “Results”). Therefore, it can be
inferred that these two genes are involved in processes
related to cyclin andmitotic cell division. Additionally,
these two genes also share the “dwarf” and “sterile”
mutant terms, indicating their role as factors of those
phenotypes. These genes are well connected with
other nodes in the cluster; therefore, through guilt by
association, we can infer that other genes in the M2C2
cluster are also factors for the enriched phenotypes.
Also mentioned previously was cluster M8C1 en-
riched for defense response terms. This cluster is not
as highly connected as M2C2; however, inferences can

Table II. Complete list of TOS phenotype terms enriched in clusters

Clustera ,k. en-score Summarized Functionb Phenotype Terms

M2C1 8.22 4.14 Cell cycle/kinesin/cyclin Dwarf, high tillering, sterile
M2C2 4.33 4.93 Cell cycle/cyclin Dwarf, high tillering, sterile
M2C3 3.69 3.56 DNA replication Dwarf
M2C4 3.36 3.37 Cell cycle/kinesin Dwarf, sterile
M2C7 1.00 4.36 DNA replication Dwarf
M2C8 0.91 2.71 Cell cycle Dwarf, sterile
M2C11 0.75 1.49 Cell cycle Dwarf
M2C16 0.40 7.36 DNA replication/polymerase Dwarf
M6C2 12.30 3.12 Photosynthesis/light harvesting Dwarf, extremely dwarf, lethal, low tillering, sterile, yellow
M6C3 9.23 2.54 Electron carrier activity Dwarf, extremely dwarf, lethal, low tillering, sterile, yellow
M6C5 3.60 2.05 Photosynthesis Dwarf, extremely dwarf, lethal, low tillering, sterile, Yellow
M6C10 1.60 5.04 Oxidoreductase activity dwarf
M6C11 1.56 4.66 Translation Low tillering
M6C13 1.51 3.32 Photosynthesis Extremely dwarf, lethal
M6C14 1.25 2.22 Glycoside hydrolase Extremely dwarf
M6C15 1.20 2.47 Carbon fixation Dwarf
M6C16 1.14 3.94 Translation or photosynthesis Dwarf
M6C18 0.80 1.82 Translation or photosynthesis Yellow
M6C19 0.73 2.64 Regulation of transcription Lethal
M6C20 0.50 3.36 Translation or photosynthesis Dwarf, extremely dwarf, lethal, low tillering, sterile, yellow
M6C22 0.50 3.28 Oxidoreductase activity Dwarf, extremely dwarf
M7C1 1.23 2.45 Transporter activity Pale green leaf
M8C1 0.77 2.50 Defense response Extremely dwarf, late heading, lazy, short panicle, wide leaf
M8C2 0.25 1.79 Kinase activity Stripe
M18C1 1.60 1.63 Lipid binding Vivipary

aModules are numbered sequentially starting from zero and are prefixed with the letter M. Clusters within a module are numbered sequentially and
are prefixed with the letter C. Thus, cluster 1 from module 8 is named M8C1. bWhen function cannot be summarized for the cluster, the modular
summarized function is listed.
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be made that the gene of unknown function in this
module participates in defense response, perhaps in
an indirect manner, and that all of the genes in the
cluster are factors for the expression of several phe-
notypes. Despite lower average connectivity, the nodes
all exhibit similar patterns of coexpression. It can be
inferred that this unknown gene plays some role
related to defense response.
Two different construction methods were inte-

grated to build the coexpression network, namely
the WGCNA and RMT methods. These two methods
were selected primarily as a means of preserving a
knowledge-independent paradigm. A strength of the
WGCNA method lies in its ability to detect modules.
Module detection in WGCNA follows a knowledge-
independent process. However, selection of a thresh-
old for culling the network to limit noise would
otherwise rely on functional annotation and empirical
judgment (Langfelder and Horvath, 2008). A strength
of the RMT method lies in its ability to automatically
localize the noise-to-signal threshold without using
annotations or empirical judgment. Therefore, we
were able to generate a single network by passing
the same adjacency matrix (power-transformed pair-
wise Pearson correlation values) generated by the
WGCNA method into the RMT method for threshold
detection (Fig. 1). This ensured knowledge indepen-
dence for meaningful thresholding of the network
modules.

