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Restriction of long-distance movement of several potyviruses in Arabidopsis (Arabidopsis thaliana) is controlled by at least three
dominant restricted TEV movement (RTM) genes, named RTM1, RTM2, and RTM3. RTM1 encodes a protein belonging to the
jacalin family, and RTM2 encodes a protein that has similarities to small heat shock proteins. In this article, we describe the
positional cloning of RTM3, which encodes a protein belonging to an undescribed protein family of 29 members that has a
meprin and TRAF homology (MATH) domain in its amino-terminal region and a coiled-coil domain at its carboxy-terminal
end. Involvement in the RTM resistance system is the first biological function experimentally identified for a member of this
new gene family in plants. Our analyses showed that the coiled-coil domain is not only highly conserved between RTM3-
homologous MATH-containing proteins but also in proteins lacking a MATH domain. The cluster organization of the RTM3
homologs in the Arabidopsis genome suggests the role of duplication events in shaping the evolutionary history of this gene
family, including the possibility of deletion or duplication of one or the other domain. Protein-protein interaction experiments
revealed RTM3 self-interaction as well as an RTM1-RTM3 interaction. However, no interaction has been detected involving
RTM2 or the potyviral coat protein previously shown to be the determinant necessary to overcome the RTM resistance. Taken
together, these observations strongly suggest the RTM proteins might form a multiprotein complex in the resistance
mechanism to block the long-distance movement of potyviruses.

Systemic infection of plants by viruses is the result
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factors. These molecular interactions control transla-
tion and replication of the viral nucleic acid, assembly
of progeny virus particles, and generalized invasion of
the host through cell-to-cell and long-distance move-
ments of viral particles or ribonucleoprotein com-
plexes (Carrington and Whitham, 1998; Whitham and
Wang, 2004). Plants have developed different mecha-
nisms to resist viruses. Passive resistance generally
results from lack of or inappropriate interactions be-
tween plant and viral factors, causing a block in one
of the viral cycle steps, and is usually controlled by
recessive resistance genes (Diaz-Pendon et al.,, 2004).
Active resistance is generally triggered by the recogni-
tion of the viruses in plants and can be controlled by at
least two types of mechanisms. One well-known mech-
anism is associated with the hypersensitive response or
extreme resistance at initial infection sites and is con-
trolled by dominant resistance genes (R genes) through
a gene-for-gene relationship (Soosaar et al., 2005; Maule
et al., 2007). The second mechanism concerns the gen-
eral antiviral defense system of RNA interference,
which recognizes and targets the viral nucleic acids
(Voinnet, 2005; Maule et al., 2007).
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Restriction of long-distance movement of several
potyviruses controlled by the dominant restricted TEV
movement (RTM) genes in Arabidopsis (Arabidopsis
thaliana) does not correspond to any of these known
resistance mechanisms (Mahajan et al., 1998; Decroocq
et al., 2006). Indeed, in this resistance process, viral
replication and cell-to-cell movement in inoculated
leaves appear unaffected, the hypersensitive response
and systemic acquired resistance are not triggered,
and salicylic acid is not involved (Mahajan et al., 1998).
First identified as specific to Tobacco etch virus (TEV;
Whitham et al., 2000), RTM resistance has recently
been shown to be active against two other unrelated
potyviruses, Lettuce mosaic virus (LMV) and Plum pox
virus (PPV; Decroocq et al., 2006), showing that the
RTM genes seem to be associated with a general
resistance mechanism against potyviruses that blocks
their long-distance movement. Whether the RTM
genes are also involved in resistance mechanisms
against other viral genera remains to be investigated.
Genetic characterization from natural ecotype varia-
tion and chemically induced mutants has revealed that
at least three dominant genes, named RTM1, RTM2,
and RTM3, are involved in the restriction of long-
distance movement of potyviruses in the Arabidopsis
accession Columbia (Col-0; Mahajan et al., 1998;
Whitham et al., 1999). Remarkably, a mutation in any
of these three genes is sufficient to completely abolish
the restriction of long-distance movement, suggesting
that these genes act in an interdependent way to block
the generalized invasion of the plant (Whitham et al.,
1999). RTM1 encodes a protein belonging to the jacalin
family, some members of which are involved in de-
fense against insects and fungi (Chisholm et al., 2000).
RTM?2 encodes a protein that contains a transmem-
brane domain and has similarities to small heat shock
proteins, although its expression is not heat inducible
and does not contribute to thermotolerance (Whitham
et al., 2000). Although it is not understood how the
RTM proteins restrict long-distance movement of
potyviruses, it has been shown that both RTM1 and
RTM?2 are expressed in phloem-associated tissues,
that the corresponding proteins localize to phloem
sieve elements (Chisholm et al., 2001), and that the
N-terminal end of the potyviral capsid protein (CP) is
involved in breaking of the RTM resistance (Decroocq
et al., 2009), suggesting a direct or indirect interaction
between the potyvirus CP and the RTM factors.

