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A complete map of the Arabidopsis (Arabidopsis thaliana) proteome is clearly a major goal for the plant research community in
terms of determining the function and regulation of each encoded protein. Developing genome-wide prediction tools such as
for localizing gene products at the subcellular level will substantially advance Arabidopsis gene annotation. To this end, we
performed a comprehensive study in Arabidopsis and created an integrative support vector machine-based localization
predictor called AtSubP (for Arabidopsis subcellular localization predictor) that is based on the combinatorial presence of
diverse protein features, such as its amino acid composition, sequence-order effects, terminal information, Position-Specific
Scoring Matrix, and similarity search-based Position-Specific Iterated-Basic Local Alignment Search Tool information. When
used to predict seven subcellular compartments through a 5-fold cross-validation test, our hybrid-based best classifier
achieved an overall sensitivity of 91% with high-confidence precision and Matthews correlation coefficient values of 90.9% and
0.89, respectively. Benchmarking AtSubP on two independent data sets, one from Swiss-Prot and another containing green
fluorescent protein- and mass spectrometry-determined proteins, showed a significant improvement in the prediction accuracy
of species-specific AtSubP over some widely used “general” tools such as TargetP, LOCtree, PA-SUB, MultiLoc, WoLF PSORT,
Plant-PLoc, and our newly created All-Plant method. Cross-comparison of AtSubP on six nontrained eukaryotic organisms
(rice [Oryza sativa], soybean [Glycine max], human [Homo sapiens], yeast [Saccharomyces cerevisiae], fruit fly [Drosophila
melanogaster], and worm [Caenorhabditis elegans]) revealed inferior predictions. AtSubP significantly outperformed all the
prediction tools being currently used for Arabidopsis proteome annotation and, therefore, may serve as a better complement
for the plant research community. A supplemental Web site that hosts all the training/testing data sets and whole proteome
predictions is available at http://bioinfo3.noble.org/AtSubP/.

Subcellular proteomics has gained tremendous at-
tention of late, owing to the role played by organelles
in carrying out defined cellular processes. Several
experimental efforts have been made to catalog the
complete subcellular proteomes of various organisms
(Michaud and Snyder, 2002; Huh et al., 2003; Taylor
et al., 2003; Andersen and Mann, 2006), with the aim
being to improve our understanding of defined cellu-
lar processes at the organellar and cellular levels.
Although such efforts have generated valuable infor-
mation, cataloging all subcellular proteomes is far

from complete, as experimental methods are expen-
sive and more time consuming. Alternatively, compu-
tational prediction systems provide fast, economic
(mostly free), automatic, and reasonably accurate as-
signment of subcellular location to a protein, espe-
cially for high-throughput analysis of large-scale
genome sequences, ultimately giving the right direc-
tion to design cost-effective wet-lab experiments.

The existing bioinformatics localization predictors
in the literature can be broadly grouped into three
categories: (1) amino acid composition based; (2)
N-terminal sorting signals based; and (3) homology
based (e.g. those based on domain or motif co-occur-
rence). These methods have previously been reviewed
in detail (Mott et al., 2002; Scott et al., 2004). However,
in bioinformatics in general, and in subcellular local-
ization prediction in particular, it is often debated
whether predictions should be done over broad sys-
tematic groups such as all eukaryotes or all plants, or
over narrower groups such as dicots, or even at the
single-species level. On the one hand, species-specific
features of sorting signals and amino acid composition
could make the prediction better if trained on the
particular species where it is going to be used; on the
other hand, the smaller data set available for a single
species could make the single-species predictor less
accurate. How to strike the balance between these two
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concerns is an important question, which has received
far too little attention until now. In this study, we have
investigated this important question by conducting a
systematic species-specific case study on predicting
subcellular localization in Arabidopsis (Arabidopsis
thaliana). Although some recent reviews/advances
in the prediction of protein-targeting signals have
stressed the need for “species-specific” prediction
tools (Schneider and Fechner, 2004; Chou and Shen,
2007a), very few have been developed/reported in the
literature. The PSLT method (Scott et al., 2004), a
Bayesian framework that uses a combination of Inter-
Pro motifs, signaling peptides, and transmembrane
domains, was developed for predicting genome-wide
subcellular localization of human proteins. Two
others, HSLpred (Garg et al., 2005) and Hum-PLoc
(Chou and Shen, 2006), were also developed specifi-
cally for human proteins; another species-specific
system, TBpred, was developed for Mycobacterium
tuberculosis (Rashid et al., 2007). However, none of
these methods have rigorously tested whether their
species-specific methods were actually better than the
“general” ones.
In plants, some widely used prediction tools are

TargetP (Emanuelsson et al., 2000), LOCtree (Nair
and Rost, 2005), PA-SUB (Lu et al., 2004), MultiLoc
(Höglund et al., 2006), WoLF PSORT (updated version
of PSORT II; Horton et al., 2007), and Plant-PLoc (Chou
and Shen, 2007b), all having good accuracy (greater
than 70%). A recent computational effort was made in
developing a plant species-specific prediction system,
RSLpred, for genome-wide subcellular localization
annotations of rice (Oryza sativa) proteins (Kaundal
and Raghava, 2009). However, although Arabidopsis
was the first model plant that was completely se-
quenced back in the year 2000, there is still no efficient
prediction method available for accurately annotating
its proteome at the subcellular level. To date, we only
know the subcellular localization of about 6,000 pro-
teins that are experimentally proven (e.g. using GFP
fusions, mass spectrometry [MS], or other approaches)
out of the total 27,379 protein-coding genes as pre-
dicted by The Arabidopsis Information Resource
(TAIR) release 9 (www.arabidopsis.org). To narrow
this huge gap between the large number of predicted
genes in the Arabidopsis genome and the limited
experimental characterization of their corresponding
proteins, a fully automatic and reliable prediction
system for complete subcellular annotation of the
Arabidopsis proteome would be very useful.
This article presents AtSubP (for Arabidopsis sub-

cellular localization predictor), an integrative system
that addresses the aforementioned issues and prob-
lems. In this study, we develop this species-specific
predictor and rigorously compare its performance
with some of the widely used general tools, including
the one being currently used by TAIR (Rhee et al.,
2003), and discuss if species-specific predictors are
more suitable for individual proteome-wide annota-
tions. AtSubP uses the combinatorial presence of di-

verse features of a protein sequence, such as its amino
acid composition, residue order-based dipeptide com-
position, N- and C-terminal composition, similarity
search-based Position-Specific Iterated (PSI)-BLAST
information, and the Position-Specific Scoring Matrix
(PSSM), as its evolutionary information in a statisti-
cally coherent manner. Under five major classification
approaches, we devised 15 different possible tech-
niques to develop 105 different classifiers for each of
the seven subcellular compartments under study
(chloroplast, cytoplasm, Golgi apparatus, mitochon-
drion, extracellular, nucleus, and plasma membrane).
The performance of these models was systematically
evaluated based on a 5-fold cross-validation test and
two diverse independent tests: one from Swiss-Prot
and the other containing MS/GFP-proven sequences
as an experimental test data set from the SUBcellular
location database for Arabidopsis (SUBA; http://
suba.plantenergy.uwa.edu.au/) and the eukaryotic
Subcellular Localization DataBase (eSLDB; http://
gpcr.biocomp.unibo.it/esldb/). Our novel approach
of combining some diverse protein features into a
smart hybrid technique led to the best classifier that
achieved an outstanding accuracy level of 91%, with a
high-confidence precision and Matthews correlation
coefficient (MCC) of 90.9% and 0.89, respectively. The
similarity search-based PSI-BLAST module alone per-
formed moderately, achieving an overall accuracy of
78%, suggesting the advantages of machine learning-
based classifiers.

To expand on the application and data-mining as-
pects of the method, we cross-matched the AtSubP’s
predictions with the available Swiss-Prot and TAIR
annotations as well as compared its performance with
some of the widely used general tools on both inde-
pendent test sets. To explore the species-specific ef-
fects, a new All-Plant classifier was developed from a
mixture of plant proteins using the same location
definitions and encoding schemes as in AtSubP, and
their performances were compared in an independent
testing. As another benchmark, the performance of an
Arabidopsis-specific classifier was cross-checked on
six other eukaryotic organisms (rice [Oryza sativa],
soybean [Glycine max], human [Homo sapiens], yeast
[Saccharomyces cerevisiae], fruit fly [Drosophila mela-
nogaster], and worm [Caenorhabditis elegans]). The basic
purpose of all these diverse tests was to explore the
advantages of developing a species-specific predictor
(s), if any. To further test this hypothesis, we also
analyzed the variation in amino acid composition
across various eukaryotic organisms and compared
with Arabidopsis, both at the sequence level and in the
signal peptide-containing regions.

Finally, AtSubP was used to annotate all 27,379
Arabidopsis proteins contained in TAIR release 9;
among them, 21,649 (79.1%) proteins were predicated
with their localization information, 7,982 (29.2%) se-
quences being predicted with high confidence. A user-
friendly Web server, available at http://bioinfo3.noble.
org/AtSubP/, was also developed to host all the
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training/testing data sets, whole proteome annota-
tions, and options for annotating the query sequences
using five diverse prediction modules based on user
selection of protein feature(s).

RESULTS

The prediction accuracy was assessed by two dis-
tinct approaches: a 5-fold cross-validation test and
the independent data set tests. In order to achieve
maximum accuracy, a total of 105 different clas-
sifiers corresponding to seven subcellular localizations
from 15 different techniques (15 3 7 = 105) were
attempted under five broad alternative encoding
schemes followed (described in detail in “Materials
and Methods”). In this article, we have presented and
discussed only the best classifier results; individual
results tables of all other classifiers and their support-
ing material can be found in the Supplemental Data.
However, the performance comparison of overall sen-
sitivities achieved by these 15 diverse techniques
constructed on the basis of different features of a
protein sequence is presented in Figure 1.