Our rice network does not encompass all the gene-
gene interactions one would expect from all genes in
the genome. The number of nodes in the network is
4,528, whereas the entire genome consists of 56,797
coding sequence loci. Therefore, the network is not
representative of all coexpression relationships for all
genes in the network. Coexpression can only be mea-
sured when genes are consistently coexpressed or
when genes are sometimes coexpressed but otherwise
consistently silent (Aoki et al., 2007). A bias exists in
global coexpression networks for relationships that
persist across all conditions and tissue types used by
the underlying microarray samples (e.g. housekeeping
processes) or for relationships only expressed in a few
tissue types, environmental conditions, and develop-
mental stages. The rice network presented here is most
noticeably enriched for genes controlling housekeep-
ing processes. Additionally, coexpression relation-
ships that exist primarily in a few tissue types,
developmental stages, and conditions are not easily
identified. The nodes in our network, however, do
have coexpression relationships that are statistically
significant across all samples, so each edge in our
network is potentially biologically valid. While rice
gene space sampling is not complete, the underlying
goal was to find highly connected gene clusters
enriched with phenotypic terms. We believe that our
approach was successful and that inferences of poly-
genic phenotypic causality for gene sets can be made.

One observation was that some clusters showed
significant enrichment in function yet demonstrated
very low connectivity within the cluster (e.g. cluster
M2C19, ,k. = 0). The nodes of these clusters were
mostly coexpressed through nonclustered intermedi-
aries. Because highly connected genes are more likely
to participate in similar function, we ranked clusters
by average connectivity, ,k.. We believe that this
ranking improves the prediction inferred through
guilt by association with enriched annotation terms.
Therefore, clusters that ranked highest are more likely
to yield guilt-by-association inferences for genes of
unknown function and as factors for expression of
mutant phenotypes. It should not be assumed that an
absolute ,k. cutoff exists as a significance threshold
for clusters. Poorly connected clusters, in fact, may be
quite significant and should not be dismissed.

CONCLUSION

This study describes a set of modules and clusters
that can assist with understanding of gene-gene, gene-

Table III. List of enriched mutant phenotypes

Modulea TOS Term P

M1 Large grain 6.41E-02
M1 Weak 8.68E-02
M2 Dwarf 9.76E-03
M2 High tillering 5.19E-02
M2 Sterile 4.81E-04
M6 Dwarf 5.67E-02
M6 Extremely dwarf 1.07E-03
M6 Lethal 5.84E-03
M6 Low tillering 2.58E-04
M6 Sterile 9.44E-03
M6 Yellow 2.09E-02
M7 Pale green leaf 1.79E-02
M8 Extremely dwarf 3.26E-06
M8 Late heading 1.14E-02
M8 Lazy 3.26E-04
M8 Short panicle 1.01E-03
M8 Stripe 6.98E-02
M8 Wide leaf 9.78E-02
M12 Withering 4.86E-02
M13 Rolled leaf 8.54E-02
M14 Zebra 3.30E-02
M18 Vivipary 1.78E-03
M25 Abnormal shoot 3.78E-02
M32 Germination rate 4.38E-02
M35 Late heading 6.08E-02
M43 Vivipary 3.40E-02

aModules are numbered sequentially from 0 to 57 and are prefixed
with the letter M. Thus, module 8 is named M8.

Table IV. Contingency matrix for Kappa statistics

Locus B
Locus A

Terms Present Terms Not Present Total

Terms Present C11 C10 Ta_

Terms Not Present C01 C00 Tb_
Total T_a T_b Tab
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function, and genotype-phenotype interactions for
rice. While the number of enriched phenotype terms
is low, the application demonstrates a positive ap-
proach for identifying gene sets associated with
specific phenotypes. The network provides a set of
interesting modules and clusters worthy of further
investigation. In the process of investigating the use of
coexpression networks, we suggest that the RMT and
WGCNA network construction methods can be com-
bined to extend the knowledge-independent approach
to the final stages of module discovery. We also pro-
pose a cluster ranking method using average connec-
tivity that rewards highly connected clusters with the
expectations that highly ranked clusters are most
meaningful in the data set. These data can help in
the discovery of candidate genes for studies of com-
plex traits in rice as well as a reference for other grass
species.

MATERIALS AND METHODS

Raw Expression Data

The data set used for the construction of the coexpression network was

obtained fromNCBI’s GEO, platform accession number GPL2025. The platform

consists of experimental samples from assays using the Affymetrix Gene-

Chip Rice Genome Array (http://www.affymetrix.com/support/technical/

byproduct.affx?product=rice). The array consists of 57,381 probe sets derived

mostly from The Institute for Genomic Research version 2.0 release of the rice

(Oryza sativa) genome and consists of transcripts for both the japonica and

indica cultivars. A total of 550 CEL files were obtained from GEO, and 13 CEL

files were removed due to an incorrect Arabidopsis (Arabidopsis thaliana) array

type. RMA normalization (Irizarry et al., 2003) of all microarray samples was

performed using the RMAExpress software (Bolstad, 2010). Outliers were

detected using the arrayQualityMetrics (Kauffmann et al., 2009) Bioconductor

(Gentleman et al., 2004) package, which uses three different statistical tests to

identify outliers. Twenty-nine samples failed at least one test and were

considered outliers and removed from the data set. A total of 508 samples

remained for network construction. Control probes from the platform were

removed from the samples prior to network construction.