In this article, we present the positional cloning of
RTM3, which encodes a new type of protein contain-
ing a meprin and TRAF homology (MATH) domain,
and show that RTM3 directly interacts with RTM1.

RESULTS
RTM3 Corresponds to the At3g58350 Gene

In a previous study, screening of ethyl methanesul-
fonate-mutagenized M2 Col-0 plants with TEV-bar
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was used to isolate the TEV-susceptible rtml, rtm?2,
and rtm3 mutants. The rtm3 mutant (named A161 in
Whitham et al., 1999, and rtm3-1 in this article) was
shown to be genetically independent from the rtm1
and rtm2 mutants.

The rtm3-1 mutant, similar to the other rtm mutants,
is fully susceptible to systemic infection by some LMV
and PPV isolates, whereas the wild-type Col-0 is
resistant to these viral isolates (Decroocq et al., 2006).
To map the mutation in rtm3-1, F2 populations from a
cross between the rtm3-1 line and Ws-2 (which restricts
TEV, LMV-AF199, PPV-PS, and PPV-EA to inoculated
leaves) were produced. In the largest population, 1,620
F2 plants were inoculated with TEV-GUS and scored
for GUS activity in inflorescence tissue at 22 d post
inoculation. Two hundred forty-four plants (15%)
were TEV-GUS positive. Consistent with previous
results (Whitham et al., 1999), the low percentage of
susceptible plants suggests that the mutant phenotype
was not due to a dominant mutation. However, the
1:5.6 susceptible:resistant ratio deviates substantially
from the predicted 1:3 ratio expected if the mutant
phenotype was due to a single recessive mutation,
which may be due to partial dominance of the rtm3
mutant allele or to hybrid effects resulting from the
interaccession cross.

Using a series of molecular markers evenly distrib-
uted across the Arabidopsis genome, a preliminary
linkage analysis was done with a small population (32
rtm3-1 X Ws-2 F2 plants) exhibiting the TEV-GUS-
susceptible phenotype. No association between the
susceptibility phenotype and markers proximal to
RTM1 or RTM2 was detected, as expected from the
independent status of the rtm3 mutation (Whitham
et al., 1999). However, an association between the
susceptible phenotype and a marker (nga6) derived
from near the bottom of chromosome III was detected.
Assuming that the TEV-GUS-susceptible plants con-
tained a homozygous, recessive locus that conferred
the mutant phenotype, four recombination events in
the 64 chromosomes analyzed were detected between
this locus and nga6. More detailed genetic mapping
was then performed, using a population of up to 244
TEV-GUS-susceptible F2 plants and a set of molecular
markers located near nga6. Twenty recombination
events among 488 chromosomes were detected be-
tween rtm3 and the marker FUS6, which is centromeric
to nga6. Twelve recombination events among 330
chromosomes and five among 488 chromosomes
were detected with the markers Pur5 and Bglla,
respectively (centromeric to FUS6), but these recom-
binants differed from those detected using FUS6.
This indicated that rtm3 was located between Bglla
and FUS6. At this stage, as the F3 progeny from
TEV-susceptible F2 plants was also susceptible to
LMV-AF199, as expected, the following mapping
experiments were done with LMYV, for which pheno-
typing is faster and clearer.

