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Flux is a key measure of the metabolic phenotype. Recently, complete (genome-scale) metabolic network models have been
established for Arabidopsis (Arabidopsis thaliana), and flux distributions have been predicted using constraints-based modeling
and optimization algorithms such as linear programming. While these models are useful for investigating possible flux states
under different metabolic scenarios, it is not clear how close the predicted flux distributions are to those occurring in vivo.
To address this, fluxes were predicted for heterotrophic Arabidopsis cells and compared with fluxes estimated in parallel by
13C-metabolic flux analysis (MFA). Reactions of the central carbon metabolic network (glycolysis, the oxidative pentose
phosphate pathway, and the tricarboxylic acid [TCA] cycle) were independently analyzed by the two approaches. Net fluxes in
glycolysis and the TCA cycle were predicted accurately from the genome-scale model, whereas the oxidative pentose
phosphate pathway was poorly predicted. MFA showed that increased temperature and hyperosmotic stress, which altered
cell growth, also affected the intracellular flux distribution. Under both conditions, the genome-scale model was able to predict
both the direction and magnitude of the changes in flux: namely, increased TCA cycle and decreased phosphoenolpyruvate
carboxylase flux at high temperature and a general decrease in fluxes under hyperosmotic stress. MFA also revealed a 3-fold
reduction in carbon-use efficiency at the higher temperature. It is concluded that constraints-based genome-scale modeling can
be used to predict flux changes in central carbon metabolism under stress conditions.

As most of the uses of plants are intimately linked to
their metabolic output or activity, there is a renewed
interest in understanding the behavior and regulation
of plant metabolic networks. The only direct measure
of metabolic activity, and the facet most closely related
to biological function, is flux through the metabolic
network (Libourel and Shachar-Hill, 2008). There has
been a considerable research effort in the last few years
to develop and refine methods that allow fluxes in
large metabolic networks to be determined. The best
established of these methods, steady-state metabolic
flux analysis (MFA), involves measuring the redistri-
bution of a supplied stable isotope, usually 13C, at
metabolic and isotopic steady state (Ratcliffe and
Shachar-Hill, 2006; Allen et al., 2009a). Flux maps of
a range of heterotrophic plant cells and tissues have

been produced, providing information on the opera-
tion of different flux modes (Sriram et al., 2004, 2007;
Schwender et al., 2006; Allen et al., 2009b; Masakapalli
et al., 2010), carbon-use efficiency (Alonso et al., 2007),
and the response of the network to different substrates
(Junker et al., 2007), altered genotype (Lonien and
Schwender, 2009), and altered growth conditions (Iyer
et al., 2008; Williams et al., 2008). While MFA is
currently the most powerful way to estimate metabolic
network fluxes, allowing estimation of both net and
exchange fluxes within subcellular compartments,
there remain some technical issues that prevent a
more routine exploitation of the method. In particular,
the need to supply a labeled organic carbon substrate
to isotopic steady state limits the tissue types that can
be investigated, and the technique is also relatively
low throughput (Kruger and Ratcliffe, 2009).

A complementary approach is provided by con-
straints-based modeling (Reed and Palsson, 2003;
Borodina and Nielsen, 2005). In this approach, more
routinely accessible experimental parameters, such as
growth rate, substrate consumption rate, and biomass
composition, are used to constrain the flux solution
space within a network of defined reactions at steady
state. The use of optimization algorithms, typically
linear programming, can identify flux solutions that
optimize an objective function such as maximization
of growth or minimization of fluxes. This approach
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was used to predict fluxes in a network of 257 reac-
tions of primary metabolism in barley (Hordeum
vulgare) seeds (Grafahrend-Belau et al., 2009). Because
the method can handle very large networks, it can also
be used to tackle metabolic networks on a genome
scale, and this has been achieved for Arabidopsis
(Arabidopsis thaliana; Poolman et al., 2009; de Oliveira
Dal’Molin et al., 2010). These studies have provided
new insight into metabolic network behavior, have
identified variable flux modes within the network,
both known and novel, and have allowed the behav-
ior of the system under altered conditions to be
explored, such as altered energy demand and altered
oxygen availability.

The constraints-based modeling approach is attrac-
tive because of its speed and flexibility. Although the
initial building of a genome-scale model is time con-
suming, once a stoichiometrically balanced network
has been established it is relatively easy to explore a
variety of metabolic scenarios. Moreover, with appro-
priate experimental data, the model can be used to
predict the metabolic state of any plant tissue that can
be assumed to operate at metabolic steady state,
including autotrophic tissues (de Oliveira Dal’Molin
et al., 2010). Specific models for specific cell and tissue
types can be generated using transcript or protein
expression data to define the enzymes present (Becker
and Palsson, 2008). It is also possible to vary the
objective function of the optimization routine to ex-
plore the factors that shape the structure and function
of the network (Schuetz et al., 2007).

However, there are a number of potential problems
in the interpretation of the results generated by such
methods. First, the networks tend to be highly under-
determined, resulting in the strong possibility of mul-
tiple solutions. Although this can be addressed by the
use of nonlinear objective functions (Grafahrend-Belau
et al., 2009), it remains unclear how well parallel
reactions and substrate cycles can be resolved. Second,
thermodynamic constraints on reactions are only rep-
resented as simple reversible/irreversible criteria and
hence only crudely represent in vivo free energy
changes. Finally, the extent to which the actual bio-
logical optimization of a particular metabolic network
can be represented by relatively simple objective func-
tions has only been tested for single-celled microor-
ganisms (Schuetz et al., 2007). Hence, the aim of the
work presented in this paper was to establish howwell
fluxes predicted from analysis of a constraints-based
genome-scale model reflect the real flux distribution.
To this end, flux solutions for heterotrophic Arabidop-
sis cells were generated from a genome-scale model of
Arabidopsis and compared with fluxes determined by
13C-based MFA. Importantly, all the experimental data
used in the two approaches were determined in par-
allel on the same batch of cells. As well as optimal
growth conditions, the cells were also cultured under
two stress conditions, increased temperature and hy-
perosmotic stress, to examine how well the changes
in metabolic network fluxes could be predicted

from the constraints-based model. This work also
revealed important new insights into the metabolic
response to these two agriculturally relevant stress
conditions.

RESULTS

Prediction of Fluxes in Heterotrophic Arabidopsis Cells
Using a Genome-Scale Metabolic Model

The aim of this work was to compare the flux
solution for a heterotrophic Arabidopsis cell suspen-
sion predicted from a genome-scale metabolic model
(Poolman et al., 2009) with that estimated from 13C-
MFA (Williams et al., 2008; Masakapalli et al., 2010).
Arabidopsis cells in heterotrophic culture provide a
convenient system to investigate the fundamentals of
heterotrophic metabolic behavior (Poolman et al.,
2009). To provide a sound basis for comparison, all
experimental parameters weremeasured in parallel on
the same batch of cell suspension cultures after 5 d of
growth. For the genome-scale model, experimental
data consisted of growth rate, Glc consumption rate,
and biomass composition (Table I). The values for
these parameters were similar to those reported pre-
viously (Poolman et al., 2009). The most abundant
soluble metabolites were also quantified and found to
account for 14% of biomass. The abundance of indi-
vidual metabolites is shown in Table II.