Expression Profile Correlation

The expression profile of a gene consists of the set of expression levels

across all microarray samples in the study. Initially, construction of the

coexpression network requires pair-wise correlation of all gene expression

profiles to obtain an n 3 n similarity matrix, S:

S ¼ �
sij
�

Sij ¼ cor
�
xi; xj

�

where xi and xj are the pair of expression profiles for genes i and j and cor(x,y)

represents the Pearson correlation function.

Scale-Free Behavior and Module Detection

The WGCNA package (Zhang and Horvath, 2005; Langfelder and Horvath,

2008) provides a robust set of R functions for constructing weighted coex-

pression networks. The similarity matrix is transformed into an adjacency

matrix using a method that employs a power function. This is termed “soft

thresholding.” The result is an adjacency matrix where correlation strength is

enhanced for highly correlated genes and correlation information is preserved

for module discovery. The values of the adjacency matrix are represented by

the following formula:

aij ¼ sbij

The power (b) used to transform the similarity matrix is selected when the

resulting network best approximates a scale-free topology. The WGCNA

method provides functionality to assist with selection of the power function.

For this study, a soft-threshold power of 4 was used.

Probe sets with ambiguous mappings to multiple rice loci were removed

from the data set if there were less than six probes in the mapping, and

remaining probe sets were kept if what remained was a unique or redundant

mapping. Of the 4,769 probe sets with ambiguous mappings, 3,223 probe

sets were removed. Affymetrix control probes were next removed from the

data set.

The n 3 n similarity matrix for the remaining 52,501 probe sets was too

large for R, which has a 32-bit integer limit on the index size of a matrix.

Therefore, the algorithm was instructed to break the data set into three blocks

with a minimum of 30 probe sets and a maximum of 30,000. The WGCNA

package calculates modules of similarly coexpressed genes using a topological

similarity matrix and a hierarchical clustering method. A value of 0.2 was

specified for cutting the resulting dendrogram into distinct modules.

Threshold Selection and Network Analysis

A weighted soft-threshold network maintains edges from all nodes to all

nodes, with the edge weight indicating the strength of the coexpression. This

becomes valuable for module detection. However, selection of a hard thresh-

old after module detection is required to remove noise. A RMT method (Luo

et al., 2007) was used to recognize the boundary between noise and nonnoise

and for selection of a hard threshold of the network. The hard threshold is

determined by the transition of nearest neighbor spacing distribution of the

similarity matrix from the Gaussian orthogonal ensemble statistics to the

Poisson distribution. The x2 test (confidence level of 0.001) was used to define

the similarity threshold at which nearest neighbor spacing distribution

completely follows the Poisson distribution. For the rice coexpression net-

work, a hard-threshold r of the power-transformed Pearson correlation matrix

at r = |0.7101| was observed. The soft-thresholded, power-transformed

adjacency matrix is then “hard thresholded” by setting all values less than the

threshold to zero. Nodes with an adjacency value of zero are removed from

the modules. Modules with no remaining nodes are discarded. Characteriza-

tion of the network in terms of scale-free, small-world, modularity, and

hierarchical behavior was performed using the NetworkAnalyzer package for

Cytoscape (Assenov et al., 2008)

Functional Enrichment

The annotation of rice probe sets provided by Affymetrix was derived from

The Institute for Genomic Research version 2.0 gene models. However, more

up-to-date annotations were desired. Therefore, annotations were updated

using mapping information provided by release version 6.0 of the MSU Rice

Genome Annotation Project, which maps probe sets to 6.0 gene models

(Ouyang et al., 2007). The locus identifiers from release 6.0 were then used to

provide four classes of function terms: GO (Ashburner et al., 2000), KEGG

(Kanehisa et al., 2008), InterPro (Apweiler et al., 2001), and Tos17 mutant

phenotypes (Hirochika et al., 1996; Miyao et al., 2003). In some cases, such as

with GO and InterPro, these annotations were provided by the MSU project.

For annotation of KEGG pathways, orthologs, and protein families to the locus

identifiers, the release 6.0 coding sequences were uploaded to the online

KEGG Automatic Annotation Server tool (Moriya et al., 2007). KEGG Auto-

matic Annotation Server results were parsed, and terms were annotated to

locus identifiers. TOS mutant phenotypic data were associated with locus

identifiers through BLASTN alignments of Tos17 flanking sequence obtained

from NCBI.