Fine mapping using a new set of 2,962 F2 plants
and new polymorphic markers developed specifically
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Figure 1. Genotyping and LMV infection phenotyping of the RTM3 KO
lines and of the F1 populations produced by crossing each KO line with
the mutant rtm3-1 line. KO-g, KO Gabi 801D05; KO-s, KO Salk
N517845; H,O, negative control without genomic DNA; Wt, wild
type. Numbers 1, 2, 3, and 4 indicate replicates. A, Genotyping of both
KO lines and of the F1 populations revealed by PCR on genomic DNA.
PCR 1, PCR using the Gabi-Kat-specific primer and the two At3g58350-
specific primers (see “Materials and Methods”); PCR 2, PCR using LbaT
and the two Salk-designed-specific primers for N517845 (see “Mate-
rials and Methods”); L, 100-pb ladder. B, RT-PCR amplification of
RTMT and RTM3 transcripts from total RNA from wild-type and RTM3
KO lines. gDNA, Genomic DNA; L, 1-kb ladder. C, RT-PCR of a 277-bp
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(Supplemental Table S1) allowed us to reduce the rtm3
interval between the markers FOD24.40 and F14P22.16,
which encompass 22 genes between At3g58200 and
At3g58410. Sequencing of all 22 genes in the rtm3-1
mutant identified a single point mutation in the
At3g58350 gene when compared with the wild-type
Col-0 sequence. This single base mutation was further
confirmed by resequencing this gene in both the rtm3-1
line and the wild-type Col-0 sequence. This mutation
changes an Asp to a Lys at amino acid position 284 of
the corresponding protein. Two T-DNA insertion lines
(Salk_017845 [N517845] and Gabi-Kat 801D05) corre-
sponding to this gene were obtained, the T-DNA
insertions were validated, and their homozygous state
was confirmed (Fig. 1A). In addition, the insertion
point of the T-DNA was identified by sequencing in
each knockout (KO) line, after nucleotide 251 (from
nucleotide 1, which is the A of the ATG) for the KO line
Gabi-Kat 801D05 and after nucleotide G of the TGA
stop codon for the KO line Salk_017845. Reverse
transcription (RT)-PCR analysis of the two KO lines
showed that RTM3 expression was no longer detected
(Fig. 1B). Both mutant lines and the parent Col-0 were
inoculated with LMV-AF199, and inflorescence tissues
were analyzed for the presence of virus at 3 weeks post
inoculation. Both KO lines were found to be suscep-
tible to LMV, whereas the parental Col-0 line remained
resistant as expected (Fig. 1C).

An allelism test was also conducted by crossing the
rtm3-1 line with both KO lines. After checking the
heterozygous state of the F1 plants produced from this
cross (Fig. 1A) and confirming the RTM3 sequence in
each F1 population, 12 F1 plants of each cross were
inoculated with LMV-AF199. All F1 plants of both
populations were susceptible to LMV and accumu-
lated it in inflorescence tissue (Fig. 1C). In contrast,
plants from control F1 populations obtained from
RTM3 KO lines X Col-0 or rtm3-1 X Col-0 crosses
were all resistant, confirming that At3g58350 corre-
sponds to RTM3.

RTM3 is 1,511 nucleotides long with 5° and 3’
untranslated regions of 126 and 166 nucleotides, re-
spectively, and four introns of 70, 75, 90, and 148
nucleotides. RTM3, therefore, encodes a predicted 301-
amino acid protein with a deduced molecular mass of
approximately 34,000 D.

RTM3 Belongs to a New Gene Family

RTMBS is annotated as a MATH protein (The Arabi-
dopsis Information Resource [www.arabidopsis.org]).
Meprins are mammalian tissue-specific metalloendo-
peptidases of the astacin family implicated in devel-
opmental, normal, and pathological processes by
hydrolyzing a variety of proteins (Marchand et al,,
1995). TRAF proteins were first isolated by their ability

fragment of LMV RNA from LMV-inoculated RTM3 KO and F1 line
systemic leaves. L, A 100-pb ladder.
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to interact with human tumor necrosis factor receptors
(Rothe et al., 1994) and share with meprins a conserved
region of about 180 residues, named the MATH do-
main (Sunnerhagen et al., 2002). Using the INTERPRO
database (http://www.ebi.ac.uk/interpro), a MATH
domain is predicted in RTM3 between amino acid
positions 13 and 136. The MATH domain is a fold of
seven to eight antiparallel B-sheets found in a variety
of proteins among eukaryotes (Zapata et al., 2007).
Alignment of the RTM3 MATH domain with those of
several human TRAF proteins, notably with TRAF2,
for which the crystal structure has been determined
(Park et al., 1999), indeed reveals conserved amino
acids in the eight TRAF2 8-strands (Supplemental Fig.
S1). Interestingly, the three residues of TRAF2 (Arg-
393 and Tyr-395 in B3 and Ser-467 in 87) involved in
the recognition of the SXXE motif in the receptor
peptide (Park et al. 1999) are conserved in RTM3.
Protein secondary structure prediction analysis using
the Network Protein Sequence Analysis (NPS@) sys-

RTM3, a Novel Type of Protein Controlling Virus Movement

tem (Combet et al. 2000) predicts at least six 8-strands
in the MATH domain of RTM3 (Fig. 2). The B-strands
corresponding to TRAF2 B-strands 6 and 7 are not
predicted in RTM3, but the same analysis performed
on TRAF2 also failed to predict B-strands 6 and 7,
which do not appear in the consensus prediction and
are only supported by the DSC (for Discrimination of
protein Secondary structure Class) method (data not
shown).