These data were used to constrain fluxes in a ge-
nome-scale metabolic model as described previously
(Poolman et al., 2009). Briefly, the rate of growth and
the composition of the biomass were used to derive
constraints on the rates of synthesis of different bio-
mass precursors, and linear programming was used to
identify a flux solution with the objective of minimiz-
ing total flux. To account for the energy demand above
that required for biomass synthesis (i.e. cell mainte-
nance), a generic ATPase reaction was added to the
model and the flux through this reaction varied until
the Glc consumption rate in the model solution
matched that observed experimentally. Soluble metab-
olites were included as constraints by assuming that
their net rate of synthesis could be calculated from
their abundance and the rate of biomass accumulation.
This assumption is reasonable for abundant metabo-
lites that predominantly accumulate in the vacuole
(Farre et al., 2001) and are unlikely to be subject to
appreciable rates of turnover. Glc content was not
included as a constraint due to the possibility of con-
tamination from the growth medium. The amino acid
composition of protein was assumed to be the same as
before (Poolman et al., 2009), and this was confirmed
by measurement of a subset of protein amino acids
by gas chromatography-mass spectrometry (GC-MS;
data not shown). The model is available at http://
mudshark.brookes.ac.uk/Models/Arabidopsis, and the
complete flux solution is shown in Supplemental Ta-
ble S1.
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Estimation of Fluxes in Heterotrophic Arabidopsis Cells
from 13C- MFA

A parallel batch of cell suspensions was supplied
with [1-13C]Glc, and the redistribution of 13C in soluble
metabolites was measured using GC-MS. GC-MS was
also used to analyze labeling of amino acids from hy-
drolyzed protein and of Glc and maltose from starch.
Metabolic fluxes were estimated using 13C-FLUX
(Wiechert et al., 2001), and the flux solution was
constrained with the same substrate uptake rate and
biomass component accumulation rates as the ge-
nome-scale model (Tables I and II). The metabolic
network used to fit the 13C data (Fig. 1) was essentially
the same as the one described by Williams et al. (2008),
but with minor modifications to account for the dif-
ference in 13C data (GC-MS versus NMR). For exam-
ple, during analysis of Suc by GC-MS, it was not
possible to distinguish MS fragments arising from the
glucosyl and fructosyl moiety; therefore, labeling data
from Fru, Glc, and Suc were assigned to a single
cytosolic hexose phosphate pool. This simplification is
supported by NMR data from the same cell culture,

which show that the labeling of the fructosyl and
glucosyl moieties of Suc is identical (Masakapalli et al.,
2010). Statistical analysis of preliminary flux solutions
also indicated that fluxes through NAD malic enzyme
(all treatments) and NADP malic enzyme (hyperos-
motic treatment) were determined with very low
precision; thus, these fluxes were removed from the
model for subsequent analyses. Previous work sug-
gests that fluxes through these reactions are likely to be
low in Arabidopsis cell suspensions (Williams et al.,
2008). The complete model (in 13C-FLUX format) is
given in Supplemental Table S2. Fitted fluxes were
statistically analyzed to demonstrate that the labeling
data contained sufficient information to reliably con-
strain each flux. All flux solutions passed the x2 test
and are listed in Supplemental Table S3.

Comparison of Fluxes Predicted from the Genome-Scale
Model and Estimated by 13C-MFA

The metabolic models used in the genome-scale
model and for 13C-MFA are not identical. Details of
how they were aligned are given in Supplemental

Table I. Growth rate (biomass accumulation), Glc consumption rate, and biomass composition of
Arabidopsis cell suspension cultures grown under control conditions (21�C, no mannitol), at high
temperature (29�C), and under hyperosmotic stress (171 mM mannitol)

All values are means 6 SD from four replicates. Values indicated in boldface are significantly different
(Student’s t test, P , 0.05) from the corresponding value for control cells.

Parameter Control 29�C Hyperosmotic

Biomass (g dry wt d21 L21 culture) 2.3 6 0.1 0.8 ± 0.1 0.9 ± 0.2
Glc consumption (g d21 L21 culture) 4.1 6 0.2 3.3 ± 0.1 1.6 ± 0.5
Biomass composition (%)
Cell wall 43 6 5 35 6 2 55 ± 2
Protein 20 6 2 16 ± 3 28 ± 4
Lipid 11 6 2 10 6 1 11 6 2
Starch 5 6 0.4 3 ± 0.4 5 6 0.7
Soluble metabolites 14 6 1 21 6 1 7 ± 1

Table II. Soluble metabolite abundances in Arabidopsis cell suspension cultures grown under control
conditions (21�C, no mannitol), at high temperature (29�C), and under hyperosmotic stress
(171 mM mannitol)

Soluble metabolites were extracted with perchloric acid, and abundances were determined using 13C-
decoupled 1H NMR spectroscopy. All values are in mmol mg21 dry weight and are means 6 SD from four
replicates. Values indicated in boldface are significantly different (Student’s t test, P , 0.05) from the
corresponding value for control cells.

Metabolite
Treatment

Control 29�C Hyperosmotic

Suc 0.060 6 0.019 0.098 6 0.004 0.086 6 0.007
Citrate 0.112 6 0.019 0.252 6 0.015 0.050 6 0.012
Malate 0.183 6 0.019 0.211 6 0.019 0.059 6 0.025
Succinate 0.028 6 0.029 0.011 6 0.002 0.013 6 0.003
Fumarate 0.002 6 0.001 0.000 6 0.000 0.000 6 0.000
Asp 0.040 6 0.008 0.080 6 0.003 0.013 6 0.005
Glu 0.135 6 0.007 0.135 6 0.008 0.041 6 0.005
Gln 0.148 6 0.027 0.205 6 0.009 0.039 6 0.015
g-Aminobutyrate 0.041 6 0.006 0.071 6 0.002 0.031 6 0.004
Ala 0.194 6 0.077 0.334 6 0.039 0.042 6 0.010

Prediction of Fluxes in Central Carbon Metabolism
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Table S4. It was possible to align 51 reactions in central
carbon metabolism. A very good correlation was
found between the flux values predicted by the ge-
nome-scale model and those estimated by 13C-MFA
(Fig. 2; r2 = 0.86, P , 0.001). However, the significance
of this result is reduced, because the fluxes for the
reactions involved in the synthesis of biomass compo-
nents (Tables I and II) are constrained to the same
values in both approaches. Omitting these steps leaves
24 reactions representing the core of central carbon

metabolism: essentially glycolysis, the tricarboxylic
acid (TCA) cycle, and the oxidative pentose phosphate
pathway. These reactions can be legitimately com-
pared, because their rates are estimated by indepen-
dent means in the two approaches, and a good
correlation was found (r2 = 0.77, P , 0.001). To exam-
ine the flux correlation in more detail, the fluxes for
each reaction were plotted against a metabolic net-
work schematic (Fig. 3). It can be seen that for the
majority of the reactions, the genome-scale model

Figure 1. Metabolic model used for 13C-MFA. Free net fluxes are indicated in gray. For the control, elevated-temperature
treatment, chex2, ana1, and chex3 were free. For the mannitol treatment, where NADP malic enzyme was omitted, chex2 and
tca1were free. Free exchange fluxes for all models are indicated with circles. All other exchange fluxes were constrained to zero
during parameter fitting. The arrows indicate the direction of positive flux as defined in the model. Flux names are given in italics.
cit, Citrate; fum, fumarate; GABA, g-aminobutyrate; aKG, a-ketoglutarate; OAA, oxaloacetate; PPP, pentose phosphate pathway.
Standard abbreviations of amino acid names are used. Dashed boxes indicate where the subcellular localization of a metabolite
or reaction cannot be inferred from the data or from the literature. The letters “p”, “c,” and “m” preceding metabolite names
indicate separate pools of that metabolite in the plastid, cytosol, and mitochondrion, respectively. Output of CO2 from the system
is included in the model but not illustrated here. [See online article for color version of this figure.]