Each probe on the microarray was mapped to MSU rice locus identifiers by

the MSU project, and the mappings are available for download in GFF format

(http://www.sanger.ac.uk/Software/formats/GFF/). For functional enrich-

ment, terms from all four classes were counted for the background (entire

genome) and for each module in the weighted network. Counting of terms is

complicated because multiple probe sets can map to multiple loci and vice

versa. Additionally, all 11 probes in a probe set may not map to a single locus.

The nature and quantity of these many-to-many mappings are shown in the

Supplemental Figure S2.

To account for ambiguity and redundancy when counting, a weighted

method was performed. Probe sets that mapped to a locus with fewer

than three probes were not considered for counting. Probe sets that mapped

with more than 11 probes were also not considered for counting. The

Ficklin et al.
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remaining probe sets contributed a count for each term equal to the following

equation:

c
�
t; i; p

� ¼ �
nip=11

�
3 ð1=miÞ3

�
1=qp

�

0 if t does not map to i, 0 if p does not map to i.

In the equation above, c(t,i,p) is the count contributed by a probe set p for a

given term tmapped to locus identifier i; nip is the number of probes that map

to i from probe set p,mi is the total number of probe sets that map to i, and qp is

the total number of loci that map to p. Perfect one-to-one mappings contribute

a count of 1, while all others contribute a value between 0 and 1. The effect

of redundancy is accounted for in that the count from multiple probe sets

mapping to the same locus never exceeds 1. Ambiguity is reduced by this

equation but provides no effect for our purposes, as we had removed

ambiguity prior to counting.

Once counting was complete, pair-wise Fisher’s exact tests were per-

formed using R between the count of terms from each module in the network

and the background. Terms with P , 0.1, with a 95% confidence level, were

considered enriched.

Functional Clustering

Functional clustering was performed using a set of in-house scripts that

follow the protocol used by DAVID (Dennis et al., 2003; Huang et al., 2009).

Kappa statistics are used to provide a measure of agreement between two (or

more) classes of qualitative data. The Kappa k score provides a measure of

agreement in the range 0 to 1, where 0 indicates no agreement and 1 indicates

almost perfect agreement. For this study, a pair-wise k score was calculated for

each gene using the contingency matrix in Table IV. Here, C11 is the number of

terms shared by both loci A and B, C01 is the number of terms present in locus

A but not locus B, C10 is the number of terms present in locus B but not locus A,

and C00 is the number of terms that neither loci share. Tab, which is the sum of

either the total row or column, equals the total number of terms in the module.

The k score is calculated using the following equations:

K ¼ oa2 ca

12 ca

where

oa ¼ C11 þ C00

Tab

ca ¼ T�1 3 T1� þ T�0 3 T0�

Tab 3 Tab

In the equation above, oa is the observed agreement, ca is the chance

agreement, and K is the k score.

Clustering of terms consisted of two steps. First, seed groups for each

module were formed. A seed group was formed for each gene by grouping it

with all other genes withwhich it shares a k score greater than 0.5. Seed groups

with less than three genes were not considered. Since probe sets may map to

more than one gene, the mapping counts described previously were summed

and must equal 3. Also, seed groups were only considered if 50% or more of

the k scores between all group members were greater than 0.5. Second, seed

groups of a module were merged through an iterative process that exhaus-

tively compared each group with every other group and merged any two that

have 50% similarity. This continued until merging was no longer possible.

Clusters were ranked using two values, the enrichment score (en-score)

and average connectivity. The en-score is the negative inverse log of the

geometric mean for the Fisher’s P values from all terms in the cluster:

s ¼ 2 log
�
½ .

n

i¼1
ai�1=n

�

where s is the en-score, ai is the Fisher’s P value, and n is the number of terms

in the cluster.

The average connectivity,,k., of the cluster is 2l/n, where l is the number

of edges and n is the number of nodes in the cluster. The ,k. value was used

as the primary characteristic for ranking clusters.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Network characteristics.

Supplemental Figure S2. Affymetrix rice probe set mapping to rice loci.

Supplemental Figure S3. Genevestigator heat maps for top 10 connected

clusters.

Supplemental Table S1. Properties of natural complex networks.

Supplemental Table S2.Microarray samples used in network construction

(includes abbreviated GEO annotation).

Supplemental Table S3. Network edges.

Supplemental Table S4. Rice locus identifiers in functionally enriched

clusters.

Supplemental Table S5. Affymetrix probe set identifiers in functionally

enriched clusters.

Supplemental Table S6. Enriched functional terms in rice clusters.

Supplemental Table S7. Enriched functional terms in modules.

Supplemental Table S8. Genes with no known or annotated function.
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