As shown in Figure 2, the C-terminal domain
of RTM3 is predicted to form a long a-helix. PCOIL
(Lupas, 1996; Gruber et al., 2005; http://toolkit.
tuebingen.mpg.de/pcoils) and MARCOIL (Delorenzi
and Speed, 2002; http://www.isrec.isb-sib.ch/
webmarcoil/webmarcoilC1.html) predicted the likely
presence of a coiled-coil (CC) domain in this region,
between positions 245 and 289 (Supplemental Fig. S2).
Interestingly, the mutation in rtm3-1 at position 284
lies within this CC domain and corresponds to posi-
tion d in the heptad repeat, providing direct evi-
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Figure 2. Secondary structure for the
RTM3 protein. Prediction obtained using
NPS@. The four lines under the RTM3
sequence correspond to the results of
four different prediction methods (DSC,
MLRC, PHD, and Predator), and the last
line is the consensus secondary structure
prediction. h indicates helix, e indicates
B-strand, and c indicates random coil.
Numbers above the sequences indicate
amino acid positions.
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dence of the involvement of this domain in RTM
resistance.

Using the INTERPRO database, MATH domains are
identified in 127 Arabidopsis sequences. Analysis of
each sequence allowed the identification of 71 distinct
Arabidopsis proteins (Supplemental Table S2). These
MATH proteins are classified in four families accord-
ing to the nomenclature of Zapata et al. (2007). Two
proteins belong to the Ubiquitin-Specific Protease 7
family, which includes MATH proteins associated
with a ubiquitin protease domain; six proteins belong
to the MATHd /Broad complex, Tramtrack, Bric-a-brac
(BTB) family, in which MATH proteins are associated
to a BIB/Pox virus and zinc finger (POZ) domain; one
protein belongs to the MATHd/filament protein fam-

Figure 3. Genomic distribution of the 1 2
RTM3 homologous genes. This map
was made using the chromosome map
tool from The Arabidopsis Information
Resource (http://www.arabidopsis.org/
index.jsp). Black arrows indicate genes
encoding protein with MATH and CC
domains; gray arrows indicate genes
encoding protein with only a CC do-
main. Numbers at the top of the chro-
mosomes indicate the number of each
Arabidopsis chromosome.
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associated in the case of this Arabidopsis protein with
a Bin-Amphiphysin-Rvs domain; and the 62 remain-
ing proteins including RTM3 belong to the MATHd-
only protein family, in which proteins contain one to
four MATH domains without any other associated
domain (Supplemental Table S2). Most of the MATH
genes from this last family are organized in clusters
in the Arabidopsis genome (Fig. 3), and RTM3 is
included in the largest cluster, which contains 18 of
these genes.

Among these 62 MATHd-only proteins, 29 Arabi-
dopsis proteins also contain one or several CC do-
mains (Fig. 4). BLAST analysis using only the CC
domain (amino acids 137-301) of RTM3 showed that
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Figure 4. List and schematic organization of Arabidopsis RTM3 ho-
mologous proteins containing MATH and CC domains. White boxes
represent the MATH domain, and gray boxes represent the CC domain.

RTM3 also shares significant homology with 10 pro-
teins that contain only a CC domain (Fig. 4). Surpris-
ingly, the genes corresponding to these 10 proteins are
also located in clusters containing genes encoding
some of the 29 proteins that contain MATH and CC
domains (Fig. 3). In addition, in a given cluster, a high
level of identity is found between the MATH and CC
domains of the corresponding proteins, suggesting
that these clusters result from gene duplication events.
For instance, the RTM3 cluster contains 17 genes for
which the corresponding protein contains MATH and
CC domains (including RTM3), five genes for which
the corresponding protein contains only a CC domain,
and one gene for which the corresponding protein
contains only a MATH domain. Most of the identity
among domains in this large cluster is often above 50%
(up to 63% amino acid sequence identity with the
At3g58360 protein). An alignment of both RTM3 do-
mains with proteins showing more than 50% identity
with each domain is presented in Supplemental Figure
S3. Interestingly, the amino acid position that is mod-
ified in the rtm3-1 mutant is well conserved among
these proteins.

RTMB3 Interacts with Itself and with RTM1

As a first step toward understanding the molecular
mechanisms underlying the RTM resistance, protein-
protein interaction experiments using the yeast two-
hybrid system were performed to test possible
interactions between the three RTM proteins and the
CPs of LMV and PPV. Indeed, as mutations in the
potyvirus CP are sufficient to overcome the RTM
resistance (Decroocq et al., 2009), it has been suggested
that the CP may interact with the RTM proteins. The
three RTM ¢cDNAs and CPs from two virus isolates
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unable to overcome RTM resistance (LMV-AF199 and
PPV-PS) and from virus isolates able to overcome RTM
resistance (LMV-AFVAR1 [Decroocq et al., 2009] and
PPV-R) were cloned in the yeast two-hybrid vectors.
The potential interactions between the RTM proteins
and between the CPs and the RTM proteins were then
evaluated. These experiments confirmed a previously
described self-interaction for RTM1 (Chisholm et al.,
2001), although rather weak (only detected on the
synthetic dextrose [SD]-Leu-Trp-His medium), and
provided evidence for a RTM3-RTM3 self-interaction
(Fig. 5A). Interestingly, an interaction was also observed
between RTM1 and RTM3, whereas no interaction
was detected when RTM1 or RTM3 was tested against
empty vectors. No interaction was revealed between
RTM2 and RTM1 or RTM3 (Fig. 5A). In the same way,
no interaction was revealed between the various CPs
and the RTM proteins, whereas as a positive control a
self-interaction was detected for the CPs (Fig. 5B).