Williams et al.
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predicts flux values that are a close match for those
estimated by MFA. The exception to this is the oxida-
tive pentose phosphate pathway, which carries a neg-
ligible flux in the genome-scale model. The oxidative
reactions (reactions 1 and 2 in Fig. 3) carry zero flux in
the genome-scale model solution in comparison with
14.2 mmol d21 L21 culture for the 13C-MFA solution.
The reversible nonoxidative reactions (reactions 5–7 in
Fig. 3) have values of 20.35, 20.45, and 20.35 mmol
d21 L21 culture in the genome-scale model and 7.0,
6.9, and 4.8 mmol d21 L21 culture in the 13C-MFA
solutions, respectively. The genome-scale model pre-
dicts fluxes in the TCA cycle accurately (to within 15%)
but slightly overestimates the flux of glycolytic reac-
tions (by an average of 30%).
A closer examination of the predicted fluxes for the

reactions of glycolysis also reveals that the genome-
scale model generates a network that is slightly differ-
ent from that used for 13C-MFA (Fig. 1). The reactions
between glyceraldehyde 3-phosphate and phospho-
enolpyruvate (PEP; reactions 10–13 in Fig. 3) are com-
bined into a single reaction “cphex” in the 13C-MFA
network. Because there are no branch points between
these metabolites in the 13C-MFA network, then by
definition, at steady state they have the same flux: 25.6
mmol d21 L21 culture in the control cells. The fluxes
predicted from analysis of the genome-scale model for
the corresponding reactions 10 to 13 are 30.04, 30.04,
30.48, and 30.48 mmol d21 L21 culture, respectively.
The fact that the fluxes for reactions 12 and 13 are
slightly higher than those for reactions 10 and 11
means that there must be a branch point in this part

of the network that is not included in the 13C-MFA
model. This takes the form of a minor input flux into
the 3-phosphoglyceric acid pool from Rubisco oxy-
genase activity, which is operating to support Gly and
Ser biosynthesis (Poolman et al., 2009).

Prediction of Fluxes in Arabidopsis Cells Grown under
Stress Conditions

To examine how well the genome-scale model is
able to predict altered flux states, the Arabidopsis cells
were cultured under different conditions and the flux
predictions from the model were compared with the
flux estimates obtained by 13C-MFA. Two stress con-
ditions were chosen, both of which are important from
an agricultural perspective. First, growth temperature
was increased from the control 21�C to 29�C. This
increase in temperature is known to alter both the
biomass composition and flux distribution in devel-
oping soybean (Glycine max) cotyledons (Iyer et al.,
2008). Second, cells were cultured under hyperosmotic
conditions generated by the addition of 171 mM man-
nitol. This treatment is known to induce gene expres-
sion patterns typical of abiotic stress (Clifton et al.,
2005) and is likely to trigger a metabolic response
(Skirycz et al., 2010). It was found that both of these
treatments led to a significant change in growth rate,
substrate utilization, and biomass composition (Tables
I and II). The growth of the cells was significantly
slower: the rate of biomass production under in-
creased temperature and hyperosmotic stress was
33% and 39% of the control, respectively. Both treat-
ments also caused a significant decrease in Glc con-
sumption rate, although this was much more
pronounced under hyperosmotic stress, in which Glc
consumption was only 40% of the control, compared
with 82% for increased temperature. Both treatments
also led to a pronounced shift in the biomass compo-
sition (Table I). Considering the changes in biomass
composition, growth rate, and Glc consumption rate
together, the altered demands on the carbon assimi-
lated can be calculated. Under hyperosmotic stress, a
greater proportion of Glc consumed was used for cell
wall (30% of Glc consumed compared with 25% for the
control) and for protein (15% of Glc consumed com-
pared with 11% for the control). Under heat treatment,
the proportion of Glc consumed that was converted
into biomass was substantially reduced: biomass rep-
resented only 23% of the Glc consumed in comparison
with 57% for the control. Of the biomass produced,
there was proportionally less cell wall and protein
(approximately 20% less of each). There were also
pronounced shifts in soluble metabolite abundances,
with a general decrease in nearly all metabolites in
the mannitol treatment and increases in amino acids,
citrate, and Suc at the higher temperature (Table II).

MFA revealed the impact that these changes had on
the flux distribution. It was found that increased tem-
perature caused a substantial, approximately 2-fold,
increase in TCA cycle fluxes (Fig. 4A; Supplemental

Figure 2. Comparison of fluxes in heterotrophic Arabidopsis cells
determined by MFA and predicted from a genome-scale metabolic
model. Cell culture growth rate and Glc consumption were measured
between days 4 and 6 of the culture cycle, and biomass composition
was determined at day 5. These data were used to constrain the flux
solution within a genome-scale metabolic model. A parallel batch of
cells was grown on [1-13C]Glc, and the redistribution of label at day 5
was used to estimate fluxes by MFA.

Prediction of Fluxes in Central Carbon Metabolism
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Table S3). Fluxes in glycolysis and the oxidative
pentose phosphate pathway were not significantly
affected, but there was a significant decrease in the
PEP carboxylase reaction flux. In contrast, the mannitol
treatment had no effect on the relative flux distribution
but instead led to a coordinated decrease of fluxes
through glycolysis, the oxidative pentose phosphate
pathway, and the TCA cycle (Fig. 4B; Supplemental
Table S3). Fluxes predicted from the genome-scale
model accurately reflected both of these very different
flux scenarios, correctly identifying a 2-fold increase in
TCA cycle flux and an approximately 70% decrease in
the PEP carboxylase reaction flux at higher tempera-
ture and a coordinated decrease of all fluxes to 30%
to 35% of control values under hyperosmotic stress
(Fig. 4). The only exception was the oxidative pentose
phosphate pathway, which, as under control condi-
tions, was poorly predicted under the two stress
conditions.

Mitochondrial Respiration in Cells Grown at
High Temperature

The increased TCA cycle flux at high temperature is
accompanied by an equivalent increase in mitochon-
drial electron transport: flux through the mitochon-
drial electron transport chain complexes is predicted
by the genome-scale model to increase by an average
of 1.9-fold under increased temperature (Supplemen-
tal Table S1). To investigate the bioenergetic status of
mitochondria in vivo in response to increased temper-
ature, Arabidopsis cells were incubated with a fluo-
rescent probe, tetramethyl rhodamine methyl ester
(TMRM), which accumulates in mitochondria accord-
ing to membrane potential. An appreciable reduction
in TMRM signal was observed in cells cultured at
increased temperature (Fig. 5, B and D). To quantify
the TMRM signal, the cells were counterstained with
the vital stain fluorescein diacetate (FDA) as a refer-
ence (controlling for the number of cells in the image
and general variations in dye uptake). A total of 15
images from three independent cell suspensions for
each condition were analyzed. The average TMRM
fluorescence signal relative to the FDA signal de-
creased by 31% in the high-temperature cells in com-
parison with control cells.

Figure 3. Comparison of fluxes of central carbon metabolism deter-
mined by MFA and predicted from a genome-scale metabolic model.
The metabolic diagram shows the reactions of glycolysis, the oxidative
pentose phosphate pathway, and the TCA cycle. Each reaction is
numbered, cross-referencing Table I, and each bar graph showing flux
values (in mmol d21 L21 cell culture) is labeled with the corresponding
reaction number. Metabolites are as follows: G6P, Glc 6-P; F6P, Fru 6-P;
GL6P, gluconate 6-phosphate; PenP, pentose phosphate; F-1,6-BP, Fru

1,6-bisP; 3-PGA, 3 phosphoglyceric acid; 2-PGA, 2 phosphoglyceric
acid. Enzymes are as follows: (1) G6P DH, Glc 6-P dehydrogenase; (2)
PGDL, 6-phosphogluconolactonase; (3) PGDH, 6-phosphogluconate
dehydrogenase; (4) PFK, phosphofructokinase; (5) TK1, transketolase
1; (6) TK2, transketolase 2; (7) TA, transaldolase; (8) ALD, aldolase;
(9) TIM, triosphosphate isomerase; (10) GAPDH, glyceraldehyde
3-phosphate dehydrogenase; (11) PGK, phosphoglycerate kinase;
(12) PGM, phosphoglyceromutase; (13) enolase; (14) PEPC, phospho-
enolpyruvate carboxylase; (15) PK, pyruvate kinase; (16) ME (NADP),
NADP-dependent malic enzyme; (17) PDH, pyruvate dehydrogenase;
(18) CS, citrate synthase; (19) MDH, malate dehydrogenase; (20) Acon,
aconitase; (21) Fum, fumarase; (22) ICDH, isocitrate dehydroge-
nase; (23) SDH, succinate dehydrogenase; (24) aKGDH, a-ketoglutarate
dehydrogenase.