Statistical Tests of the Best Classifier

In the 5-fold cross-validation test, of all the diverse
approaches followed to attain maximum performance,
the best overall sensitivity was achieved from a
hybrid-based technique (H-IX) combining the simple
amino acid composition (AA), PSSM-based evolution-
ary information, and terminal-based N-Center-C com-
position with the binary output of PSI-BLAST (Table I).
To decide on the statistical significance of one classifier
over the other, we systematically calculated the P
values at the 0.05 level of significance between every
two classifiers based on their overall sensitivities
achieved in a 5-fold cross-validation test. The P values
as presented in Supplemental Table S1 reveal that the
H-IX combination, which achieved the highest accu-
racy, was significant over all the modules developed
except for the H-VII combination. This means that the
overall sensitivity achieved by H-VII was statistically
at par with the overall sensitivity achieved by H-IX.
However, we noted that H-IX revealed higher predic-
tion accuracy by using less dimensional vector (488 D)
as compared with the 508-D vector length in H-VII.
Moreover, within the same 488-D input vectors, H-IX

Figure 1. Performance comparison of overall sensitivities achieved by PSI-BLAST and various SVM modules constructed on the
basis of different features of a protein sequence. For detailed performance of each classifier, see individual tables in Supplemental
Data.
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showed significant improvement over H-VIII when
using PSSM-based information in H-IX instead of
dipeptide composition as used in H-VIII (Supplemen-
tal Table S1). Therefore, we considered H-IX as the best
classifier and used it in our further analysis as dis-
cussed below.
This classifier achieved an overall prediction accu-

racy (sensitivity) of 91% with a high-confidence MCC
of 0.89. Sensitivity and specificity are two competing
but nonexclusive measures of quality useful for testing
the performance of classification methods. The MCC
provides a balanced measure between sensitivity
and specificity for each class. An ideal classification
method should have both sensitivity and specificity
values close to 100%. Referring to Table I, our speci-
ficity rates were also almost near 100%. Even at the
highest sensitivity level, the specificity rates were still
above 97.2%. In other words, the worst case false-
positive rate expected for any location would not be
greater than 2.8%. This classifier also showed a high-
confidence precision of more than 90%, also called as
the positive predictive value, and a very low error rate
(3.0%), which indicated a highly reliable and accurate
classifier. The individual statistics obtained with this
best classifier for each of the seven subcellular local-
izations (Table I) indicated that “nucleus” and “se-
creted” proteins achieved the highest prediction
accuracies of more than 96% (i.e. these sequences
might have some unique nuclear localization signals
and signal peptides, respectively, as compared with
the other proteins in the data set), and that is why they
were better identifiable through the machine-learned
classifiers. However, cytoplasm and mitochondria
were comparatively the least performing categories
among all, achieving low sensitivities (75.9% for cyto-
plasm and 84.1% for mitochondria). Mitochondrial
proteins are the most difficult to predict, as also
proven in some of the earlier studies (Peng and
Rajapakse, 2005; Sarda et al., 2005). On the other
hand, the low performance of cytoplasm as compared
with other categories was probably because it is the
default location for protein synthesis as well as the hub
of cellular core metabolism; therefore, it is likely to
have the most “shared” functional domains, thus

negatively affecting the prediction performance. Indi-
vidual tables showing the results of other classifiers
developed in this study are provided in Supplemental
Tables S7a to S20a.

Benchmarking on Independent Data Sets and
Comparison with Other Prediction Programs

Independent testing is the better approach to test the
accuracy of a classifier, as the sequences used in these
data sets are never seen by the system during the
training process. We created two independent data
sets, one from the Swiss-Prot database and the other
containing experimentally annotated sequences from
SUBA/eSLDB databases (for details, see “Materials
and Methods”). As shown in Table II, the overall
prediction accuracy of AtSubP on independent testing
set I was about 85.2% (i.e. 304 protein sequences were
correctly predicted out of the total 357 sequences in
this set). Similarly, 64 sequences were correctly pre-
dicted by AtSubP out of the total 84 protein sequences
in the experimentally proven independent data set II,
thereby achieving an overall accuracy of 76.2% (Table
III).

We further evaluated the performance of our spe-
cies-specific approach (i.e. AtSubP) in comparison
with some widely used general methods, as most of
the research community relies on these tools for their
subcellular annotations. For example, TAIR is cur-
rently using the TargetP system (Emanuelsson et al.,
2000) for annotating the complete subcellular pro-
teome of Arabidopsis (ftp://ftp.arabidopsis.org/home/
tair/Proteins/Properties/TargetP_analysis.tair9). We
compared not only TargetP but some other tools,
such as LOCtree (Nair and Rost, 2005), PA-SUB (Lu
et al., 2004), MultiLoc (Höglund et al., 2006), WoLF
PSORT (Horton et al., 2007), and Plant-PLoc (Chou
and Shen, 2007b), all of which originally reported good
accuracy. However, a number of previous researchers
(Emanuelsson, 2002; Heazlewood et al., 2004, 2005)
found only 40% to 50% accuracy of the existing sys-
tems in their experimental data sets when testing the
available tools for Arabidopsis annotation. They all
had recommended developing new prediction sys-

Table I. Performance of the best classifier of AtSubP based on different statistical measures of quality

Best classifier is based on the AA+PSSM+N-Center-C+PSI-BLAST hybrid combination and best results
using the RBF kernel (g = 3, C = 2, j = 2).

Subcellular

Location

No. of

Sequences
Sensitivity Precision Specificity MCC Error Rate

% % % %

Chloroplast 601 85.9 88.4 97.4 0.84 4.8
Cytoplasm 220 75.9 81.5 98.7 0.77 2.8
Golgi apparatus 106 86.8 82.9 99.4 0.84 1.0
Mitochondria 391 84.1 86.8 98.2 0.83 3.5
Extracellular 452 97.6 95.0 99.2 0.96 1.1
Nucleus 1,197 96.7 95.3 97.2 0.94 3.0
Plasma membrane 247 89.1 85.9 98.8 0.86 2.0
Overall 3,214 91.0 90.9 97.9 0.89 3.0
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tems in the future, especially for the target species, if
enough training data are available. We also tested the
performance of these prediction tools with our Arabi-
dopsis-specific independent sets (I and II); the results
are shown in Tables II and III. In both independent test
sets, the best overall performance was achieved by
TargetP (70.6% on set I and 48.3% on set II) followed by
LOCtree (60.8% on set I and 46.7% on set II) among the
compared tools. Although these accuracies were quite
lower as compared with the performance of our
AtSubP method (85.2% on set I and 76.2% on set II),
TargetP still continues to perform well in spite of its
being one of the oldest methods, followed by LOCtree,
which provides more localization coverage as com-
pared with TargetP. On the other hand, some of the
latest developed tools, like WoLF PSORT and Plant-
PLoc, performed badly over both of these independent
sets. For example, WoLF PSORT correctly predicted
with an overall accuracy of only 55.7% and 41.7% on
sets I and II, respectively. Similarly, the recently de-
veloped Plant-PLoc also showed a low overall predic-
tion accuracy (i.e. 40.6% on set I and 33.7% on set II).
PA-SUB, which originally reported high accuracy, also
showed average (59.4% on set I) to below average
(41.7% on set II) overall accuracy in our Arabidopsis-
specific independent test sets. The individual perfor-
mance of each localization class in these prediction

servers is given in Table II for set I and Table III for
set II.

In the experimentally annotated test sequences (set
II), we observed a substantially improved perfor-
mance of AtSubP (greater than 76% accuracy) over
the general methods, which performed poorly (all less
than 50% accuracy). Even TargetP showed inferior
results on this test set (only 48.3% accuracy) as com-
pared with its performance on test set I (70.6% overall
accuracy). Second, all these general methods revealed
the same trend of performance on both the indepen-
dent data sets (i.e. TargetP showed the highest accu-
racy, followed by LOCtree, PA-SUB, MultiLoc, WoLF
PSORT, and Plant-PLoc). It is worth mentioning here
that TargetP still continues to predict with fairly good
accuracy. Probably, that is why this tool is being used
widely by the plant research community (e.g. TAIR
uses it for annotating the Arabidopsis proteome).
However, the accuracy of our method was signifi-
cantly higher than TargetP on both these independent
data sets (about 15% on test set I and 28% on exper-
imentally annotated test set II). Another advantage of
our system is that it provides subcellular predictions
for seven classes as compared with only three (chlo-
roplast, mitochondria, and extracellular) by TargetP.
Therefore, keeping in view these two major advan-
tages, we believe that AtSubP will act as a useful tool

Table II. Performance of AtSubP in comparison with other methods on independent data set I of Arabidopsis proteins from Swiss-Prot

Subcellular

Location

No. of

Sequences

Our Method

Percentage

Accuracy

TargetP

Percentage

Accuracy

LOCtree

Percentage

Accuracy

PA-SUB

Percentage

Accuracy

MultiLoc

Percentage

Accuracy

Wolf PSORT

Percentage

Accuracy

Plant-PLoc

Percentage

Accuracy

Chloroplast 67 76.1 (51)a 70.2 (47) 47.8 (32) 53.7 (36) 52.2 (35) 68.7 (46) 37.3 (25)
Cytoplasm 24 79.2 (19) –b 58.3 (14) 70.8 (17) 58.3 (14) 70.8 (17) 41.7 (10)
Golgi apparatus 12 58.3 (7) –b 00.0 (0) 08.3 (1) 16.7 (2) 25.0 (3) –b

Mitochondria 43 65.1 (28) 53.5 (23) 41.9 (18) 48.8 (21) 44.2 (19) 27.9 (12) 11.6 (5)
Extracellular 50 96.0 (48) 86.0 (43) 70.0 (35) 70.0 (35) 64.0 (32) 16.0 (8) 30.0 (15)
Nucleus 133 99.3 (132) –b 75.9 (101) 74.4 (99) 73.7 (98) 79.0 (105) 56.4 (75)
Plasma membrane 28 67.9 (19) –b –b 10.7 (3) 17.9 (5) 28.6 (8) 35.7 (10)
Overall accuracy 357 85.2 (304/357) 70.3 (113/160) 60.8 (200/329) 59.4 (212/357) 57.4 (205/357) 55.7 (199/357) 40.6 (140/345)

aValues in parentheses represent the number of correctly predicted sequences. bPrediction not available.

