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ABSTRACT

Next-generation sequencing is excellently suited to
evaluate the abundance of mRNAs to study gene
expression. Here we compare two alternative
technologies, cap analysis of gene expression
(CAGE) and serial analysis of gene expression
(SAGE), for the same RNA samples. Along with
quantifying gene expression levels, CAGE can be
used to identify tissue-specific transcription start
sites, while SAGE monitors 30-end usage. We used
both methods to get more insight into the transcrip-
tional control of myogenesis, studying differential
gene expression in differentiated and proliferating
C2C12 myoblast cells with statistical evaluation of
reproducibility and differential gene expression.
Both CAGE and SAGE provided highly reproducible
data (Pearson’s correlations >0.92 among biological
triplicates). With both methods we found around
10 000 genes expressed at levels >2 transcripts
per million (�0.3 copies per cell), with an overlap
of 86%. We identified 4304 and 3846 genes differ-
entially expressed between proliferating and
differentiated C2C12 cells by CAGE and SAGE, re-
spectively, with an overlap of 2144. We identified 196
novel regulatory regions with preferential use in
proliferating or differentiated cells. Next-generation
sequencing of CAGE and SAGE libraries provides
consistent expression levels and can enrich

current genome annotations with tissue-specific
promoters and alternative 30-UTR usage.

INTRODUCTION

Next-generation sequencing (NGS) platforms have
provided us with the technology needed to expand
genomic methods to a new scale. Depending on the tech-
nology, these machines can produce gigabases of se-
quences per day. Due to its superior resolution and
sensitivity, NGS is increasingly used to replace array
technologies, in particular the genome-wide evaluation
of chromatin immunoprecipitation (ChIP-seq) and gene
expression profiling experiments. Sequence-based expres-
sion analysis can be performed using several approaches.
The traditional serial analysis of gene expression (SAGE)
method (1) starts with capturing RNA poly-A tails with
oligo(dT) beads. Double-stranded cDNA synthesis is per-
formed followed by digestion with a restriction enzyme,
commonly NlaIII (2). With the fragments resulting from
the digestion only the most 30 fragment is retained. An
additional restriction digest is then performed with MmeI
(cuts �20 bp downstream) to create a fragment of accept-
able length for sequencing. In the original method, short
cDNA fragments, each representing the most 30 NlaIII
digestion site of a specific transcript, were concatenated
and cloned, followed by traditional sequencing.
However, now the concatenation and cloning steps can
be omitted. Instead SAGE library sequences are directly
equipped with appropriate sequencing linkers and
analyzed in next-generation sequencers (3).

*To whom correspondence should be addressed. Tel: +31 71 5269421; Fax: +31 71 5268285; Email: p.a.c._t_hoen@lumc.nl

Published online 7 July 2010 Nucleic Acids Research, 2010, Vol. 38, No. 16 e165
doi:10.1093/nar/gkq602

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Cap analysis of gene expression (CAGE) (4) is a method
specifically designed for the study of gene expression at
transcription initiation sites, as it captures 50-ends of
mRNAs. After trapping the 50-cap-structures of
mRNAs, sequences are converted to double-stranded
cDNA and equipped with a linker containing a restriction
site for the enzyme MmeI (or EcoP15I) that cuts �20 (or
25–27) bp downstream to create a fragment of appropriate
length for sequencing and mapping. Thus, where SAGE
captures the 30 most NlaIII digestion site of mRNA and is
thus 30-end biased, CAGE tags represent the ultimate
50-end of the transcript and indicate the genomic tran-
scription start site (TSS). In both SAGE and CAGE,
one transcript is only represented by a single read, and
(next-generation) sequencing of SAGE and CAGE
libraries is therefore referred to as Digital Gene
Expression profiling (3,5). While DeepSAGE and
DeepCAGE are alternative names for NGS-based
analysis of SAGE and CAGE libraries, we refer to
these in this manuscript as SAGE and CAGE. In RNA-
Seq (6–8), which starts with random fragmentation of the
RNA or cDNA, the entire transcript is sequenced.
Consequently, a transcript is commonly represented by
multiple reads and the amount of reads is dependent on
the transcript length. RNA-Seq gives more detailed infor-
mation about the structure of the transcripts and alterna-
tive splicing, in particular when combined with paired-end
sequencing, while CAGE is more suitable for analysis of
alternative TSSs and SAGE for analysis of alternative
polyadenylation sites.
Myogenesis is an essential process for muscle develop-