Williams et al.
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DISCUSSION

Constraints-Based Metabolic Modeling Can Accurately

Predict Fluxes in Central Carbon Metabolism

Using the independently constrained 13C-MFA flux
estimates, it was possible to assess howwell constraints-
based genome-scale modeling is able to predict fluxes
in the three main pathways of heterotrophic carbon
metabolism: glycolysis, the TCA cycle, and the oxida-
tive pentose phosphate pathway. For glycolysis and
the TCA cycle, there was good agreement, with the
genome-scale model able to predict flux values similar
to 13C-MFA. The genome-scale model was also able to
predict specific flux changes in cells cultured at high
temperature (increased TCA cycle and decreased PEP
carboxylase fluxes) and a general decrease in fluxes

under mannitol treatment. Two lines of evidence dem-
onstrate that the good match between the predicted
fluxes and those from 13C-MFA is not merely due to
structural constraints within the model when certain
rates and compositions of biomass production are
specified. First, use of different objective functions in
a genome-scale model of Escherichia coli resulted in
significantly different fluxes through glycolysis, the
TCA cycle, and the oxidative pentose phosphate path-
way (Schuetz et al., 2007). Second, the flux solution for
the Arabidopsis genome-scale model without the ge-
neric ATPase reaction to account for cell maintenance
ATP demands is substantially different both in quan-
titative terms and in the reactions operating (Poolman
et al., 2009). In both of these cases, fluxes in central
carbon metabolism vary even though the rate and

Figure 4. Comparison of fluxes in Arabidopsis
cell suspensions grown for 5 d under control
conditions, high temperature (29�C; A), and hy-
perosmotic stress (B). Fluxes were determined by
MFA and predicted from a genome-scale model,
and each graph shows the flux for the indicated
reactions relative to the value for the control
(indicated by the dashed line). Reaction 16
(NADP-malic enzyme) is not shown because it
carries no flux in the genome-scale model solu-
tions and was omitted from the 13C-MFA model
for the mannitol treatment.

Prediction of Fluxes in Central Carbon Metabolism
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proportion of biomass synthesis are fixed, demonstrat-
ing that fluxes in central carbon metabolism are not
rigidly constrained to biomass synthesis fluxes.

The genome-scale model did not predict realistic
fluxes for the oxidative pentose phosphate pathway.
The oxidative reactions carried no flux in any of the
predicted flux solutions, and flux through the revers-
ible nonoxidative reactions was 14-fold lower under
control conditions than MFA estimates. Given the
importance of the oxidative pentose phosphate path-
way in the provision of NADPH, particularly for
nitrate assimilation and fatty acid biosynthesis, the
question arises of the source of NADPH in the
genome-scale model. Inspection of the flux solution
revealed that the major source of NADPH was
NADP-dependent glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH). In terms of the objective function
of the model (minimization of overall fluxes), this
makes sense: not only does the GAPDH route to

NADPH require fewer reactions than the oxidative
pentose phosphate pathway (and hence a lower sum
of fluxes), but the concomitant carbon flux (production
of dihydroxyacetone phosphate) is simply incorpo-
rated into glycolysis. Presumably, thermodynamic or
enzyme activity limitations prevent NADP-dependent
GAPDH from fulfilling this role in vivo.

Altered Demand for Specific Biomass Precursors Has
Little Impact on Central Carbon Metabolism Fluxes in
Arabidopsis Cell Suspension Cultures

Synthesis of the main components of biomass (cell
wall, protein, lipid, and starch) requires precursors,
reductant, and ATP generated in the pathways of
central carbon metabolism. Precursors for the different
biomass components are drawn from different points
in central carbon metabolism, and there are widely dif-
fering energy and reductant requirements (Schwender,
2008). For example, synthesis of protein requires the
most ATP per mass unit synthesized, and synthesis of
lipid requires three times as much NADPH as for
protein. Synthesis of starch and cell wall carbohydrate
requires no reductant and approximately 8-fold less
ATP than an equivalent mass of protein. Thus, changes
in the rate of synthesis of different biomass compo-
nents might be reflected in altered fluxes in central
carbon metabolism.

Under hyperosmotic stress, biomass accumulation
decreased substantially, so the observed general de-
crease in fluxes is to be expected. However, the pro-
portion of different biomass components synthesized
was altered, with significant increases in the propor-
tion of consumed Glc committed to cell wall and
protein. The latter, in particular, would impose an
increase in the ATP demand on the system as well as
requiring increased withdrawal of precursor metabo-
lites at a number of points in glycolysis and the TCA
cycle. However, this was achieved with no significant
changes in the relative fluxes through these pathways.
This can be explained if the biosynthetic processes
supporting cell growth account for only a small fraction
of the total ATP demand in the cell and therefore
impose only a minor constraint on TCA cycle flux. In
fact, this is likely.MFAdemonstrates that fluxes through
the central carbon network in heterotrophic Arabidop-
sis cells can support seven times the rate of ATP
synthesis required for biomass synthesis (Masakapalli
et al., 2010). Similarly, genome-scale modeling only
accommodates the observed Glc consumption rate if
80% of the total ATP produced is used for purposes
other than biomass component synthesis (Poolman
et al., 2009). These other costs include turnover and
resynthesis of polymers, especially protein, substrate
uptake, subcellular metabolite transport, and mainte-
nance of membrane energization. Similar conclusions
have been reached with other systems. For example, in
developing sunflower (Helianthus annuus) seeds, only
11% of the ATP produced was used for biomass pro-
duction and polymerization (Alonso et al., 2007).

Figure 5. Staining of mitochondria with TMRM as a qualitative indi-
cator of mitochondrial membrane potential. A to D, Control cells
grown at 21�C (A and B) and cells grown at 29�C (C and D) were
stained with TMRM (B and D) and counterstained with FDA (A and C).
Representative confocal laser scanning microscopy images are shown.
E, Three independent cell cultures were analyzed, and the TMRM/FDA
signal ratio was calculated for each image. Values are means 6 SE. The
asterisk indicates significantly different from control (Student’s t test,
P , 0.05). [See online article for color version of this figure.]
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Further work is required to establish more precisely
how the cellular ATP budget is allocated (Piques et al.,
2009), but it seems likely that cell maintenance ATP
costs exert a much greater constraint on the ATP-
producing pathways (glycolysis and the TCA cycle)
than synthesis of biomass components. This empha-
sizes the importance of incorporating the major energy-
consuming processes into models of metabolism. In
the genome-scale model presented here, cell mainte-
nance ATP costs are simulated indirectly by varying a
generic ATPase reaction until the rate of consumption
of Glc matched that observed experimentally. The
ability of the model to accurately predict glycolytic
and TCA cycle fluxes suggest that this indirect method
produces a reasonable estimation of actual ATP syn-
thesis rates and is certainly less problematic than
trying to estimate polymer turnover rates and other
cell maintenance costs (Nielsen et al., 2003). The ap-
proach does lead to a slight overestimation of glyco-
lytic flux, but this would undoubtedly improve with
the introduction of parameters to constrain the oxida-
tive pentose phosphate pathway flux more effectively.

Rate of Synthesis of Soluble Metabolites May Balance

Central Carbon Network Fluxes

While the relative flux distribution of central carbon
metabolism was stable under hyperosmotic stress,
the rates of synthesis of soluble metabolites were sig-
nificantly different, with decreases in the majority of
measured metabolites per unit dry weight. This is
consistent with recent metabolomic observations of
Arabidopsis leaves under osmotic stress (Skirycz et al.,
2010). Inspection of the flux distribution suggests that
decreases in relative fluxes to soluble metabolites may
help to offset the relative increased demand for pre-
cursors for protein and cell wall biosynthesis, leaving
the overall flux distribution unchanged. For example,
when fluxes are considered relative to the same rate of
biomass production, withdrawal of carbon from the
TCA cycle is actually lower under hyperosmotic stress
(0.70 arbitrary units carbon d21 flask21) than in control
cultures (0.83 arbitrary units carbon d21 flask21), de-
spite the increased demand for precursors for protein
synthesis. In effect, the synthesis of soluble metabolites
is varied to buffer changing demands for precursors
for biomass polymer synthesis, such that the flux
through the central carbon pathways is able to remain
constant. This contrasts with variations in the high-
flux backbone in E. coli observed when constraints-
based modeling was used to examine the effect of
altered growth conditions (Almaas et al., 2004). How-
ever, the altered growth conditions in that study
consisted of changing the carbon substrate in the
growth medium, which would inevitably impinge on
the flux modes in the central network. Similarly, in
plant metabolism, a switch between inorganic and
organic nitrogen sources causes substantial changes in
the flux distribution in the central metabolic network
(Junker et al., 2007). In contrast, the analysis here

suggests that when the substrate source is the same,
which is the normal situation for plant cells, then the
relative flux distribution in the central metabolic net-
work is largely insensitive to abiotic stress conditions.