The RTM3 form corresponding to the rtm3-1 mutant
line (which contains a point mutation in the CC domain)
was also evaluated in the two-hybrid system. While this
mutant version of RTM3 is still able to self-interact, it is
no longer able to interact with RTM1 (Fig. 5C).

To confirm the interactions revealed in yeast, bimo-
lecular fluorescence complementation (BiFC) in planta
was used. In this method, two nonfluorescent frag-
ments (YFPN and YFPC) of yellow fluorescent protein
(YEP) are fused to two different proteins (Walter et al.,
2004). When these two proteins associate with each
other, a fluorescent YFP complex is restored. Con-
structs allowing the expression of each of the RTM
proteins in the different BiFC vectors were obtained
and combined to bombard onion (Allium cepa) epider-
mal cells. As shown in Figure 6, the self-interactions
for RTM1 and RTM3 as well as the interaction between
RTM1 and RTM3 were confirmed in plant cells. We
also confirm that there is no interaction between RTM2
and either of the RTM proteins (whatever the vector
combinations). As a negative control, no interaction
has been revealed between the RTM proteins and the
20S proteasome subunit PAE2 protein.

BiFC experiments were also conducted with RTM3
from the rtm3-1 line. However, in this case, if self-
interaction of the mutated RTM3 has been confirmed,
we have also observed interaction between RTM1 and
the mutated RTM3, which was not observed using the
two-hybrid system.

DISCUSSION

In this article, we describe the positional cloning
of a third RTM gene, genetically identified after the
screening of a Col-0 Arabidopsis mutant library with
TEV (Whitham et al., 1999) and involved in the re-
striction of potyviral long-distance movement. RTM3
belongs to a new protein family that has a MATH
domain in its N-terminal region and a CC domain at
its C-terminal end. Involvement in the RTM resis-
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Figure 5. Protein-protein interactions between the RTM proteins and the potyviral CP with the yeast two-hybrid system. A,
Interactions among the wild-type RTM proteins. The growth of cotransformed yeast was assessed in SD/Leu-Trp (—LT) medium,
and then after 3 d, six colonies for each cotransformation experiment were plated on SD/Leu-Trp (as a control), SD/Leu-Trp-His
(—LTH), and SD/Leu-Trp-His-Ade (—LTHA) media and were left 4 d at 30°C. C—, Negative control; C+, positive control. The
clones in pGADT?7 are those indicated in the horizontal rows, and those in pGBKT7 are indicated in the vertical rows. B,
Interactions between the RTM proteins and the PPV CP. For each pair of tested clones, the first is the clone in pGAD-T7 and the
second is the clone in pGBK-T7. pGAD-Tand pGBK-53 are the clones supplied in the Clontech kit to be used as positive controls.
pGAD is the empty vector pPGAD-T7 and pGBK is the empty vector pGBK-T7 used as negative controls. Only the yeast colonies
(three colonies for each cotransformation experiment) plated in the -LTHA medium are shown. C, Interactions with the RTM3

mutant protein from the rtm3-1 mutant line. Details are as in B.

tance system is the first biological function experi-
mentally identified for a MATH domain-containing
protein in plants.

As shown in this study, MATH domain proteins
form a large protein family in Arabidopsis, with at
least 71 distinct members. The MATHd-only protein
type, which includes RTM3, represents the vast ma-
jority of the Arabidopsis MATH-containing proteins,
with 62 members. This type of MATH protein is found
in plants (Medicago, rice [Oryza sativa]), in lower eu-
karyotes (Trypanosoma, Plasmodium), and in lower
metazoans such as the nematode Caenorhabditis ele-
gans. In this last species, the MATHd-only protein type
also represents the majority of the MATH-containing
proteins (Zapata et al., 2007). This MATHd-only pro-
tein type is described as lacking any other distin-
guishable associated domain. However, the analysis
reported here shows that RTM3 and a set of RTM3-
related proteins are strongly predicted to also contain
a CC structure. This CC domain is not only highly
conserved between RTM3-homologous MATH-
containing proteins but also in proteins lacking a
MATH domain. However, as for the MATH-domain
proteins, no function has been described until now for
CC domain-only proteins. The location in the RTM3
CC domain of the mutation in the rtm3-1 line high-
lights the role of this domain in the RTM resistance
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mechanism. The cluster organization of the RTM3
homologs in the Arabidopsis genome, and in particu-
lar the large cluster at the bottom of chromosome 3
including RTM3, suggests the role of duplication
events in shaping the evolutionary history of this
gene family, including the possibility of deletion or
duplication of one or the other domain.