Table III. Performance of AtSubP in comparison with other methods on an experimentally proved independent data set II of Arabidopsis
proteins from SUBA/eSLDB

Subcellular

Location

No. of

Sequences

Our Method

Percentage

Accuracy

TargetP

Percentage

Accuracy

LOCtree

Percentage

Accuracy

PA-SUB

Percentage

Accuracy

MultiLoc

Percentage

Accuracy

Wolf PSORT

Percentage

Accuracy

Plant-PLoc

Percentage

Accuracy

Chloroplast 20 70.0 (14)a 50.0 (10) 60.0 (12) 30.0 (6) 45.0 (9) 45.0 (9) 65.0 (13)
Cytoplasm 1 100.0 (1) –b 00.0 (0) 100.0 (1) 00.0 (0) 100.0 (1) 00.0 (0)
Golgi apparatus 1 100.0 (1) –b 00.0 (0) 00.0 (0) 00.0 (0) 00.0 (0) –b

Mitochondria 8 62.5 (5) 37.5 (3) 25.0 (2) 37.5 (3) 37.5 (3) 25.0 (2) 00.0 (0)
Extracellular 1 100.0 (1) 100.0 (1) 100.0 (1) 00.0 (0) 00.0 (0) 00.0 (0) 00.0 (0)
Nucleus 44 81.8 (36) –b 45.5 (20) 50.0 (22) 54.6 (24) 45.5 (20) 27.3 (12)
Plasma membrane 9 66.7 (6) –b –b 33.3 (3) 22.2 (2) 33.3 (3) 33.3 (3)
Overall accuracy 84 76.2 (64/84) 48.3 (14/29) 46.7 (35/75) 41.7 (35/84) 45.2 (38/84) 41.7 (35/84) 33.7 (28/83)

aValues in parentheses represent the number of correctly predicted sequences. bPrediction not available.
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for better annotating the whole subcellular proteome
of Arabidopsis.

Comparison with the Corresponding All-Plant Method

As each of the general methods mentioned above
have been developed using different training data sets
and following diverse classification techniques, the
above comparison may not be fair enough to prove the
advantages of a species-specific predictor(s). Second,
one would question whether the inclusion of non-
Arabidopsis proteins in the original training set would
make our genome-specific method perform better or
worse on some independent Arabidopsis proteins. To
confidently answer these questions, we trained a
corresponding method (using the same encoding
method and location definitions as used in original
training/testing) on a data set derived from all the
plant species and then compared the performance of
two methods (AtSubP versus All-Plant) on the Arabi-
dopsis-specific independent data set. For this, again,
a 488-D hybrid vector (AA+PSSM+N-Center-C+PSI-
BLAST) was generated to develop a new support
vector machine (SVM)-based hybrid classifier from the
newly created All-Plant data set containing 6,183
sequences, also reduced to the 30% identity level (for
details, see “Materials and Methods”). Please note that
for the All-Plant method, the entire feature combina-
tions were again explored as done in the Arabidopsis-
specific method and all 15 classifiers were developed
accordingly (see individual results tables in Supple-
mental Tables S7b–S20b). We also found the same
hybrid combination (AA+PSSM+N-Center-C+PSI-
BLAST) as the best classifier for the All-Plant method
(Supplemental Table S5).
Therefore, the comparison of AtSubP’s best classifier

with its corresponding All-Plant module on the Arab-
idopsis-specific independent test set showed a signif-
icantly increased performance by about 21%. As
shown in Table IV, AtSubP correctly predicted about
304 proteins out of the total 357 in test set I with an
overall accuracy of 85.2%. However, the same All-
Plant classifier achieved an overall accuracy of just

64.2% (predicted 229 proteins correctly out of 357).
These results were quite surprising although en-
couraging to us, as they clearly pointed toward the
advantages of a species-specific predictor(s), because
the All-Plant data set was quite large (6,183 sequences)
as compared with the AtSubP training data set (3,214
sequences); hence, more sequences were available
under each localization class for training the classifier.
Therefore, ideally, the All-Plant method should have
performed much better than AtSubP on the indepen-
dent testing data set. However, we found the oppo-
site result. Moreover, we followed the same criteria
(location definition, sequence cutoff level, encoding
scheme, training process, etc.) for developing these
two methods. This strongly demonstrates that species-
specific prediction systems are far better than the
general ones, especially in cases where an individual
proteome-wide annotation is concerned. Biologically,
this suggested some significant differences in the
sorting signals and mechanisms between species,
which enabled a higher performance of a prediction
method designed for a specific organism (Arabidopsis
in this case). Therefore, it would be very interesting to
experimentally identify such unique species-specific
features/sorting signals in the future that are respon-
sible for subcellular localization in the cell, particularly
across some closely related species. This would pro-
vide new insights to our current understanding of
genome analysis based on evolutionary reconstruc-
tion, comparative genomics, or phylogenomics, to
name a few.

Performance on Other Organisms

As another benchmark, we cross-checked the per-
formance of Arabidopsis-specific classifiers on six
other eukaryotic organisms (rice, soybean, human,
yeast, fruit fly, and worm). If there are any species-
specific features of protein sorting in Arabidopsis, the
performance on other organisms should be slightly
lower or worse. For this, we ran the Arabidopsis-
trained AtSubP’s best classifier on each of the more
than 30% identity reduced data sets of these six

Table IV. Performance comparison of species-specific AtSubP and the newly developed All-Plant
method on independent data set I (from Swiss-Prot) of Arabidopsis proteins

Accuracy was determined using the best hybrid-based SVM classifier.

Subcellular

Location

No. of

Sequences

Arabidopsis-Specific

Percentage Accuracy

All-Plant

Percentage Accuracy

Chloroplast 67 76.1 (51)a 59.7 (40)
Cytoplasm 24 79.2 (19) 54.2 (13)
Golgi apparatus 12 58.3 (7) 41.7 (5)
Mitochondria 43 65.1 (28) 46.5 (20)
Extracellular 50 96.0 (48) 74.0 (37)
Nucleus 133 99.3 (132) 76.7 (102)
Plasma membrane 28 67.9 (19) 42.9 (12)
Overall accuracy 357 85.2 (304/357) 64.2 (229/357)

aValues in parentheses represent the number of correctly predicted sequences.
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diverse species. The results as presented in Table V
revealed inferior predictions for each localization class
on all the species (overall accuracy less than 51%).
Among these, maximum prediction accuracy of 50.3%
was achieved for soybean proteins, which was obvi-
ous, as it is more closely related to Arabidopsis, being
a dicot, followed by monocot rice (45.2%). For the
other four species (human, yeast, fruit fly, and worm),
which belonged to a different taxonomic group, the
prediction accuracy was reduced drastically, ranging
from only about 32% to 38% (Table V). However, when
run on Arabidopsis proteins, the same hybrid classifier
had achieved more than 90% overall sensitivity during
a 5-fold cross-validation test (Table I), 85.2% overall
prediction accuracy during an independent test on
data set I (Table II), and 76.2% overall prediction
accuracy on independent testing set II (Table III).
This huge gap between the performances indicated
that there might be some species-specific features of
protein sorting in Arabidopsis that led to the better
performance of the Arabidopsis-specific classifier on
its proteins and lower or worse performance on other
proteomes. The above test again suggests that the
general prediction systems trained on a mixture of
eukaryotic proteins are not suitable for making pre-
dictions to a particular organism’s annotation.

Why Do Prediction Performances Differ
across Organisms?

The above two tests showed that a species-specific
predictor works better for its respective proteome
annotation rather than for other organisms. Therefore,
what might be the reason for this variation in predic-
tion performance? To test this, we first analyzed the
variation in amino acid composition across various
eukaryotic organisms as studied above and compared
with the amino acid composition of the Arabidopsis
proteome. The complete proteomes of rice, soybean,
human, yeast, fruit fly, and worm were downloaded

from their respective genome project Web sites, and
the whole amino acid composition was calculated for
each of them.

It was previously known that amino acid composi-
tion differs across species (Nakashima and Nishikawa,
1994; Lobry, 1997; Andrade et al., 1998; Tekaia et al.,
2002; Bogatyreva et al., 2006; Tekaia and Yeramian,
2006). In our analysis, we also found a significant
variation in the composition of a few amino acids
among the compared organisms (Supplemental Fig.
S1). For example, all the nonplant species (human,
yeast, fruit fly, and worm) were rich in Gln and Thr,
both polar residues, whereas nonpolar residues such
as Val and Trp were comparatively found in more
abundance in plants (Arabidopsis, rice, and soybean).
Even within the plant group, some polar amino acids
(Glu, Lys, Ser, Thr) were more prevalent in Arabidop-
sis as compared with rice and soybean. Similarly, rice
was shown to be significantly rich in some nonpolar
residues (Ala, Gly, Pro, Trp) and one charged polar
residue (Arg) but much lower in other polar amino
acids, such as Asn, Ser, and Tyr (pairwise differences
were statistically significant at the 5% confidence level
using the independent samples t test). This suggests
that the differences in prediction performance of our
above benchmark tests may be correlated with this
variation in amino acid composition across organisms;
thus, it seemed more reasonable to develop species-
specific predictors for achieving better accuracy on
that particular proteome.