Increased Growth Temperature Leads to a Considerable
Decrease in Carbon-Use Efficiency

Carbon-use efficiency can be calculated from the Glc
consumption rate and the fluxes through the CO2-
evolving reactions estimated by MFA or predicted by
analysis of the genome-scale model. Carbon-use effi-
ciency was 58% 6 5% and 64% 6 9% for control and
hyperosmotic stress, respectively, values thatwere com-
parable to previous estimates for the Arabidopsis cell
suspension culture (Williams et al., 2008; Masakapalli
et al., 2010), but only 21% 6 4% in cells cultured at
elevated temperature. Effectively, per unit of carbon
incorporated into biomass, 2-fold more carbon was
lost as CO2 under increased temperature in compari-
son with the control. The MFA analysis suggests that
all of this additional CO2 is released by the TCA cycle,
as opposed to other decarboxylating reactions such as
the oxidative steps of the oxidative pentose phosphate
pathway. CO2 release from fatty acid synthesis de-
creased in line with the decreased growth rate.

There is much interest in the response of respiration
to temperature because it has substantial relevance to
the global carbon cycle and climate change. It has been
widely observed that increased temperature leads to
short-term increases in respiration (Atkin and Tjoelker,
2003). However, because these observations are based
on total CO2 release or oxygen uptake, it is not clear
whether processes other than respiration contribute to
the altered CO2 release. From the data presented here,
it is clear that respiration alone is responsible for the
increased CO2 release. Under control conditions, the
MFA-derived flux map reveals that 60% of the CO2
released was from respiration, 27% from the oxidative
pentose phosphate pathway, and 9% from fatty acid
synthesis. At high temperature, 82% of the total CO2
released was from respiration. The response of plant
respiration to temperature is known to be acclimative,
with acclimation occurring within 1 to 2 d of growth at
the elevated temperature (Covey-Crump et al., 2002).
Acclimation is not apparent after 6 d of growth of the
cell suspension culture, which is consistent with accli-
mation involving tissue-level morphological and cel-
lular changes (Armstrong et al., 2006) that are unlikely
to be replicated in a cell culture.

The underlying mechanism for the effect of temper-
ature on respiration is unknown. The fact that other
fluxes are not similarly responsive rules out a simple
temperature effect on enzyme kinetics. Two other
explanations for the increase in the TCA cycle flux
can be put forward. The first is that there may have
been an increase in the demand for ATP. If so, this
ATP demand must be in the cell maintenance fluxes,
because the changes in biomass composition when
grown at high temperature (decreased protein and
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starch) would actually require less ATP. Alternatively,
it is possible that the coupling of the mitochondrial
electron transport chain to ATP synthesis is reduced.
The reduction in TMRM signal (Fig. 5), indicating
partial depolarization of mitochondria, is consistent
with either of these scenarios. If ATP demand is higher,
then an increased rate of ATP synthesis would lead to
greater dissipation of the mitochondrial inner mem-
brane proton gradient (Brown et al., 1990). If partial
uncoupling is occurring, the mitochondrial proton
gradient would also be reduced via several potential
mechanisms. First, increased temperature increases
leakage of protons across the mitochondrial mem-
brane (Chamberlin, 2004) due to changes in membrane
fluidity and structure (Brand et al., 2003). However,
proton leak only accounts for 20% of the respiration
rate on average (Rolfe and Brand, 1997), so this is
unlikely to explain the doubling in respiration ob-
served here. Alternatively, the activity of nonphos-
phorylating bypasses such as alternative oxidase,
alternative NAD(P)H dehydrogenases, or uncoupling
protein may increase. However, the activities of the
alternative oxidase and the uncoupling protein are
generally associated with a decrease, not an increase,
in temperature (Gonzalez-Meler et al., 1999; Nantes
et al., 1999). Further work is clearly required to estab-
lish the cause of the increased respiratory rate.

Hyperosmotic Stress Leads to a Coordinated Decrease in
Flux through Central Carbon Metabolism

The hyperosmotic growth condition used here
mimics the effect of drought, causing water loss in
the treated cells. Drought stress is known to cause a
reduction in plant growth (Boyer, 1982). While this is
mainly due to reduced photosynthetic activity, mito-
chondrial respiration is also thought to be a critical
component of the response (Atkin and Macherel, 2009;
Skirycz et al., 2010). Generally, respiration is observed
to decrease during osmotic stress (Galle et al., 2010),
although there is considerable variability in the re-
sponse (Atkin and Macherel, 2009). Using MFA, it was
possible to establish that, as well as a decrease in
respiratory CO2 release from the TCA cycle, there was
also a general decrease in the other pathways of central
carbon metabolism. This is a significant observation
because it suggests that the decrease of mitochondrial
metabolic activity may be part of a wider and coordi-
nated metabolic response that goes beyond a mito-
chondria-specific effect. One possibility is that carbon
is diverted from glycolysis/TCA cycle/oxidative pen-
tose phosphate pathway to be used for the synthesis of
carbohydrate reserves (Seki et al., 2007). However,
although there was an increase in cell wall synthesis in
the Arabidopsis cell culture in relative terms, the rate
of cell wall synthesis was approximately 2-fold lower
in absolute terms. An alternative possibility is that the
stress condition inhibits the uptake of substrate (Glc)
into the cells. This is unlikely to explain the observed
inhibition of leaf respiration, but it could be a factor in

heterotrophic tissues or in young sink leaves. In this
context, it is relevant that induction of genes of the
“mitochondrial dysfunction regulon” occurs only in
young, rapidly growing leaves and not in mature
source leaves (Skirycz et al., 2010). Clearly, any con-
clusion drawn from analysis of a cell-suspension cul-
ture would need to be verified in whole plant tissues,
but MFA andmetabolic modeling can reveal aspects of
the metabolic response that are not necessarily appar-
ent using other approaches. For, example, an induction
of glycolytic and TCA cycle proteins in response to
osmotic stress in Arabidopsis cell suspension cultures
(Ndimba et al., 2005) might lead one to the conclusion
that flux in these pathways is increased, whereas the
flux analysis demonstrates the opposite.

CONCLUSION

This work demonstrates that it is possible to predict
fluxes accurately in central carbon metabolism in
heterotrophic Arabidopsis cells using an objective
function based on flux minimization. The predictions
are not only accurate in absolute terms but also in
predicting the direction and magnitude of the changes
caused by altered growth conditions. However, fur-
ther work is required to improve the prediction of
fluxes in the oxidative pentose phosphate pathway,
perhaps through the use of alternative objective func-
tions. It would also be desirable to include a more
complete description of the subcellular compartmen-
tation of central carbon metabolism than the one used
here, although parallel reactions in different compart-
ments present challenges for both constraints-based
modeling (de Oliveira Dal’Molin et al., 2010) and 13C-
MFA (Masakapalli et al., 2010). Overall, the work
presented here raises the possibility that constraints-
based modeling may be useful as a high-throughput
method for predicting net fluxes through the central
metabolic network in a range of plant tissues and
genotypes. This would allow constraints-based analy-
sis to be used as a rapid precursor to detailed analysis
of forward and reverse fluxes at subcellular resolution
using 13C-MFA. The work also reveals new insights
into the metabolic response of cells to altered environ-
ment, demonstrating specific changes in the TCA cycle
and PEP carboxylase flux to increased temperature
and a general decrease in flux through central carbon
metabolism during osmotic stress.