ment and regeneration, with defects resulting in diseases
such as muscular dystrophies. To support our studies
towards treatment of muscle-related diseases, we have
performed extensive analysis of muscle-derived gene
expression profiles (9–11). This included the analysis of
muscle differentiation using a well-established model, the
mouse myoblast cell line (C2C12) (12). Two primary
transcription factors regulating this process are MyoD
and Myogenin, but many other regulatory elements have
been identified [reviewed in (13) and (14)]. For a better
understanding of how expression profiles change during
adaptation to different biological situations, it is import-
ant to consider promoter activities and their regulation.
Several bioinformatic approaches have been designed for
this, including CORE_TF (15) and oPOSSUM (16),
searching for shared transcription factor binding sites
in the promoter region. However, these approaches critic-
ally depend on correct genome annotations regarding
TSSs, which can vary by tissue type. Unfortunately,
most studies performed thus far use methods directed
at the 30-end of RNA transcripts [including the well-
known oligo(dT)-primed cDNA synthesis]. Consequently
gene annotation is weakest at the 50-end. CAGE is there-
fore excellently suitable for the identification of alternative
TSSs and putative regulatory regions upstream
of those TSSs. We applied both CAGE and SAGE
to study muscle differentiation to assess their concordance
in estimation of gene expression levels and complementar-
ity in gene annotation.

MATERIALS AND METHODS

Cells, RNA isolation and differentiation markers

Proliferating C2C12 mouse myoblasts were grown on
collagen-coated plates in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum
(FBS). To induce fusion into myotubes, cells were serum
deprived by changing to a medium of DMEM supple-
mented with 2% FBS for 9 days (referred to as
differentiated cells).

For CAGE and SAGE, RNA was isolated from
proliferating and differentiated cells. RNA was isolated
from three independent cultures (biological triplicates).
Cells grown in flasks (175 cm2) were harvested by
trypsinization and centrifugation before RNA extraction
with a Nucleospin RNA L kit from Macherey-Nagel.
RNA quality was high, as determined with Agilent’s
Lab-on-chip total RNA nano assay (RNA integrity
number >9). Myogenic properties of the cells were con-
firmed in RT–PCR/qPCR experiments–using primer sets
(Supplementary Table S1) specific for MyoD1, Myogenin,
while the housekeeping genes Gapdh and Hprt were used
to control for differences in the amount of input cDNA.
RT–PCR experiments were performed using oligo(dT)
priming for cDNA synthesis and qPCR was carried out
using a Roche Lightcycler 480.

Library preparation and next-generation sequencing

The CAGE protocol published in Valen et al. (5) was
modified to enable direct sequencing on an Illumina
platform. Briefly, cDNA was synthesized from total
RNA by random priming, and 50-ends of mRNA within
RNA/DNA hybrids were selected by the Cap Trapper
method. Then linkers having sequences needed for
Illumina sequencing and a recognition site for EcoP15I
(proliferating: 50-CCACCGACAGGTTCAGAGTTCTA
CAGAGACAGCAG and differentiated: 50-CCACCGA
CAGGTTCAGAGTTCTACAGCTTCAGCAG) were
ligated to the 30-end of single-stranded cDNAs. After syn-
thesis of the second cDNA strand, double-stranded cDNA
was digested with EcoP15I. A second linker having se-
quences needed for Illumina sequencing (50-TCGTATG
CCGTCTTCTGCTTGAGCATACGGCAGAAGACGA
AC) was ligated to the open 30-end of the DNA fragments,
and ligation products were PCR amplified prior to
sequencing.

SAGE libraries were prepared for each individual RNA
sample with a FC-102-1005 DGE-Tag Profiling NlaIII
SamplePrepKit from Illumina. This involves isolating
RNA poly-A tails with oligo(dT) beads, converting into
single and then a double-stranded cDNA, performing a
first restriction digest with NlaIII (at CATG’s) and retain-
ing the 30 most fragments, adding a 50-linker (containing a
restriction site for MmeI), performing an MmeI digestion
and adding a 30-linker.

Each CAGE and SAGE library was then sequenced on
an individual lane on an Illumina Genome Analyzer II for
36 cycles. One CAGE sample from each timepoint was
also sequenced a second time with 32 cycles.

e165 Nucleic Acids Research, 2010, Vol. 38, No. 16 PAGE 2 OF 12



Initial sequence analysis

All sequenced lanes were run through the initial Illumina
Genome Analyzer Pipeline (Firecrest ) Bustard )
Gerald) for image analysis and quality control, yielding
one scarf file per sample (lane). For reads from SAGE
samples, the NlaIII recognition sequence ‘CATG’ was
introduced at the 50-end with Linux commands. Scarf
files were then run through the open-source GAPSS_R
pipeline developed in house (www.lgtc.nl/GAPSS). In
general, this pipeline takes sequences and has the
options to: remove first bases [often of lower quality
than other 50-nucleotides (17)]; edit for linkers (present
in the sequence reads when sequencing more cycles than
the fragment length); align to a reference genome with
Rmap (18); report data as region files (reporting tags in
a region, a region defined as a stretch of adjacent nucleo-
tides with aligned reads); and create UCSC Genome
Browser (19) (http://genome.ucsc.edu/) viewable wiggle
tracks.