However, to work out any species-specific effects,
we tested whether the protein amino acid composition
also differed significantly within the same localization
class. Accordingly, we calculated the average amino
acid compositions for some of the subcellular locali-
zations across these organisms, in some cases (e.g.
chloroplast and mitochondria) for the signal peptide-
containing regions. For example, the amino acid com-
position of first 30 residues at the N-terminal region of
“chloroplast”-localized proteins (potentially the chlo-

Table V. Performance of the best Arabidopsis-specific classifier on other eukaryotic organisms

Corr. Pred. (Avail.), Correctly predicted (available); % Acc., percentage accuracy; –, not applicable.

Subcellular

Location

Rice Soybean Human Yeast Fruit Fly Worm

Corr. Pred.

(Avail.)a
%

Acc.

Corr. Pred.

(Avail.)

%

Acc.

Corr. Pred.

(Avail.)

%

Acc.

Corr. Pred.

(Avail.)

%

Acc.

Corr. Pred.

(Avail.)

%

Acc.

Corr. Pred.

(Avail.)

%

Acc.

Chloroplast 53 (108) 49.1 55 (105) 52.4 – – – – – – – –
Cytoplasm 22 (66) 33.3 7 (17) 41.2 205 (974) 21.1 176 (521) 33.8 59 (199) 29.7 50 (159) 31.5
Golgi

apparatus
19 (39) 48.7 0 (0) 00.0 100 (289) 34.6 35 (103) 34.0 25 (56) 44.6 21 (44) 47.7

Mitochondria 8 (28) 28.6 4 (11) 36.4 190 (674) 28.2 123 (585) 21.0 40 (168) 23.8 45 (156) 28.9
Extracellular 23 (100) 23.0 1 (2) 50.0 303 (1,299) 23.3 5 (19) 26.3 34 (184) 18.5 29 (147) 19.7
Nucleus 143 (238) 60.1 8 (13) 61.5 1,377 (2,839) 48.5 500 (948) 52.7 314 (587) 53.5 247 (469) 52.7
Cell

membrane
7 (30) 23.3 0 (1) 00.0 138 (1,150) 12.0 17 (136) 12.5 19 (221) 8.6 9 (80) 11.3

Overall
accuracy

275 (609) 45.2 75 (149) 50.3 2,313 (7,225) 32.0 856 (2312) 37.0 491 (1,415) 34.7 401 (1,055) 38.0

aEach data set reduced to a 30% identity cutoff.
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roplast transit peptide [cTP]-containing region) in
Arabidopsis was compared with its corresponding
region of chloroplast-localized proteins in rice and
soybean.

Species-Specific Signal Sequences

As shown in Figure 2 (pie charts), the cTP-contain-
ing region in chloroplast-localized proteins of Arabi-
dopsis were found to be significantly rich in polar

residues (34.2%) as compared with the cTP regions
of rice (23.0%) and soybean (26.6%) and very low in
nonpolar residues (50.4%) as compared with rice
(60.5%) and soybean (53.8%). In particular, Arabidop-
sis cTPs were significantly rich in Ser and sulfur-
containing Cys residues but low in Glu, Arg, Trp, Val,
and Gly (Fig. 2, bar chart). On the other hand, rice cTPs
were significantly rich in Ala, Gly, Leu, and Pro (all
nonpolar residues), and soybean cTPs were rich in Ile,
Lys, Asp, and Tyr as compared with the Arabidopsis

Figure 2. Average amino acid composition of the first 30 residues at the N-terminal region (potentially the cTP-containing
region) of chloroplast-localized proteins in Arabidopsis compared with other plant cTPs. The pie charts at the top show the same
data except that the amino acid types have been grouped by the electrostatic properties of their side chains. [See online article for
color version of this figure.]
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cTPs. The pairwise differences between these residues,
calculated using Student’s t test, were statistically
significant at the 5% confidence level.

Similarly, the mitochondrial transit peptide (mTP)-
containing regions of “mitochondrion”-localized proteins
in Arabidopsis also showed a statistically significant
variation in the amino acid composition across the
organisms (Supplemental Fig. S3). For example,
among all the compared eukaryotes, the Arabidopsis
mTPs showed the maximum percentage of positive
residues (17.3%) and least negative residues (3.9%);
soybean mTPs were the least abundant in positive
residues (12.2%). In particular, Arabidopsis mTPs
were significantly rich in Ser and Phe as compared
with other eukaryotic mTPs (Supplemental Fig. S2).
Furthermore, if we compare Arabidopsis only within
the plant group, its mTPs were found to be signifi-
cantly rich in some polar residues (Tyr, Ser, Gln), one
positively charged polar residue (Lys), and two non-
polar residues (Phe, Cys), whereas they were very low
in Ala and Gly (both nonpolar residues) and nega-
tively charged Glu, as compared with the rice and
soybean mTPs (pairwise differences between these
residues were statistically significant at the 5% confi-
dence level).

This shows that even within the same localization
class, the signal sequences that target the whole pro-
tein to its respective location differ significantly from
species to species. Similarly, we also found a signifi-
cant variation in the average amino acid compositions
of some other localizations, for example, cytoplasm-
localized (Supplemental Fig. S4) and nucleus-localized
(Supplemental Fig. S5) proteins when compared
across various eukaryotic organisms. The above tests
suggested that the average amino acid composition
varied significantly across the organisms, even within
the same localization class. However, to practically
demonstrate its role in protein targeting, we compared
the performances of amino acid composition-based
classifiers developed from both the Arabidopsis-spe-
cific and All-Plant data sets on independent test set I.
Please note that these test sequences were not present
in the Arabidopsis-specific or the All-Plant training
data sets. The results as presented in Supplemental
Table S4b show that the amino acid-based classifier
trained from Arabidopsis sequences only predicted
more sequences correctly (223 out of 357; i.e. 62.5%
accuracy) as compared with the same classifier devel-
oped from the All-Plant sequences (179 out of 357; i.e.
50.1% overall accuracy). This performance gap ex-
plained the prediction differences related to amino
acid composition differences of Arabidopsis with
other organisms and supports the earlier studies
(Nakashima and Nishikawa, 1994; Cedano et al.,
1997; Lobry, 1997; Andrade et al., 1998; Karlin et al.,
2002; Pe’er et al., 2004) that amino acid composition is
related to its subcellular localization. Thus, it is more
appropriate to develop species-specific prediction sys-
tems rather than to train the classifiers on a mixture of
various eukaryotic sequences.

Reliability Index and ROC Curves

A reliability index (RI) curve is an important part
of any prediction tool, because it puts a measure of
credibility or reliability on the output of the classifier.
Unlike previous studies, we chose to present the RI
curve (and receiver operating characteristic [ROC]
curves as well) based on the classifier’s performance
in independent testing rather than based on a 5-fold
cross-validation test, as it provides a more realistic
picture of the classifier’s performance. To evaluate this,
the RI assignment was first carried out for the overall
best classifier’s performance on independent data set I
according to the difference between the highest and
second highest SVM output scores (the RI curve based
on 5-fold cross-validation results is presented in Sup-
plemental Fig. S6). Ideally, the accuracy and probabil-
ity of correct prediction should increase with the
increase in RI values, which is demonstrated in this
study as well (Fig. 3). The expected prediction accu-
racy with RI equal to a given value and the fraction of
sequences predicted at each greater or equal RI value
were calculated. For example, the expected accuracy
for a sequence with RI = 2 was 89.9%, with 88.5% of
sequences having RI $ 2. In other words, AtSubP was
able to predict about 89% of sequences with an average
prediction accuracy of around 90% at RI $ 2. This
demonstrates that a user can predict a large number of
sequences with significantly higher accuracy for RI $
2. Another calculation from Figure 3 showed that
AtSubP was capable of correctly predicting about
75% of the sequences with an accuracy of around
94% for RI $ 3.

A plot of a ROC curve is another measure that
depicts the relationship between specificity and sensi-
tivity for a single class. To evaluate the classifier
stringently, we further plotted the ROC curves based

Figure 3. Expected prediction accuracy with a RI equal to a given value
for the best classifier (based on the performance on independent test
set I). The fractions of sequences that are predicted with RI$ 1, 2, 3, 4,
or 5 are also given. An RI curve based on a 5-fold cross-validation
test is provided in the Supplemental Figure S6. [See online article for
color version of this figure.]
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on the independent test performance. The ROC curve
for the perfect classifier would result in a straight line
up to the top left corner and then straight to the top
right corner. Figure 4 shows the ROC curve for each of
the seven localizations in AtSubP for our best classi-
fier’s performance on independent data set I (ROC
curves based on 5-fold cross-validation results are
presented in Supplemental Fig. S7). Each point on the
curve was plotted based on different confidence score
thresholds. For all the localizations except mitochon-
dria and plasma membrane, the ROC curves remained
very close to the left side of the chart, primarily
because the majority of classes had very high speci-
ficity at all the thresholds. This is a desirable charac-
teristic of ROC curves. In other words, there is a high
probability of correct prediction by these localization
models, with a very minute chance of negative pre-
diction. However, even for mitochondria and plasma
membrane, the ROC depicted “excellent classifica-
tion” area under the curve (AUC = 0.887) values
(based on rules for interpreting AUC values [Hosmer
and Lemeshow, 2000]). The AUC specifies the proba-
bility that, when we draw one positive and one neg-
ative example at random, the decision function assigns
a higher value to the positive than to the negative
example. The high-confidence AUCs for all other
localizations are also shown in Figure 4.