The resolved crystal structure of the TRAF2 protein
reveals a trimeric self-association of the MATH do-
main (Park et al., 1999). It has been suggested that the
MATH domain may take part in diverse modular
arrangements defined by adjacent multimerization
domains. Interestingly, TRAF proteins also contain a
CC domain, helping to stabilize their multimeric
complexes (Park et al., 1999). RTM3 family proteins
might form such multimeric structures involving their
MATH and CC domains. The protein-protein interac-
tion experiments reported here that demonstrate an
RTM3-RTM3 self-interaction are consistent with this
hypothesis.

A MATH domain may also interact with other
types of proteins. For example, Arabidopsis and rice
members of the MATH-BTB family interact with
Cullin3 (CUL3) proteins via their BTB domain to
form functional E3 ligases targeting specific proteins
for ubiquitination (Weber et al., 2005; Gingerich et al.,
2007). A putative role for the MATH domain of these
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Figure 6. In planta interaction between RTM1 and RTM3 by BiFC.
Confocal microscopy images of onion epidermal cells cobombarded
with constructs expressing the different RTM proteins fused to the
N-terminal fragment of YFP (YN) and the C-terminal fragment of YFP
(YC) are shown.

BTB proteins is its possible interaction with substrate
protein, as shown in C. elegans for the BTB/POZ-
MATH protein CeMel-26, which interacts with
CeCUL3 via its BTB/POZ domain and with the sub-
strate protein CeMEI-1 via its MATH domain (Pintard
et al., 2003).

As for RTM1, which belongs to the jacalin lectin
protein family, and RTM2, which contains a small HSP
domain, RTM3 belongs to a large protein family. Mem-
bers of all three protein families are able to form
multimeric structures, such as the tetrameric structure
of jacalin (Jeyaprakash et al.,, 2002), the heterooligo-
meric structure of small HSPs (van Montfort et al.,
2002), or the trimeric structure of TRAF proteins (Park
et al., 1999). In our study, in planta self-interaction for
RTM3 and RTM1 as well as interaction between RTM1
and RTM3 have been observed, but no such interac-
tions have been shown with RTM2. Taken together,
these observations strongly suggest the RTM proteins
might form a multiprotein complex.

Our protein-protein interaction experiments do
not allow us to conclude about a possible correlation
between the inability of the RTM3 form present in the
rtm3-1 mutant to interact with RTM1 and its func-
tionality in RTM resistance. Indeed, if no interaction
has been shown between RTM1 and the mutated
RTMS3 in the yeast two-hybrid system, this interac-
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tion has been revealed in the BiFC experiments. Such
differences between these two approaches were al-
ready mentioned in the literature (Uhrig et al., 2007).

Regarding the expression of RTM3 in relation with
those of RTM1 and RTM2, although not experimen-
tally analyzed in this study, several studies have
shown coexpression among these three genes in Arab-
idopsis. Indeed, it was shown that the three RTM
genes are mainly expressed in root, stem, petiole, and
some floral organs, in particular the petal, although
RTM3 appears to be expressed at lower levels than
RTM1 and RTM2 (Supplemental Fig. S4; Schmid et al.,
2005; AtGenExpress visualization tool [http://jsp.
weigelworld.org/expviz/expvizjsp]). These tissues
and organs are those in which vascular tissues are
predominant and in which the RTM1 and RTM?2 genes
are specifically expressed (Chisholm et al., 2001).
Other gene expression studies have also revealed the
coexpression of the three RTM genes, which have been
shown to be induced together in an in vitro xylem
vessel element formation system (Kubo et al., 2005)
and to be expressed in phloem-cambium tissues sep-
arated from xylem and nonvascular peripheral tissues
from root-hypocotyl (Zhao et al., 2005).

Assuming that the RTM proteins may form a multi-
subunit complex, this complex could interact with the
viral particles or with a viral ribonucleoprotein complex
involved in virus long-distance movement through the
CP N-terminal end. In this case, the RTM factors could
sequester this long-distance movement-capable form of
the virus, thereby blocking viral movement through the
vascular tissue. In the case of potyvirus isolates able to
overcome the RTM resistance (Decroocq et al., 2009),
mutated positions in the N-terminal end of the CP may
not allow the postulated interaction between the RTM
complex and the CP to occur, leading to an absence of
sequestration and long-distance movement of virus.
However, in our study, no interaction has been detected
so far between the RTM proteins and the CPs of LMV
and PPV, but these negative results do not rule out the
possibility that such interactions could occur in plant
cells, since a number of artifactual effects may also be
responsible for them.