We ran GAPSS_R with the following parameters: the
first base (lower quality) was removed in CAGE samples;
CAGE and SAGE samples were edited for 30 linker se-
quences (50-TCGTATGCCGTCTTCTGCTTG for
CAGE and 50-TCGTATGCCGTCTTCTGCTTGAAAA
AAAAAAAAAAA for SAGE), permitting one
mismatch in the linker [to account for sequencing errors
that occur more towards the 30-end (17) where linkers were
edited from]. After linker editing, the majority of CAGE
reads were 26 bases in length, whereas SAGE reads were
21 or 22 bases in length (including the ‘CATG’).
Alignment was performed against the mouse repeat-
masked reference genome build 37 with Rmap v0.41, an
alignment tool that reports only unique alignments. This
was done to maximize the reliability in the alignment
process, although we realize that we remove potentially
important expressed regions (20), such as retrotrans-
posons (21). Default settings were used during alignment,
except to use FASTA input and permitting two
mismatches with CAGE reads and one mismatch with
SAGE reads. The choice of mismatches permitted is
because longer sequences (CAGE) are more likely to
contain a sequencing error as the number of errors in-
creases at later sequencing cycles. Region files were
created and for CAGE regions we combined adjacent
regions, permitting gaps of maximal 100 bases to cluster
TSSs and make sure that newly identified TSSs were well
separated from annotated TSSs. We kept all data
separated by strand, since both methods preserve informa-
tion on the transcribed strand. Wiggle files for visualiza-
tion in the UCSC Genome Browser were also separated by
strand.

Custom Perl scripts were run on all CAGE and SAGE
region files to create reference region files (strand
separated) composed of the overlapping regions from
all samples. For CAGE region files, we again permitted
gaps of a maximum by 100 bases. Another custom
Perl script was used to link all individual region files to
their reference region file, reporting the estimated
number of tags in each individual region of the reference
region file.

Statistical and biological processes analysis

The statistical language R was used for analysis of differ-
ential expression for CAGE and SAGE data. A threshold
of two tags per million aligned reads (average across all
samples) was applied. This filter represents the lower limit
for consistent detection given our read depth, and will
remove noise and background transcription. In addition,
for CAGE data, we excluded regions where all reads
started at exactly the same position, resulting in regions
of �33 nt. These are likely sample preparation artifacts, as
even sharply defined TSSs demonstrate some variability in
start position, resulting in regions that cover >33 nt. Each
region was tested separately with a Bayesian algorithm
that takes into account library size (22,23). A Bayesian
error rate <0.05 was considered significant. For gene-
level tests, all tags overlapping a gene (including 1000
bases upstream and downstream of the gene) were
summarized before statistical testing. For the calculation
of expression ratios between differentiated and
proliferating cells, data were first scaled to the average
total number of aligned reads. For analysis of reproduci-
bility, data were square root transformed to stabilize
variance between samples, after which the Pearson’s cor-
relation coefficient was calculated.
To compare differentially expressed genes to previously

published microarray data, we took results from Tomczak
et al. (12), performed VSN normalization (24) and
analyzed data from differentiated versus proliferating
cells with limma (25,26) in R. Multiple testing was done
according to Benjamini and Hochberg (27). Probes were
annotated with NetAffx from the Affymetrix website
(www.affymetrix.com) and linked to the CAGE and
SAGE top 30 genes based on gene symbols.
To annotate the biological processes, we took the top 30

differentially regulated genes from CAGE and SAGE
(with a Bayesian Error rate <1�10�50 and sorted for
differentiated cells on a ratio of differentiated to
proliferating cells), as well as the microarray data
(sorted on adjusted P-value) and ran these against 7689
Gene Ontology (GO) (28,29) Biological Processes in Anni
2.1 (30).

Sequence annotation

All CAGE and SAGE regions were annotated based on
the ElDorado genome annotation (Genomatix, Version
07-2008) for being located in exons, introns or intergenic
regions. Regions that covered an exon and neighboring
intron or intergenic region were categorized as partial.
In addition, a region was categorized as a promoter if it
was located in the ElDorado-defined promoter region of a
transcript. The distance to the nearest TSS (upstream or
downstream) was also calculated. CAGE regions were
correlated with CAGE data available in ElDorado
[originating from the FANTOM3 project (31)].