MATERIALS AND METHODS

Chemicals

Chemicals were purchased from Sigma-Aldrich unless otherwise stated.

Arabidopsis Cell Suspension Culture

Heterotrophic cell suspensions (May and Leaver, 1993) of Arabidopsis

(Arabidopsis thaliana) were grown in 250-mL Erlenmeyer flasks and harvested

as before (Williams et al., 2008). For increased temperature treatment, cell
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suspensions were incubated at 29�C (control, 21�C). For hyperosmotic treat-

ment, mannitol was added to the growth medium to a final concentration of

171 mM. For measurements of growth rate and Glc consumption, and for

labeling to isotopic steady state, cell cultures were grown in 100-mL flasks and

the volumes of growth medium and inoculum were reduced proportionally.

Growth rate and Glc consumption measurements were made by removing

2-mL samples daily from three to four cultures. Culture samples were briefly

centrifuged, a sample of supernatant was removed for analysis of Glc

abundance, and the mass of the cell pellet was determined after lyophiliza-

tion. The rate of biomass increase was calculated from the change in mass

within cultures between 4 and 6 d after subculture. Glc concentration was

determined using a standard enzymatic assay (Sweetlove et al., 1996), and rate

of consumption was calculated from the change in concentration within

cultures between 4 and 6 d after subculture, allowing for the change in volume

of the medium resulting from culture growth.

Labeling to Isotopic Steady State

Cell suspensions (four replicates per treatment) were labeled to isotopic

steady state by subculturing into cell culture medium where 25% (molar) of

Glc had been replaced with [1-13C]Glc (99 atom %; Cambridge Isotopes) and

were harvested after 5 d of growth. Previous work showed that cells grown

under control conditions reached isotopic steady state after 5 d of growth

(Williams et al., 2008), and isotopic steady state is likely to have been achieved

for all the treatments described here. This was tested by comparing the

incorporation of 13C into fragments anticipated to have the same metabolic

origin (e.g. Asp and Asn, fragment C2-C4). This analysis did not reveal any

major differences in labeling (data not shown), indicating that soluble me-

tabolites reached isotopic steady state after 5 d of growth.

In contrast, comparison of labeling between amino acids in soluble

metabolite extracts and those derived from hydrolyzed protein revealed

consistently higher levels of 13C incorporation into amino acids from soluble

extracts (Supplemental Table S2). This suggests the presence of pools of

protein that turn over slowly and thus remain unlabeled. In support of this

interpretation, analysis using one-dimensional 13C NMR, which is insensitive

to unlabeled compounds, showed that the label distribution within amino

acids hydrolyzed from protein did reach isotopic steady state (Williams et al.,

2008). Accordingly, the metabolic model used to analyze the labeling data here

includes modifications, similar to those reported by Lonien and Schwender

(2009), allowing the abundance of unlabeled protein, and hence its influence

on amino acid labeling, to be determined during parameter fitting, based on

the assumption that extracted protein is composed of a mixture of protein

labeled to isotopic steady state and unlabeled protein.

Extraction and Fractionation of Labeled Metabolites and
Biomass Components

Solublemetabolites were extracted from30mgof lyophilized cell-suspension

cultures using perchloric acid (Kruger et al., 2008) and redissolved in 5 mL of

5 mM KH2PO4, pH 5.0, after the final drying step. Prior to GC-MS analysis,

extracts were fractionated into neutral, acidic, and basic components using

anion- and cation-exchange chromatography. Protein was extracted from the

pellet remaining from perchloric acid extractions using a solution of 6 M urea

and 2 M thiourea. Protein was prepared for hydrolysis by precipitation with 15%

(v/v) ice-cold trichloroacetic acid and repeated washing with acetone and then

hydrolyzed by heating to 100�C for 24 h in 6 M HCl at atmospheric pressure.

Liberated amino acids were purified using cation-exchange chromatography.

Starch was enzymatically digested from pellets remaining after extraction of

soluble metabolites and protein (Allen et al., 2007).

Biomass Composition Analysis

Analysis of biomass composition in lyophilized cell suspension culture

was carried out as before (Williams et al., 2008).

NMR Spectroscopy

Unfractionated perchloric acid extracts were prepared for NMR spectros-

copy by mixing 200 mL of extract with 700 mL of D2O (Apollo Scientific)

containing 2 mM EDTA and 1 mM 3-(trimethylsilyl)-[2,2,3,3-2H4]propionic

acid. One-dimensional 1H NMR spectra of perchloric acid extracts were

recorded at 20�C on a Varian Unity Inova 600 spectrometer using a 5-mm

HCN triple-resonance z-gradient probe and the standard Varian pulse pro-

gram with a relaxation delay of 2 s, including a 1.98-s presaturation pulse to

suppress the water signal, a 90� pulse angle, a spectral width of 10 ppm, and a

4-s acquisition time. For 13C-labeled samples, 13C-broadband decoupling

(WURST-40) was applied during the detection period to remove 1H-13C

coupling, the acquisition time was reduced to 2 s, and the delay before the

presaturation pulse was increased to 4 s to eliminate sample heating. Spectra

were processed and analyzed using NUTS (Acorn NMR). One-dimensional
1H free induction decays were zero filled and baseline corrected. Line

broadening (exponential multiplication) was applied at 0.5 Hz. After Fourier

transformation, manual phase correction was applied and linear regression

was used to flatten the spectral baseline prior to quantification. Spectra were

referenced to 3-(trimethylsilyl)-[2,2,3,3-2H4]propionic acid at 0 ppm. 1H as-

signments were based on literature values, comparison with pure standards,

and the results of two-dimensional NMR experiments (data not shown).

Positional enrichments of Ala were measured using line fitting of coupled

spectra and are assigned an accuracy of 2% (fractional enrichment scale).

GC-MS Analysis

Sample Preparation

Samples, typical volume 10 to 100 mL depending on the extent of labeling,

were dried using a Speed-Vac system prior to derivatization. For samples

containing amino acids and organic acids, 43 mL of pyridine was added to

each tube, and samples were shaken at 37�C for 1 h and then briefly

centrifuged to collect any condensation. A total of 60 mL of 2,2,2-trifluoro-N-

methyl-N-trimethylsilyl-acetamide (HiChrom) was added to each tube, and

samples were shaken at 37�C for 30 min. Samples were centrifuged for 10 min

at 16,000g to pellet any insoluble material, and the supernatant was trans-

ferred to 8-mm glass vials (Chromacol). For sugar-containing samples, 50 mL

of 20 mg mL21 methoxyamine hydrochloride in pyridine was added to each

tube, and samples were shaken at 37�C for 2 h. A total of 70 mL of 2,2,2-

trifluoro-N-methyl-N-trimethylsilyl-acetamidewas used for the derivatization.

GC-MS

GC-MS analysis was carried out using an Agilent 7890A GC device

coupled to an Agilent 5975C quadrupole mass spectrometer. For all methods,

the carrier gas was helium and flow through the column was kept constant at

0.6 mL min21. The sample (1 or 2 mL) was injected in splitless mode at 230�C.
All samples were run on either a Varian VF5-ms column (30 m, 10 m guard

column, 0.25 mm i.d.) or an Agilent HP 5-ms column (30 m, 0.25 mm i.d.), each

containing the equivalent of 5% phenyl and 95% diphenyl polysiloxane as a

stationary phase. For sugar-containing samples, the oven temperature was

initially held constant at 70�C for 5 min and then ramped up to 350�C at 5�C
min21. The temperature was then decreased and held at 330�C for 5min before

being decreased to 70�C at 120�C min21. For amino acid and organic acid

samples, the oven temperature was initially held constant at 70�C for 5 min

and then ramped up to 280�C at 5�C min21, held there for 3 min, before being

decreased to 70�C at 120�C min21. In the case of organic acid-containing

samples, a solvent delay of 19 min was used to avoid detection of a large

phosphate-trimethyl silyl peak.