Alternative models are also plausible. The RTM
factors, for example, may interact with cellular factors
or structures necessary for potyvirus long-distance
movement, preventing them from playing their role in
this process. In a third model, the RTM factors may
induce or activate an antiviral response in the phloem
tissue that recognizes and targets the virus movement-
competent form through an interaction with the
N-terminal end of the CP. Finally, we cannot rule out
a catalytic activity of the RTM complex that could, for
instance, degrade the viral long-distance movement-
capable form.

To gain a better understanding of the mechanisms
underlying this original resistance pathway, numerous
questions remain to be answered in the future, such as
the tissue and the subcellular localization of the block
in the viral long-distance movement, the existence of
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an RTM factor-containing multiprotein complex in the
phloem and the identity of its other components, if any,
and whether virus particles or nucleoprotein complexes
interact directly or indirectly with the RTM factors or
complexes.

Finally, another intriguing question is whether or
not the RTM resistance is also active in other plant
species. As potyviral CP is not only a determinant
necessary to overcome the RTM resistance but also is
involved in the viral long-distance movement in nu-
merous hosts (Revers et al., 1999a), the possibility exist
that the RTM resistance also might be identified in
other plant species.

MATERIALS AND METHODS
Plant Materials

Arabidopsis (Arabidopsis thaliana) accessions and T-DNA insertion lines
were obtained from the Nottingham Arabidopsis Stock Centre (http://nasc.
nott.ac.uk/) or Gabi-Kat (http://www.gabi-kat.de/). Plants were grown
under greenhouse conditions (16-h daylength, 18°C-25°C) and maintained
in insect-proof cages after inoculation.

The Arabidopsis At3g58350 T-DNA insertion lines in the Col-0 background
(line N517845 [or Salk_017845] and line 801D05 from Gabi-Kat) used in this
study were analyzed to verify the right T-DNA insertion sites: genomic
DNA of each line was extracted from Arabidopsis young leaves using the
NucleoSpin Plant kit (Macherey-Nagel) and used for PCR. For line N517845,
primers designed from the SIGnAL T-DNA Verification Primer Design
program (http://signal.salk.edu/tdnaprimers.2.html) and the T-DNA left
border-specific primer LBal (5'-TGGTTCACGTAGTGGGCCATCG-3') were
used. For line 801D05 (Gabi-Kat), the T-DNA-specific primer 5'-ATATTGAC-
CATCATACTCATTGC-3" was used associated with the At3g58350-specific
primers 5'-TGAAGGAAGGAGTTGAAAGC-3" and 5 -TAGTTTGATTGCA-
GAGGAAGC-3'".

To verify that the expression of the targeted genes is abolished in the
appropriate T-DNA lines, the following steps were performed: total RNAs
were extracted from rosette leaves using the NucleoSpin RNA Plant kit
(Macherey-Nagel), cDNA synthesis was performed using the SuperScript III
reverse transcriptase kit (Invitrogen), and finally, PCR was carried out
to amplify the relevant cDNA using the RTM3 gene-specific oligonucleotides
5'-ACACCAAGTAAAACCAAACTCC-3" and 5'-TAGTTTGATTGCAGAG-
GAAGC-3'. cDNA from wild-type Col-0 plants was used as a positive control.
The RTMI gene-specific oligonucleotides 5'-AACTATCCGCATGAGTA-
CATAAC-3' and 5'-ATCAGCAGAATAGAGTCGTATACAA-3' were also
used to amplify RTM1 ¢cDNA as a positive control for the cDNA synthesis
from the KO lines. Genomic DNA was used as a control to show that total
RNA extracts were DNA free.

Virus Inoculation and Detection

LMV-AF199 (Krause-Sakate et al., 2002) and TEV-GUS (Dolja et al., 1992)
were used for the inoculation experiments. Inoculation of Arabidopsis plants
with both viruses was performed as described by Revers et al. (2003) and
Mahajan et al. (1998). ELISA as described by Revers et al. (1997) and RT-PCR
using the NIb/P4 primer pair as described by Revers et al. (1999b) were used
to detect LMV. GUS activity assays used to detect TEV in inoculated leaves
and inflorescence tissues were performed as described by Mahajan et al.
(1998).