Arabidopsis Proteome Annotation

While TAIR represents the primary source for the
majority of information concerning Arabidopsis, it
tends to focus mostly on genomic and transcript

data. Although Gene Ontology annotations and de-
scriptor fields can be readily searched at TAIR, all
these data cannot be collectively investigated as de-
fined sets using Boolean queries. Interestingly, they
are still using the TargetP program, which predicts
only three subcellular localizations, for providing
the subcellular annotations on their Web site (ftp://
ftp.arabidopsis.org/home/tair/Proteins/Properties/
TargetP_analysis.tair9) for the whole Arabidopsis pro-
teome, perhaps due to the fact that there is no other
option/tool for better annotation. To support this, we
have provided a few examples from experimentally
proven sequences available at SUBA, where TargetP
provided incorrect or no prediction results whereas
the AtSubP predictions correctly matched with the
corresponding GFP data (Supplemental Table S21).
This information was also uploaded on the AtSubP
Web site under the Appendix tag (http://bioinfo3.
noble.org/AtSubP/appendix.html, Appendix I). Sim-
ilarly, we have provided some evidence (TAIR IDs
numbered 18–23; Supplemental Table S21) from a
wave list published recently (Geldner et al., 2009).
Please note that the current list is not exhaustive, as we
have included only those examples whose sequences
were not used in the original training/testing of the
AtSubP system (i.e. independent examples).

Therefore, as our system achieved far better accuracy
than TargetP and provided more localization coverage
as well, we ran our best classifier on the complete
Arabidopsis proteome from TAIR 9. Table VI represents
the predictions made at various threshold cutoff scores
ranging from 0.0 to 1.0, where the higher the cutoff, the
greater the prediction confidence level.

Figure 4. ROC curves for the best classifier (based on
the performance on independent test set I). A plot of
the ROC curve for each localization is shown. The
ontological labels are as follows: Chloro(plast), Cyto
(plasm), Golgi (apparatus), Mito(chondria), Extracell
(ular), Nucl(eus), and Cel(l) memb(rane). ROC curves
based on a 5-fold cross-validation test are provided in
the Supplemental Figure S7. [See online article for
color version of this figure.]
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At the greater than 0.0 cutoff threshold, about 2,897
sequences were predicted to be localized to chloro-
plast, which constituted about 10.6% of the whole
Arabidopsis proteome. The maximum percentage
of proteins, more than 31% (8,547 proteins), were
predicted toward the nucleus. Similarly, 9.7% (2,650)
cytoplasmic, 1.3% (359) Golgi apparatus, 11.6%
(3,163) mitochondrial, 9.4% (2,572) extracellular, and
about 5.3% (1,461) plasma membrane proteins were
predicted to be present in the Arabidopsis proteome.
In total, all seven localizations under study accounted
for about 79.1% coverage of the Arabidopsis pro-
teome.

However, at the highest confidence level (greater
than 1.0 cutoff threshold), about 29.2% coverage of the
Arabidopsis proteome was predicated with the local-
ization information, which can be further categorized
into 2.2% (607 proteins) as chloroplast, 3.8% (1,046)
cytoplasmic, 0.3% (83) Golgi apparatus, 2.7% (732)
mitochondrial, 3.2% (883) extracellular, 15.1% (4,120)
nucleus, and 1.9% (511) plasma membrane proteins
(Table VI).

In addition, we annotated each of the 27,379
proteins at the greater than 0.0 cutoff threshold
and provided the complete list on our Web server
with individual SVM-predicted scores for each se-
quence along with its final predicted localization. The
above-mentioned high-confidence predictions are
also available separately on AtSubP under the Data-
sets tag.

Predictions Matching Swiss-Prot Annotations

Furthermore, we cross-matched our predictions
(greater than 1.0 cutoff) with the available Swiss-Prot
annotations in each class. For most of the sequences,
no annotation was available in Swiss-Prot; however,
we still matched the available annotations with our
predictions to increase the confidence level (Table VII).
Four localizations (chloroplast, mitochondrion, extra-
cellular, and nucleus) achieved around 96% correct
match accuracy; the Golgi apparatus showed 100%
correct match. The lowest performing module (i.e. for
cytoplasm) also showed more than 91% correct match

with the available Swiss-Prot annotations. Only the
cell membrane category achieved around 74% accu-
racy, because some 29 proteins got confused with the
membrane category, which is separately defined by
Swiss-Prot. It should be noted here that Swiss-Prot
classifies cell membrane and membrane into two dif-
ferent categories as defined in the CC (comments or
notes) fields of the database; therefore, these 29 pro-
teins from our cell membrane predictions showed
matches in their membrane category, although all of
these indicated the presence of transmembrane helices
and so might be actually cell membrane proteins.
However, we still achieved a striking overall match
accuracy of around 93%, which is quite encouraging.

Predictions Matching TAIR Annotations

To further improve the confidence of predictions,
we generated another confusion matrix for our pre-
dictions (greater than 1.0 cutoff) matching with the
available TAIR annotations (Table VIII). Only the ex-
perimentally proven subcellular annotations (codes
are as follows: Inferred [I] from, Direct Assay [DA],
Expression Pattern [EP], Genetic Interaction [GI], Mu-
tant Phenotype [MP], and Physical Interaction [PI] for
experimental evidence] were downloaded from the
latest TAIR release 9. Out of the total 7,982 high-
confidence predictions generated by AtSubP, 7,288 did
not have any annotation information available in
TAIR; however, we still matched the other 694 predic-
tions with the experimentally proven TAIR annota-
tions. As shown in Table VIII, AtSubP achieved an
overall match accuracy of more than 80%, which is
quite encouraging, with nucleus-localized predictions
being the highest (88.5%) followed by chloroplast
(83.7%) and extracellular (82.2%) categories. It is note-
worthy that for about 55 proteins in TAIR, we found
different annotations for the same sequence (e.g. GFP-
based annotations showed cytoplasm localization,
whereas MS-based annotations showed nucleus local-
ization for the same protein). In the case of these
confused annotations, we put them all into the “dual”
category and did not consider them while calculating
the match accuracy. This might be the reason for our

Table VI. Performance of the best classifier of AtSubP on the complete Arabidopsis proteome retrieved from TAIR at various cutoff scores

Data used were a total of 27,379 protein sequences retrieved from TAIR release 9. The higher the cutoff score, the better the prediction confidence
level.

Subcellular Location
Predictions at Threshold

.0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Chloroplast 2,897 2,554 2,263 1,944 1,708 1,478 1,281 1,080 911 773 607
Cytoplasm 2,650 2,496 2,326 2,174 2,042 1,883 1,727 1,557 1,414 1,253 1,046
Golgi apparatus 359 337 312 287 264 250 218 192 164 139 83
Mitochondrion 3,163 2,825 2,518 2,218 1,954 1,718 1,477 1,282 1,119 953 732
Extracellular 2,572 2,383 2,177 1,976 1,767 1,619 1,473 1,333 1,205 1,082 883
Nucleus 8,547 8,053 7,553 7,100 6,643 6,224 5,817 5,428 5,060 4,664 4,120
Cell membrane 1,461 1,425 1,377 1,319 1,244 1,161 1,046 938 830 695 511
Total 21,649 20,073 18,526 17,018 15,622 14,333 13,039 11,810 10,703 9,559 7,982
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predictions achieving lower match accuracy with
TAIR (80.2%) as compared with the Swiss-Prot anno-
tations (92.8%). However, even after this stringent
filtering, AtSubP still achieved more than 80% correct
match with the experimentally proven sequences,
indicating the strength and applicability of the predic-
tion system.
We also included another column representing PSI-

BLAST hit information for each Arabidopsis query
protein. This will provide users with more confidence
in the predictions. The complete list of TAIR identifiers
(in decreasing order of their confidence reliability) of
the top-scoring predicted proteins (greater than 1.0
cutoff) in each class is provided on our Web server
(http://bioinfo3.noble.org/AtSubP/) along with their
corresponding Swiss-Prot/TAIR annotations and the
PSI-BLAST hit information, if available.

DISCUSSION

Subcellular localization is one of the key functional
characteristics of potential gene products such as
proteins, as they must be localized correctly at the
subcellular level to have normal biological function.
In Arabidopsis, significant improvements have been

made during the last few years in high-throughput
tagging of its proteins with fluorescent markers (Tian
et al., 2004; Koroleva et al., 2005; Dunkley et al., 2006;
Li et al., 2006). Besides, several online databases
containing readily accessible localization data are
also available, such as the PPDB (Sun et al., 2008),
especially on specific tissues and purified cellular
compartments such as mitochondria (Heazlewood
et al., 2004), nucleolus (Brown et al., 2005), plastids
(Sun et al., 2008), and other multiple organelles
(Wiwatwattana and Kumar, 2005). In spite of these
technological advances in high-throughput proteo-
mics, both at the level of data analysis software and
mass spectrometry hardware, as reviewed by Pan et al.
(2005), the experimental evidence for subcellular lo-
calization of some 70% of the Arabidopsis proteome is
still not known. Through the development of new
approaches in computer science, coupled with an
increased data set of proteins of known localization
(as available in Arabidopsis), computational tools can
now provide fast and reasonably accurate localization
predictions for many organisms. Many prediction
systems now exceed the accuracy of some high-
throughput laboratory methods for the identification
of protein subcellular localization (Scott et al., 2004;
Rey et al., 2005). This has resulted in subcellular

Table VIII. Confusion matrix for predictions matching with available TAIR annotations for the whole Arabidopsis proteome at the greater than
1.0 score cutoff level

The ontological labels are as follows: Chloro(plast), Cyto(plasm), Memb(rane), Mito(chondria), Extra(cellular), Nucl(eus), Cel(l) memb(rane), Golgi
(apparatus), Cel(l) wal(l), Endo(plasmic reticulum), Vacu(ole), Perox(isome). Dual, Dual-localized sequences; No Annot, no annotation available in
TAIR; % Match ACC, percentage match accuracy calculated as {(No. of sequences correctly matched with TAIR annotation)/(total sequences
predicted by AtSubP in each class [i.e. row sum – No. of sequences with no match found in TAIR; i.e. no annotation])} 3 100.