For all samples, the MS source temperature was 250�C, the MS quadrupole

temperature was 150�C, and the transfer line temperature was 250�C. The
mass spectrometer was tuned to signals from perfluorotributylamine before

each batch of samples. Depending on the sample type, the mass spectrometer

was operated in scan or single ion monitoring mode. In scan mode, ions with

masses between 50 and 600 atomic mass units were monitored at a rate of 2.66

scans s21. In single ion monitoring mode, ions corresponding to known

fragments were monitored and the dwell time for each group of ions was

adjusted from 10 to 30 ms depending on the number of ions in the group to

ensure that peaks were properly defined.

Data Analysis

Baseline correction was carried out for all chromatograms acquired using

scan mode using MetAlign (Lommen, 2009) with the following parameters:

peak slope factor, 13 noise; peak threshold factor, 23 noise; average peak

width at half height, five scans. Compound identification was performed

using AMDIS32 (National Institute of Standards and Technology) and by
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comparison against an extensive library of trimethyl silyl-derivatized plant

metabolites (Kopka et al., 2005) using MSSearch (National Institute of Stan-

dards and Technology). Where identification of compounds by comparison of

mass spectra was ambiguous, assignment of peaks was confirmed by spiking

samples with a known amount of pure candidate compounds. Analysis of 13C

incorporation was carried out using Chemstation (MSD version; Agilent). To

avoid problems associated with fractionation of heavy isotopes across the

width of a GC-MS chromatographic peak (Allen and Ratcliffe, 2009), the mass

spectra of chromatographic peaks were averaged before export of mass-to-

charge ratio and ion count data to tab-delimited text files. To calculate

fractional enrichments, averaged mass spectra were corrected for the presence

of naturally occurring heavy isotopes using published software (Wahl et al.,

2004). The identity and chemical formulae of fragments that are required to do

this were taken from the literature (Laine and Sweeley, 1971; Leimer et al.,

1977; Huege et al., 2007) or deduced from the fragmentation pattern of related

molecules (Leimer et al., 1977).

In order to ensure that labeling measurements of appropriate quality for

flux analysis were made (i.e. with both high accuracy and high precision;

Antoniewicz et al., 2007), mass spectra were manually checked and fragments

were excluded from further analysis if they exhibited large M-1 peaks or

clearly overlapped with other fragments. MFA requires estimates of the

accuracy of the mass isotopomer distribution measurements, and these were

made on the basis of the accuracy of measurements of the same mass

isotopomers in unlabeled metabolites or samples (Allen et al., 2009b). Where

the mass isotopomer could be measured to within 1% of its predicted value at

natural abundance 13C, an error of 1% (fractional enrichment scale) was used.

If the mass isotopomer abundance was accurate to between 1% and 2%, an

error of 2% was applied, while if the accuracy was worse than 2%, the entire

fragment was excluded from further analysis.

Metabolic Modeling

The genome-scale metabolic model was essentially the same as described

before (Poolman et al., 2009) with the exception of a correction for the direction

of the PEP carboxylase reaction (so that oxaloacetate is the reaction product)

and the inclusion of a cytosolic malate dehydrogenase (MALATE-DH-RXN)

in addition to the mitochondrial one (MalDH). Flux solutions were obtained

using linear programming to minimize the sum of fluxes in a solution space

constrained by biomass component synthesis rates and an ATPase reaction

matched to the Glc consumption rate as before (Poolman et al., 2009).
13C-MFA was carried out using 13C-FLUX (version 20050329; Wiechert

et al., 2001) running within a Ubuntu Linux environment as described by

Williams et al. (2008). GC-MSmeasurements were incorporated into the input.

ftbl files as outlined by Wiechert et al. (2001). 1H NMR measurements of

positional enrichment were incorporated into the “Label Measurements”

section of the.ftbl files. The 13C-FLUX implementation of the Donlp2 algo-

rithm (Peter Spellucci, Technische Universität Darmstadt) was used for

parameter fitting in Bootstrap Monte Carlo mode, in conjunction with a

custom script (Masakapalli et al., 2010) to obtain over 100 feasible flux

solutions for each treatment. The solutions with the 50 lowest residua were

then averaged, and this average solutionwas used as a starting point for a final

optimization without Monte Carlo labeling of the labeling data (Masakapalli

et al., 2010). The EstimateStat component of 13C-FLUX was used to determine

errors on these final flux estimates. Output fluxes were held constant during

parameter optimization but were set as “free,” and their values and errors

were given in the model definition during EstimateStat analysis.

Confocal Microscopy

Cell-suspension cultures grown under different temperature regimes

for 4 d were stained with 200 nM TMRM (made from a 100 mM stock in

dimethylsulfoxide) for 15 min while maintaining their respective culture

temperature. Cells were counterstained with 0.0005% FDA (made from a 0.5%

[w/v] stock in dimethylsulfoxide) for 5 min. Cells were washed in superna-

tant of their respective culture flask and imaged immediately using a Zeiss

confocal microscope (LSM510META) using excitation/emission at 543/545 to

615 nm (TMRM) and 488/500 to 530 nm (FDA). Images were collected with a

633 lens (Zeiss Plan-Apochromat 633/1.4 Oil DIC). Cells were selected

randomly in bright-field mode before imaging TMRM fluorescence. To en-

sure specific staining of TMRM to mitochondrial membrane potential, cells

treated with 40 mM carbonyl cyanide 3-chlorophenylhydrazone were used as

a negative control (data not shown). Background was subtracted in either

channel, and only nonsaturated pixels with an intensity of 4 SD above

background were included in the analysis. The ratio between both channels

was then calculated frame by frame.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Metabolic fluxes in heterotrophic Arabidopsis

cells predicted from a genome-scale model.

Supplemental Table S2. 13C-FLUX model of central metabolism in

heterotrophic Arabidopsis cells and label measurements.

Supplemental Table S3. Metabolic fluxes in heterotrophic Arabidopsis

cells determined by steady-state 13C-MFA.

Supplemental Table S4. Alignment of the genome-scale and 13C-MFA

metabolic models.

ACKNOWLEDGMENT

We thank Dr. Igor Libourel (University of Minnesota) for stimulating

discussions and advice on analyzing mixed pools of labeled and unlabeled

proteins.

Received April 27, 2010; accepted July 3, 2010; published July 6, 2010.

LITERATURE CITED

Allen DK, Libourel IGL, Shachar-Hill Y (2009a) Metabolic flux analysis in

plants: coping with complexity. Plant Cell Environ 32: 1241–1257

Allen DK, Ohlrogge JB, Shachar-Hill Y (2009b) The role of light in soy-

bean seed filling metabolism. Plant J 58: 220–234

Allen DK, Ratcliffe RG (2009) Quantification of isotope label. In J

Schwender, ed, Plant Metabolic Networks. Springer, New York, pp 105–149

Allen DK, Shachar-Hill Y, Ohlrogge JB (2007) Compartment-specific

labeling information in 13C metabolic flux analysis of plants. Phyto-

chemistry 68: 2197–2210

Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global

organization of metabolic fluxes in the bacterium Escherichia coli. Nature

427: 839–843

Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon

conversion efficiency and central metabolic fluxes in developing sun-

flower (Helianthus annuus L.) embryos. Plant J 52: 296–308

Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate as-

sessment of amino acid mass isotopomer distributions for metabolic flux

analysis. Anal Chem 79: 7554–7559

Armstrong AF, Logan DC, Tobin AK, O’Toole P, Atkin OK (2006) Hetero-

geneity of plant mitochondrial responses underpinning respiratory

acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ

29: 940–949

Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in

orchestrating drought tolerance. Ann Bot (Lond) 103: 581–597

Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic

response of plant respiration to temperature. Trends Plant Sci 8: 343–351

Becker SA, Palsson BO (2008) Context-specific metabolic networks are

consistent with experiments. PLoS Comput Biol 4: e1000082

Borodina I, Nielsen J (2005) From genomes to in silico cells via metabolic

networks. Curr Opin Biotechnol 16: 350–355

Boyer JS (1982) Plant productivity and environment. Science 218: 443–448

Brand MD, Turner N, Ocloo A, Else PL, Hulbert AJ (2003) Proton

conductance and fatty acyl composition of liver mitochondria correlates

with body mass in birds. Biochem J 376: 741–748

Brown GC, Lakin-Thomas PL, BrandMD (1990) Control of respiration and

oxidative phosphorylation in isolated rat liver cells. Eur J Biochem 192:

355–362

Chamberlin ME (2004) Top-down control analysis of the effect of temper-

ature on ectotherm oxidative phosphorylation. Am J Physiol Regul

Integr Comp Physiol 287: R794–R800

Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA,

Whelan J (2005) Stress-induced co-expression of alternative respiratory

chain components in Arabidopsis thaliana. Plant Mol Biol 58: 193–212

Williams et al.