rtm3-1 Mapping

A set of seven markers polymorphic between Col-0 and Ws-2 was
generated between the Fus6 and Bgll markers to identify recombina-
tion events: four simple sequence repeat markers (T8H10.1, T10K17.1,
F14P22.1, F251.23.1), one single-strand conformation polymorphism marker
(F9D24.40), and two cleaved amplified polymorphic sequence-single-strand
conformation polymorphism markers (F14P22.16, F9D24.34; Supplemental
Table S1).
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PCR amplifications of Col-0 or the rtm3-1 line genomic DNA were
performed in 50-uL reactions containing 0.5 units of DyNazyme EXT DNA
Polymerase (Finnzymes) and 1 um of specific primers. Twenty-nucleotide-
long primers designed in the 5’ and 3’ untranslated regions of each of the
genes in the RTM3-containing interval were used to amplify and sequence the
complete coding regions of these genes. The cycling conditions were 35 cycles
at 92°C for 30 s, 52°C for 30 s, and 72°C for 2 min after an initial denaturation at
95°C for 3 min using an iCycler thermal cycler (Bio-Rad Laboratories).
Automated DNA sequencing of PCR products (two independent PCR prod-
ucts per gene) was performed at Cogenics.

Sequence Analysis

The amino acid sequences were aligned using ClustalW (Thompson et al.,
1994), which generates and uses a distance dendrogram (Saitou and Nei, 1987)
to construct multiple sequence alignments. Secondary structure predictions
were produced using DSC (King and Sternberg, 1996), MLRC (for Multivar-
iate Linear Regression Combination; Guermeur et al., 1999), PHD (for profile
network method; Rost and Sander, 1993), and Predator (Frishman and Argos,
1996) from NPS@ (Combet et al., 2000; http:/ /npsa-pbil.ibcp.fr/cgi-bin/npsa_
automat.pl?page=/NPSA /npsa_server.html).

Yeast Two-Hybrid Experiments

Yeast two-hybrid experiments were carried out with the Matchmaker two-
hybrid system (Clontech Laboratories). cDNA synthesis was performed as
described above. Appropriate PCR was carried out to amplify each RTM
cDNA as well as the CPs from LMV-AF199 (Krause-Sakate et al., 2002), LMV-
AFVARTI (Decroocq et al., 2009), PPV-R (Riechmann et al., 1990), and PPV-PS
(Séenz et al., 2001) using gene-specific oligonucleotides containing restriction
sites in order to clone PCR products in the two-hybrid pGBKT7 and pGADT?7
vectors. In the case of RTM2, which contains a transmembrane domain usually
considered not suitable for two-hybrid experiments, a truncated cDNA
excluding the 3’ region corresponding to the transmembrane domain was
cloned instead of the full-length sequence. The recombinant plasmids were
used to transform yeast AHI109 cells using sequential transformation or
simultaneous cotransformation protocols according to the instruction manual.
The production of the different proteins in yeast was verified by western
immunoblotting using anti-hemagglutinin and anti-c-Myc antibodies. Trans-
formants were plated on SD/Leu-Trp medium and, after 3 d, transferred on
SD/Leu-Trp-His and SD/Leu-Trp-His-Ade media. Interactions were con-
firmed in at least three independent experiments.

BiFC Experiments

RTM1 and RTM3 cDNAs were amplified and cloned using Gateway
technology (Invitrogen) in BiFC vectors (a gift of Dr. Tsuyoshi Nakagawa,
Shimane University) that were constructed from pUGW2 and pUGWO vectors
(Nakagawa et al., 2007). Appropriate combinations of recombinant BiFC
vectors were cobombarded using 1.6-um gold particles and the biolistic
particle delivery system (Bio-Rad PDS-1000/He; Bio-Rad Laboratories) into
onion (Allium cepa) epidermal cell layers. After incubation at 25°C for 18 h in
darkness, the epidermal cell layers were viewed with a Leica TCS SP2 confocal
microscope fitted with a 20X or a 40X water-immersion objective. For imaging
the expression of YFP constructs, excitation lines of an argon ion laser of 514
nm were used. Image analysis was carried out with Leica LCS and Adobe
Photoshop 6.0. Interactions were confirmed in at least two independent
experiments.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Amino acid sequence alignment of the MATH
domain of RTM3, TRAF1, TRAF2, TRAF3, and TRAF5.

Supplemental Figure S2. CC structure prediction in RTM3.

Supplemental Figure S3. Alignment of RTM3 with homologous pro-
teins sharing more than 50% identity with either the MATH or the CC
domain.

Plant Physiol. Vol. 154, 2010



Supplemental Figure S4. Comparison of the expression patterns of the
RTM genes.

Supplemental Table S1. Molecular markers developed for the fine map-
ping of RTM3.

Supplemental Table S2. Arabidopsis genes encoding MATH domain-
containing protein.
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