Subcellular Location Chloro Cyto Golgi Mito Extra Nucl Celmemb Celwal Endo Vacu Perox Memb Dual No Annot Row Sum % Match ACC

Chloro (607) 128 1 0 2 0 1 5 0 0 1 0 3 12 454 607 83.7
Cyto (1,046) 3 95 1 2 0 3 8 0 1 3 2 3 14 911 1,046 70.4
Golgi (83) 0 0 8 0 0 0 0 0 0 0 0 0 2 73 83 80.0
Mito (732) 2 3 1 67 0 1 2 2 0 0 2 1 6 645 732 77.0
Extra (883) 2 1 0 1 83 1 2 1 0 1 0 1 8 782 883 82.2
Nucl (4,120) 1 1 0 1 0 115 1 0 0 0 0 1 10 3,990 4,120 88.5
Celmemb (511) 2 1 0 3 0 2 62 1 0 3 1 0 3 433 511 79.5
Column sum 138 102 10 76 83 123 80 4 1 8 5 9 55 7,288 7,982 Average = 80.2

Table VII. Confusion matrix for predictions matching with Swiss-Prot annotations for the whole Arabidopsis proteome at the greater than 1.0
score cutoff level

The ontological labels are as follows: Chloro(plast), Cyto(plasm), Memb(rane), Mito(chondria), Extra(cellular), Nucl(eus), Cel(l) memb(rane), Golgi
(apparatus), Cel(l) wal(l), Endo(plasmic reticulum), Vacu(ole), Perox(isome). Dual, Dual-localized sequences; No Annot, no annotation available in
Swiss-Prot; % Match ACC, percentage match accuracy calculated as {(No. of sequences correctly matched with Swiss-Prot annotation)/(total
sequences predicted by AtSubP in each class [i.e. row sum – No. of sequences with no match found in Swiss-Prot; i.e. no annotation])} 3 100.

Subcellular Location Chloro Cyto Golgi Mito Extra Nucl Celmemb Celwal Endo Vacu Perox Memb Dual No Annot Row Sum % Match ACC

Chloro (607) 266 4 0 4 0 0 0 0 1 0 0 1 2 329 607 95.7
Cyto (1,046) 2 181 0 0 0 0 0 0 1 0 0 1 13 848 1,046 91.4
Golgi (83) 0 0 43 0 0 0 0 0 0 0 0 0 0 40 83 100.0
Mito (732) 4 0 0 214 0 0 0 0 0 1 1 1 1 510 732 96.4
Extra (883) 1 0 1 0 514 0 0 8 0 2 0 3 8 346 883 95.7
Nucl (4,120) 0 5 0 0 0 1,144 0 0 2 0 0 8 33 2,928 4,120 96.0
Celmemb (511) 1 0 0 0 1 1 121 0 0 4 0 29 6 348 511 74.2
Column sum 274 190 44 218 515 1,145 121 8 4 7 1 43 63 5,349 7,982 Average = 92.8
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localization prediction becoming one of the most im-
portant analyses prior to designing the experimental
work. However, to be able to do this, the prediction
methods need to be very reliable and highly accurate.

As a comprehensive study on the model plant
Arabidopsis, we present here an integrative system,
AtSubP, combining machine learning techniques and
homology-based approaches to demonstrate the ad-
vantages of developing a species-specific localization
predictor(s) over the general ones and how they are
more suitable for high-throughput genome annota-
tions. In order to achieve maximum accuracy, we
attempted various classification techniques extracting
diverse features from a protein sequence. Combining
these features into a smart hybrid technology im-
proved the prediction performance drastically (over-
all accuracy of 91%). AtSubP was rigorously tested
and compared with some of the widely used general
prediction systems using two independent testing
sets, one from Swiss-Prot and the other containing
GFP/MS-based experimentally proven sequences
from the eSLDB/SUBA databases. All the general

tools compared, including TargetP, which is currently
used by TAIR for Arabidopsis annotation, showed
very low performance on both these independent
test sets.

In the past, most of the emphasis has been on
developing general tools with higher accuracy, but we
noted that these tools did not perform well or rather
failed for a specific organism’s proteome-wide annota-
tion, as also reported in earlier studies on Arabidopsis
(Heazlewood et al., 2004, 2005; Kleffmann et al., 2004).
The best way to prove this aspect was to develop a
corresponding method using protein sequences from
different organisms lumped together and then, fol-
lowing the same encoding schemes, compare with a
species-specific method. Therefore, if there are some
differences in the sorting mechanisms between spe-
cies, they would be highlighted in this comparison.
For example, we compared our Arabidopsis-specific
method with a newly created All-Plant method (also
developed using the same location definitions and
encoding schemes as in AtSubP) and found that the
genome-specific system outperformed its corresponding

Figure 5. Overall architecture of methodology followed for developing one similarity-based PSI-BLAST and 14 diverse SVM-
based classifiers using various protein features. [See online article for color version of this figure.]
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method by about 21%, which is a huge gap in per-
formance. This shows that there are some species-
specific sorting patterns or signals in each organism
that lead to the higher accuracy of a genome-specific
predictor.
To test this hypothesis, we first analyzed the varia-

tion in amino acid composition across various eukary-
otic organisms and found a significant difference in
some residue compositions. Various other methods of
multivariate analysis used to study the amino acid
residue composition have also led to the identification
of species-specific compositional patterns (Karlin
et al., 2002). As amino acid usage is already known
to differ between organisms (which we also tested in
this study), this again suggests that methods relying
on amino acid composition should take into account

their species-specific background. Second, some of
the previous workers also reported about the useful-
ness of amino acid composition for the prediction
of subcellular localization (Cedano et al., 1997) and
how it carries a signal, almost entirely due to the
surface residues, that identifies the subcellular loca-
tion (Andrade et al., 1998). We found amino acid
differences not only across the localizations but also
within the same localization class when compared
among different eukaryotes. This suggests that it is
more reasonable to develop a prediction classifier for a
particular species (if enough training data are avail-
able) rather than training the classifier(s) on a mixture
of eukaryotic protein sequences.

However, apart from variation in the targeting sig-
nals, codon usage biases leading to changes in amino
acid frequency might be another possibility for the
higher accuracy of species-specific predictor(s). As it
was reported earlier that the overall bias in synony-
mous codon usage of a genome is species specific
(Campbell and Gowri, 1990; Fennoy and Bailey-Serres,
1993; Sandberg et al., 2003; Liu and Xue, 2005), this
possibility could also be elaborated to make use of
“genome signatures” for the species-specific predic-
tion systems. Therefore, the present bioinformatics
analysis should not be interpreted to reach some
biological conclusion(s), such as if protein targeting
is species specific. The overall objective of this study
was to provide a better prediction system to the plant
research community for genome-wide Arabidopsis
annotation.

Furthermore, it has been shown in the past that not
only amino acid composition but also oligopeptide
frequencies (dipeptides, tripeptides, etc.) reflect inde-
pendent segregation between species, and there are
several identified distinct factors that shape the land-
scape of species-specific proteomic composition (Pe’er
et al., 2004), thereby indicating that all these general
prediction methods might be skipping these species-
specific compositional patterns in their training pro-
cess. This also suggests that as the SVM is based on a
“pattern recognition” technique, the genome-specific
prediction models might be learning more efficiently
from these species-specific patterns, whereas the gen-
eral prediction models might not be capable of recog-
nizing such species-specific patterns and capture/
learn only from the common patterns among the
various organisms’ proteins in the training data sets.

Figure 6. Schematic representation of the algorithm used to convert
L3 20 size PSSM matrix into a 400-D input vector. The PSSM provides
a matrix of dimension L rows and 20 columns for a protein chain of L
amino acid residues, where 20 columns represent the occurrence/
substitution of each type of 20 amino acids. [See online article for color
version of this figure.]

Table IX. PSI-BLAST output as binary variables

Location Encoding Vector

Chloroplast 1 0 0 0 0 0 0 0
Cytoplasm 0 1 0 0 0 0 0 0
Golgi apparatus 0 0 1 0 0 0 0 0
Mitochondria 0 0 0 1 0 0 0 0
Extracellular 0 0 0 0 1 0 0 0
Nucleus 0 0 0 0 0 1 0 0
Plasma membrane 0 0 0 0 0 0 1 0
Unknown 0 0 0 0 0 0 0 1
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AtSubP also addressed the problems of low predic-
tion accuracy for underrepresented compartments.
For example, extracellular proteins had low represen-
tation as compared with the chloroplast and nucleus
categories in our training data set, but they achieved a
significantly highest sensitivity of more than 97%
among all the localizations under study. Similarly,
Golgi apparatus, which had the lowest number of
sequences available for training the classifier, still
achieved around 87% overall sensitivity, which is con-
siderably higher than the overall sensitivities achieved
by the chloroplast, cytoplasm, and mitochondrial cat-
egories, which had comparatively more sequences
available. Conclusively, all the localizations achieved
high values of sensitivity, precision, specificity, and
MCC as well as very low error rates. In addition,
AtSubP outperformed all the existing tools currently
being used for Arabidopsis proteome annotation.