322 Plant Physiol. Vol. 154, 2010



Covey-Crump EM, Attwood RG, Atkin OK (2002) Regulation of root

respiration in two species of Plantago that differ in relative growth rate:

the effect of short- and longterm changes in temperature. Plant Cell

Environ 25: 1501–1513

de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM,

Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the

primary metabolic network in Arabidopsis. Plant Physiol 152: 579–589

Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN,Willmitzer

L (2001) Analysis of the compartmentation of glycolytic intermediates,

nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato

tubers using a nonaqueous fractionationmethod. Plant Physiol 127: 685–700

Galle A, Florez-Sarasa I, Thameur A, de Paepe R, Flexas J, Ribas-Carbo M

(2010) Effects of drought stress and subsequent rewatering on photosyn-

thetic and respiratory pathways in Nicotiana sylvestris wild type and the

mitochondrial complex I-deficient CMSII mutant. J Exp Bot 61: 765–775

Gonzalez-Meler MA, Ribas-Carbo M, Giles L, Siedow JN (1999) The

effect of growth and measurement temperature on the activity of the

alternative respiratory pathway. Plant Physiol 120: 765–772

Grafahrend-Belau E, Schreiber F, Koschutzki D, Junker BH (2009) Flux

balance analysis of barley seeds: a computational approach to study

systemic properties of central metabolism. Plant Physiol 149: 585–598

Huege J, Sulpice R, Gibon Y, Lisec J, Koehl K, Kopka J (2007) GC-EI-

TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite

pools of higher plants by monitoring isotope dilution after 13CO2

labelling. Phytochemistry 68: 2258–2272

Iyer VV, Sriram G, Fulton DB, Zhou R, Westgate ME, Shanks JV (2008)

Metabolic flux maps comparing the effect of temperature on protein and

oil biosynthesis in developing soybean cotyledons. Plant Cell Environ

31: 506–517

Junker BH, Lonien J, Heady LE, Rogers A, Schwender J (2007) Parallel

determination of enzyme activities and in vivo fluxes in Brassica napus

embryos grown on organic or inorganic nitrogen source. Phytochemistry

68: 2232–2242

Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E,

Dormann P, Weckwerth W, Gibon Y, Stitt M, et al (2005) GMD@CSB.

DB: the Golm Metabolome Database. Bioinformatics 21: 1635–1638

Kruger NJ, Ratcliffe RG (2009) Insights into plant metabolic networks

from steady-state metabolic flux analysis. Biochimie 91: 697–702

Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG (2008) 1H NMR metabolite

fingerprinting and metabolomic analysis of perchloric acid extracts

from plant tissues. Nat Protoc 3: 1001–1012

Laine RA, Sweeley CC (1971) Analysis of trimethylsilyl O-methyloximes

of carbohydrates by combined gas-liquid chromatography-mass spec-

trometry. Anal Biochem 43: 533–538

Leimer KR, Rice RH, Gehrke CW (1977) Complete mass spectra of

N-trifluoroacetyl-n-butyl esters of amino acids. J Chromatogr A 141:

121–144

Libourel IGL, Shachar-Hill Y (2008) Metabolic flux analysis in plants:

from intelligent design to rational engineering. Annu Rev Plant Biol 59:

625–650

Lommen A (2009) MetAlign: interface-driven, versatile metabolomics tool

for hyphenated full-scan mass spectrometry data preprocessing. Anal

Chem 81: 3079–3086

Lonien J, Schwender J (2009) Analysis of metabolic flux phenotypes for

two Arabidopsis mutants with severe impairment in seed storage lipid

synthesis. Plant Physiol 151: 1617–1634

Masakapalli SK, Le Lay P, Huddleston JE, Pollock NL, Kruger NJ,

Ratcliffe RG (2010) Subcellular flux analysis of central metabolism in

a heterotrophic Arabidopsis cell suspension using steady-state stable

isotope labeling. Plant Physiol 152: 602–619

May M, Leaver C (1993) Oxidative stimulation of glutathione synthesis in

Arabidopsis thaliana suspension cultures. Plant Physiol 103: 621–627

Nantes IL, Fagian MM, Catisti R, Arruda P, Maia IG, Vercesi AE (1999)

Low temperature and aging-promoted expression of PUMP in potato

tuber mitochondria. FEBS Lett 457: 103–106

Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of

Arabidopsis salt and osmotic stress responsive proteins using two-

dimensional difference gel electrophoresis and mass spectrometry.

Proteomics 5: 4185–4196

Nielsen J, Villadsen J, Liden G (2003) Bioreaction Engineering Principles,

Ed 2. Springer, New York

Piques M, Schulze WX, Hohne M, Usadel B, Gibon Y, Rohwer J, Stitt M

(2009) Ribosome and transcript copy numbers, polysome occupancy

and enzyme dynamics in Arabidopsis. Mol Syst Biol 5: 314

Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale

metabolic model of Arabidopsis and some of its properties. Plant

Physiol 151: 1570–1581

Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through

plant metabolic networks. Plant J 45: 490–511

Reed JL, Palsson BO (2003) Thirteen years of building constraint-based in

silico models of Escherichia coli. J Bacteriol 185: 2692–2699

Rolfe DF, Brand MD (1997) The physiological significance of mitochon-

drial proton leak in animal cells and tissues. Biosci Rep 17: 9–16

Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective

functions for predicting intracellular fluxes in Escherichia coli. Mol Syst

Biol 3: 119

Schwender J (2008) Metabolic flux analysis as a tool in metabolic engi-

neering of plants. Curr Opin Biotechnol 19: 131–137

Schwender J, Shachar-Hill Y, Ohlrogge JB (2006) Mitochondrial metabo-

lism in developing embryos of Brassica napus. J Biol Chem 281: 34040–

34047

Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic

networks in drought stress responses. Curr Opin Plant Biol 10: 296–302

Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H, De Rycke R,

Andriankaja M, Van Aken O, Van Breusegem F, Fernie AR, et al (2010)

Developmental stage specificity and the role of mitochondrial metabo-

lism in the response of Arabidopsis leaves to prolonged mild osmotic

stress. Plant Physiol 152: 226–244

Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME,

Spalding MH, Shanks JV (2004) Quantification of compartmented

metabolic fluxes in developing soybean embryos by employing biosyn-

thetically directed fractional 13C labeling, two-dimensional [13C, 1H]

nuclear magnetic resonance, and comprehensive isotopomer balancing.

Plant Physiol 136: 3043–3057

Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central

carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and

comprehensive bondomer balancing. Phytochemistry 68: 2243–2257

Sweetlove LJ, Burrell MM, apRees T (1996) Starch metabolism in tubers of

transgenic potato (Solanum tuberosum) with increased ADPglucose

pyrophosphorylase. Biochem J 320: 493–498

Wahl SA, Dauner M, Wiechert W (2004) New tools for mass isotopomer

data evaluation in (13)C flux analysis: mass isotope correction, data

consistency checking, and precursor relationships. Biotechnol Bioeng

85: 259–268

Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal

framework for 13C metabolic flux analysis. Metab Eng 3: 265–283

Williams TCR, Miguet L, Masakapalli SK, Kruger NJ, Sweetlove LJ,

Ratcliffe RG (2008) Metabolic network fluxes in heterotrophic Arabi-

dopsis cells: stability of the flux distribution under different oxygena-

tion conditions. Plant Physiol 148: 704–718

Prediction of Fluxes in Central Carbon Metabolism

Plant Physiol. Vol. 154, 2010 323