CONCLUSION

We developed a highly accurate prediction system,
AtSubP, for genome-wide subcellular annotations in the
model plant Arabidopsis. A number of computational
prediction methods are available, but all these methods
have limitations in terms of their accuracy and breadth
of coveragewhen species-specific predictions aremade,
as most of them have been developed by training on a
mixture of eukaryotic or prokaryotic proteins. From this
study, we also demonstrate the advantages of develop-
ing species-specific predictors over the general ones
and how they are better suited to their respective
proteome-wide annotations. Thus, AtSubP attempts to
address an important fundamental question regarding
the issue of how well the subcellular localization pre-
dictors perform when grouping all eukaryotes together
versus making predictions for narrower phylogenetic
lineages. This will have impacts on our ability to make
predictions accurately and also indirectly help us gain a
better understanding of the biology of protein subcel-
lular localization assignment.

Based on the above findings, we advocate the active
development of similar species-specific systems in
other organisms, provided there are sufficient training
data, which will help accelerate their respective anno-
tation projects. We believe that AtSubP will contribute
significantly in providing new directions to the devel-
opment of such future predictors. Also, it can bewidely
used by TAIR and other parts of the research commu-
nity for accurate and broader coverage of proteome-
wide subcellular annotations in Arabidopsis.

MATERIALS AND METHODS

Data Sets

In this study, we generated a range of data sets for better training/testing

and wider benchmarking of our developed prediction classifiers. These

include (1) main data, generated from the UniProtKB/Swiss-Prot protein

knowledgebase (release 57.9), for developing the classifiers under 5-fold cross-

validation training/testing; (2) independent test data set I of Arabidopsis

(Arabidopsis thaliana) proteins (sequences not used in the 5-fold training/

testing), generated by keeping aside about 10% of the sequences for validation

from the above main data; (3) independent test data set II (from eSLDB/

SUBA), for another validation on experimentally proved sequences; (4) the

All-Plant data set (from Swiss-Prot) for developing a corresponding All-Plant

method; and (5) data sets from other eukaryotes to cross-check the perfor-

mance of our method on nontrained organisms. Subsequently, for each of the

above data sets, sequences were removed from the pool using CD-HIT

software (Huang et al., 2010), such that no pair of sequences within each group

had more than 30% sequence identity. For better clarity, the detailed step-by-

step procedure for compiling and creating these data sets is discussed in

Supplemental Materials and Methods S1 and presented in Supplemental

Tables S2, S3, S4a, and S6.

Features and Modules

We evaluated our predictions with various alternative classification

methods using a strong machine learning technique, SVM. The SVM ap-

proach, originally introduced by Vapnik and coworkers (Cortes and Vapnik,

1995; Vapnik, 1995) about two decades ago, is based on the statistical and

optimization theory, which has been successfully applied in a number of

classification and regression problems. One big advantage of SVMs is the

sparseness of the solution (i.e. the separating hyperplane solely depends on

the support vectors and not on the complete data set, thereby making it less

prone to overfitting than other classification methods such as the artificial

neural networks; Byvatov and Schneider, 2003). Apart from its efficient

application in subcellular localization prediction (Hua and Sun, 2001; Park

and Kanehisa, 2003; Bhasin and Raghava, 2004; Garg et al., 2005; Nair and

Rost, 2005; Xie et al., 2005), it has also been diversely used in the classification

of microarray data (Brown et al., 2000), protein secondary structure prediction

(Ward et al., 2003), and disease forecasting (Kaundal et al., 2006). In this study,

we used SVM_light (Joachims, 1999), a freely downloadable package of SVM

(http://svmlight.joachims.org/old/svm_light_v4.00.html), to develop vari-

ous classifiers. This software enables the user to define a number of param-

eters besides allowing a choice of built-in kernel functions, including linear,

polynomial, and radial basis function (RBF). In our preliminary tests, using

the RBF kernel showed significantly better performance as compared with the

linear and polynomial kernels (data not shown). Therefore, we used the RBF

kernel in all further analysis and present the results accordingly.

To perform a comprehensive study and achieve maximum accuracy, we

utilized various features of a protein sequence and attempted 15 different

approaches (Fig. 5) under five major classification methods, which are hereby

discussed in brief.

Composition-Based Classifiers

Simple Amino Acid Composition. Amino acid composition is the fraction of

each amino acid in a protein sequence. The fraction of all the natural 20 amino

acids was calculated using the following equation:

PðaiÞ ¼
Nai

+
20

j¼1

Naj

ð1Þ

where P(ai) is the fraction of ai amino acid, Nai
is the total number of ai amino

acid, and the denominator represents the total number of amino acids in a

protein sequence.

Dipeptide Composition. To encapsulate the global information about each

protein sequence utilizing the sequence order effects, the dipeptide compo-

sition was calculated. This representation, which gives a fixed pattern length

of 400 (20 3 20), encompasses the information of the amino acid composition

along with the local order of amino acids. The fraction of each dipeptide was

calculated according to the equation:

PðaiajÞ ¼
Naiaj

+
20

i
0
¼1

+
20

j
0
¼1

Nai
0aj 0

ð2Þ

where P(aiaj) is the fraction of each aiaj dipeptide,Naiaj
is the total number of aiaj

dipeptides, and the denominator represents the total number of all possible

dipeptides.
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Split Amino Acid Composition Technique

Terminal-Based N-Center-C (Three-Part) Composition. Many proteins in the

cell contain important signal peptides at their N- or C-terminal region, which

determine the subcellular location of the protein. It is not a simple task to

directly identify these signal peptides from the sequence. Instead, this module

calculated the amino acid composition separately from the N-terminal region,

the C-terminal region, and the remaining center portion. For each part, a 20-D

vector was extracted using Equation 1, so the combined feature vector of this

module had 60 dimensions. The rationale behind using this type of approach

is the fact that percentage composition of a whole sequence does not give

adequate weight to the compositional bias, which is known to be present in

the protein terminus. Separate SVM modules were developed by altering the

various levels of N- and C-terminal residue length (10, 15, 20, 25, and 30 amino

acids) in order to achieve maximum accuracy. However, residue length = 25

was found to be the best compromise and was used further in the develop-

ment of the final method.

Four-Part Composition. This module assumed that different segments of a

sequence can provide complementary information about the subcellular

localization. It divided the query sequence into several fragments with equal

length (four parts in this case) and calculated the amino acid composition

(using Eq. 1) from the corresponding fragments separately. All the 20-D

vectors from different segments were concatenated to form the final 80-D

feature vector. This type of approach has comparatively shown some good

results in earlier studies (Xie et al., 2005; Guo et al., 2006).

Similarity Search-Based PSI-BLAST Module

PSI-BLAST is a tool that produces a PSSM constructed from a multiple

alignment of the top-scoring BLAST responses to a given query sequence

(Altschul et al., 1997). This scoring matrix produces a profile designed to

identify the key positions of conserved amino acids within a motif. When a

profile is used to search a database, it can often detect subtle relationships

between proteins that are distant structural or functional homologs. These

relationships are often not detected by a BLAST search with a sample

sequence query. Therefore, in this study, we used PSI-BLAST instead of

normal standard BLAST because it has the capability to detect remote

homologies. A module AtPSI-BLAST was designed in which a query

sequence was searched against the entire Swiss-Prot database using PSI-

BLAST. It carried out an iterative search in which the sequences found in

one round were used to build score models for the next round of searching.

Three iterations of PSI-BLAST were carried out at a cutoff E value of 0.001

(other levels of E value were also tried, but E = 0.001 was found to be the best

compromise). This module could predict any of the seven localizations

under study (chloroplast, cytoplasm, Golgi apparatus, mitochondrion,

extracellular/secreted, nucleus, and plasma membrane) depending upon

the similarity of the query protein to the proteins in the data set. If the top

hits were more than 90% identical with the query, they were discarded, and

then the annotation of the (sub)top hit was used as the predicted site of the

query. The module would return “unknown subcellular localization” if no

significant similarity was found.

Evolutionary Information-Based PSSM Module

PSI-BLAST is a strong measure of residue conservation in a given location.

In the absence of any alignments, PSI-BLAST simply returns a 20-dimensional

vector representing probabilities of conservation against mutations to 20

different amino acids, including itself. A matrix consisting of such vector

representations for all the residues in a given sequence is called the PSSM.

When a residue is conserved through cycles of PSI-BLAST, it is likely to be due

to a purpose (i.e. biological function), and that is why it represents the

evolutionary information of a protein sequence. The idea of adopting PSSM

extracted from sequence profiles generated by PSI-BLAST as input informa-

tion was first proposed by Jones (1999). This information is expressed in a

position-specific scoring table (profile), which is created from a group of

sequences previously aligned by PSI-BLAST against the nonredundant data-

base at GenBank. The PSSM provides a matrix of dimension L rows and 20

columns for a protein chain of L amino acid residues, where 20 columns

represent the occurrence/substitution of each type of 20 amino acids. It gives

the log-odds score for finding a particular matching amino acid in a target

sequence. This approach differs from other methods of sequence comparison

in common use because any number of known sequences can be used to

construct the profile, allowing more information to be used in testing of the

target sequence. After that, every element in this matrix is divided by the

length of the sequence and then scaled to the range of 0 to 1 using the standard

linear function:

scale factor; r ¼ ðX2Min_valÞ=ðMax_val2Min_valÞ ð3Þ

where X is the individual PSSM score of each amino acid in the matrix,

Min_val is the minimum value in the PSSM matrix, and Max_val is the

maximum value in the PSSM matrix.

Finally, this PSSM was used to generate a 400-dimensional input vector to

the SVM by summing up all rows in the PSSM corresponding to the same

amino acid in the primary sequence. The detailed process of converting an L3
20 size PSSM matrix into a 400-D input vector is diagrammatically shown in

Figure 6.

Hybrid Technique Including a Novel Hybrid
Approach Developed

Methodologies such as “hybrids” are devised to acquire more compre-

hensive information about the proteins by combining various features of a

protein sequence. We developed various hybrid classifiers exploring different

features of a protein sequence in different combinations to enhance the

prediction accuracy. For example, at first we combined the 20-D vector of

amino acid composition with the 400-D vector of dipeptide composition to

form a 420-D input feature vector for SVM to develop the first hybrid classifier.

In this way, we intended to combine the compositional information with the

sequence order effects of a protein sequence to capture more comprehensive

information, leading to enhanced accuracy. Similarly, many other combina-

tions were attempted to extract more and more diverse information from the

protein sequences (Fig. 5) and used in SVM for training the classifiers to

achieve maximum accuracy. The PSI-BLAST output was also used in devel-

oping the hybrid classifiers by converting it to binary variables using the

representations in Table IX. In fact, using such binary variables from similarity

search output along with some other important features of a protein sequence

resulted in dramatic improvement of the prediction accuracy. For example, the

novel and smart combination of the 20-D amino acid composition, the

terminal information-based 60-D composition vector, the evolutionary infor-

mation-based 400-D PSSM vector, along with the above-mentioned 8-D PSI-

BLAST output vector led to a significant increase in the prediction accuracy

(for details, see “Results”).

Performance Evaluation

In the training of SVMs, we used the method of one versus the others or

one versus the rest. For example, an SVM for the chloroplast protein group

was trained with the chloroplast protein sequences used as positive samples

and proteins in the other six subcellular location groups used as negative

samples, because SVMs basically train classifiers between only two different

samples. Thus, we built 105 SVM classifiers corresponding to seven sub-

cellular localizations under 15 different types of approaches followed as

discussed above. For each of these 15 different approaches, a query protein

was tested against seven SVM classifiers to give seven prediction scores

against each query protein.

The next step is to evaluate the performance of each classifier. As we

developed a number of classifiers in this study, it is important to define the

evaluation criteria precisely for better comparison. Most of the information

retrieval papers report precision and recall, while bioinformatics, medical,

and machine learning papers tend to report sensitivity and specificity apart

from the MCC. We included all of them and added one more statistic, “error

rate,” to the existing evaluation features. Sensitivity was calculated as TP/

(TP + FN), where true positives (TP) were the number of labels correctly

predicted as Lk for class k that were actually labeled Lk, and false negatives

(FN) were the number of labels incorrectly predicted as not Lk that were

actually labeled Lk. It is also sometimes referred to as “recall,” defined as the

percentage of positively labeled instances that were predicted as positive.

Specificity is another statistic, defined as the percentage of negatively labeled

instances that were predicted as negative; this was calculated as TN/(TN +

FP), where true negatives (TN) were the number of labels correctly predicted

as not Lk that were actually not labeled Lk, and false positives (FP) were the

number of labels incorrectly predicted as Lk that were actually not labeled as
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Lk. However, specificity is not as informative as precision for multi-labeled

(nonbinary) classifiers. Therefore, it is always useful to include precision,

which tells us about the percentage of positive predictions that are correct,

calculated as TP/(TP + FP). Keeping in view the biological applications, we

included another important statistic in this study: error rate gave us an idea

about total percentage of wrong predictions, calculated as (FP + FN)/(TP +

TN + FP + FN). The lower the error rate, the better the prediction classifier. The

MCC is another measure used in machine learning for judging the quality of

binary (two-class) as well as multi-labeled classifications. It takes into account

the true and false positives and negatives and is generally regarded as a

balanced measure that can be used even if the classes are of very different

sizes. It returns a value between 21 and +1. A coefficient of +1 represents a

perfect prediction, 0 represents an average random prediction, and 21 repre-

sents an inverse prediction. The MCC was calculated as:

MCC ¼ ðTP3TNÞ2 ðFP3 FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp ð4Þ

In this way, the total number of TP, TN, FP, and FN were calculated from

the scoring matrix in row-wise sorting, as followed by many other researchers

(Hua and Sun, 2001; Bhasin and Raghava, 2004; Garg et al., 2005; Xie et al.,

2005; Guo et al., 2006; Kaundal and Raghava, 2009): that is, an unknown or test

protein sequence was classified into a particular localization class that

corresponded to the highest output SVM score predicted from each of the

seven models and ultimately calculated the sensitivity (recall), specificity,

precision, error rate, and MCC values. An overall version of each statistic

computed as its weighted average was also presented for judging the overall

performance of the classifier(s). See Table I for the best classifier’s statistics and

Supplemental Tables S7a to S20a for detailed performance comparisons of

other developed classifiers.

RI and ROC Curves

RI is an important measure that provides the user more information as well

as confidence about the quality of prediction. RI is assigned according to the

difference (D) between the highest and second highest SVM output scores. We

calculated the RI for our best classifier (AA+PSSM+N-Center-C+PSI-BLAST

hybrid), adopting the strategy introduced by Hua and Sun (2001) and later

followed by many other researchers, using Equation 5:

RI ¼ INTEGER ðD3 5=3þ 1Þ
5
if 0#D< 4
if D$ 4 ð5Þ

�

To characterize the prediction performance for individual locations, we

used ROC plot analysis (Swets, 1988; Zweig and Campbell, 1993). The ROC

curve is a plot of sensitivity and specificity (or false positive rate = 1 2 spec-

ificity) that shows the tradeoff between sensitivity and specificity. A ROC

space is defined by 12 specificity and sensitivity as x and y axes, respectively,

which depicts relative tradeoffs between true positives and false positives.

Each prediction result or one instance represents one point in the ROC space,

which is determined by setting a threshold value. Plotting these ROC points

for each possible threshold value resulted in a curve. The ROC curves of each

location for our best classifier are presented in Figure 4.

Comparison with Other Prediction Programs

We compared the performance of AtSubP on two diverse Arabidopsis-

specific independent data sets (I and II) with some of the widely used tools,

such as TargetP (Emanuelsson et al., 2000), LOCtree (Nair and Rost, 2005),

PA-SUB (Lu et al., 2004), MultiLoc (Höglund et al., 2006), WoLF PSORT (Horton

et al., 2007), and Plant-PLoc (Chou and Shen, 2007b). Although technically, the

comparison with other methods might not be fair, as each of these methods was

developed with different sets of training data, our main emphasis was to

demonstrate how these general tools performed for individual genome anno-

tation (e.g. in this case, the performance of independent Arabidopsis test data

sets on these methods compared with the developed species-specific one).

Annotation of the Arabidopsis Proteome

Currently, subcellular targeting prediction information is only available for

one program (TargetP) on the TAIR Web site, while subcellular proteome

information is limited and not accessible as defined sets. Keeping this in view,

we performed predictions on the whole Arabidopsis proteome with our best

classifier for all seven subcellular classes under study and provided these sets

on our Web server. A total of 27,379 protein sequences were downloaded from

TAIR release 9. As we got the hybrid-based (AA+PSSM+N-Center-C+PSI-

BLAST) SVM model as our best performing classifier from this study, at first

we separately generated the amino acid composition, PSSM matrix (the most

time-consuming part), N-Center-C composition, and PSI-BLASToutput for all

27,379 proteins. The amino acid-based conversion generated a 20-D vector,

PSSM a 400-D vector, N-Center-C a 60-D vector, and PSI-BLAST an 8-D input

vector (for details, see “Features and Modules” above). For each sequence, we

then combined these vectors to form a hybrid 488-D input vector and ran it on

the seven prediction models already generated to get seven corresponding

SVM predicted scores for each sequence. For highly reliable and accurate

predictions, we put various levels of threshold values (greater than 0.0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0) on the final sorted score for each

subcellular class. For example, if the maximum score of a query protein was

found for the chloroplast category, in the next step we checked whether this

score was more than the threshold value or not. Only then did we declare the

query protein as predicted to be chloroplast. Therefore, one can say that the

higher the threshold value, the more reliable the prediction. Furthermore, we

cross-matched our high-confidence predictions (greater than 1.0 cutoff) with

the available Swiss-Prot and TAIR annotations to judge the accuracy and

reliability of these predictions.
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Supplemental Table S10. Performance of four-part composition-based

classifier from (a) Arabidopsis-specific data set and (b) All-Plant

data set.

Supplemental Table S11. Performance of similarity-based PSI-BLAST

module developed from (a) Arabidopsis-specific data set and (b) All-

Plant data set.

Supplemental Table S12. Performance of PSSM-based classifier from (a)

Arabidopsis-specific data set and (b) All-Plant data set.
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from (a) Arabidopsis-specific data set and (b) All-Plant data set.

Supplemental Table S14. Performance of AA+PSSM hybrid classifier

from (a) Arabidopsis-specific data set and (b) All-Plant data set.

Supplemental Table S15. Performance of AA+PSI-BLAST hybrid classifier

from (a) Arabidopsis-specific data set and (b) All-Plant data set.

Supplemental Table S16. Performance of AA+Dipep+PSI-BLAST hy-

brid classifier from (a) Arabidopsis-specific data set and (b) All-Plant

data set.
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brid classifier from (a) Arabidopsis-specific data set and (b) All-Plant

data set.
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BLAST hybrid classifier from (a) Arabidopsis-specific data set and (b)

All-Plant data set.
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BLAST hybrid classifier developed from (a) Arabidopsis-specific data
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