CAGE region confirmation

To confirm that our CAGE regions represented newly dis-
covered 50-ends of transcripts, we designed primers within
CAGE regions upstream of eight genes (Bpag, Cpeb1,
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Junb, Myl1, Pik3ca, Ppt2, Sertad4x and Usp34, primers in
Supplementary Table S1). RT–PCR experiments were per-
formed using random hexamer priming for cDNA synthe-
sis and qPCR performed on a Roche Lightcycler 480. To
provide additional validity to these CAGE regions, we
inspected multiple UCSC tracks [UCSC genes, Ensembl
(32) genes, Vega genes, Other RefSeq, AceView Genes,
N-SCAN and Transcriptome].
To validate that our novel CAGE regions were indica-

tive of myogenic promoters, we took all differentially ex-
pressed CAGE regions (see ‘Results’), expanded or
contracted them to a length of 2000 bp, retrieved se-
quences with Ensembl Perl API scripts and ran them
through CORE_TF (15), a program that identifies
section overrepresented transcription factor binding sites.
For a background sequence, we used 2000 mouse pro-
moters defined as 1000 bp before and 1000 bp after the
annotated TSS. A Match (33,34) setting to minimize the
sum of false positives and false negatives was used.
We looked into more detail at the upstream CAGE

regions of Myl1, a myogenic gene that was confirmed to
have differential expression in the differentiation analysis.
To this, we performed standard PCR for a primer set that
spans the novel CAGE region into the first UCSC exon
(Forward-TCAGCCAAAATTCCAAGTTGA, Reverse-
CCTCCAGAAGAACCTGTCAGA). We also checked
this CAGE region, plus 500 bases upstream sequence, for
functional evidence. This was done by taking the mouse
sequence, searching for orthologous sequences and iden-
tifying conserved patterns of transcription factor binding
sites, as has been previously described (35,36).

RESULTS

The biological model and experimental setup

To study gene expression during myogenic differenti-
ation, we used C2C12 mouse myoblasts, a common cell
model for myogenesis, combined with next-generation
sequencing technology. RNA was isolated from three
independent cultures, both of proliferating and
differentiated cells. At the latter condition, cells had
differentiated into fused and multinucleated myotubes.
To confirm successful differentiation, qPCRwas performed
to determine the expression levels of the genes encoding the
late myogenic transcription factor Myogenin and the
master myogenic regulator MyoD. Both of these should
be expressed at higher levels in differentiated than
proliferating cells. qPCR confirmed that cells had started
to express Myogenin in differentiated cells and had higher
expression of MyoD in differentiated cells (Supplementary
Figure S1). CAGE and SAGE libraries were then prepared
from all six RNA samples (three independent cell cultures
for both proliferating and differentiated cells) and used to
determine expression levels based on measurements in the
50- and 30-regions of the transcripts, respectively.

Sequencing and alignment characteristics

Each CAGE and SAGE library was sequenced on a single
lane of the Illumina Genome Analyzer II. To investigate
technical reproducibility, two CAGE samples (one from

proliferating and one from differentiated cells) were
sequenced in duplicate. After running the Illumina
Genome Analyzer Pipeline for image and sequence
quality analysis, we obtained on average 4.5 and
6.9 million reads from the CAGE and SAGE libraries,
respectively (Table 1). The scarf files, converted to
FASTQ format, containing the reads are available at
GEO (37) under the accession number GSE21580. We
aligned these reads to the repeat-masked mouse reference
genome and were able to uniquely map (reporting align-
ments that are unique to one position in the genome), on
average, 1.9 million (42%) and 4.1 million (59%) tags for
CAGE and SAGE, respectively (Table 1).

For visual analysis, we constructed UCSC Genome
Browser wiggle files. The wiggle files are available at
GEO under accession number GSE21580 and at
http://www.lgtc.nl/publications/Hestand_2010_CAGE_
SAGE_wig/. To retain information on the direction
of transcription, there is one file for each strand.
In Figure 1, we show an example wiggle track for the
Myod1 gene. We clearly see the sharp SAGE peak
starting at the most 30-CATG site followed by 18 addition-
al nucleotides. The CAGE peak at the 50-end of the tran-
script is wider, reflecting the variability in the transcription
start position. In line with the qPCR experiments, both
peaks are larger in differentiated than in proliferating
cells. As observed before (31), and observed for many
other genes in the current study, CAGE also detects tran-
scription starts in the 30-region of the gene. Interestingly,
this peak is not induced during differentiation, suggesting
the formation of an independent transcript in this region.

To account for the variability in TSS positions, we
summarized adjacent CAGE reads into regions, while
permitting gaps ofmaximally 100 nt to resolve gaps in align-
ments due to non-unique genomic sequences. Doing so, the
CAGE regions obtained provide us with clearly distinct

Table 1. Sequencing results

No. of reads
sequenced

No. of reads
aligned

Percent
aligned (%)

CAGE sample
Prolif-1 4 886 341 2 086 233 42.7
Prolif-1 duplo 3 933 233 1 770 247 45.0
Prolif-2 5 003 964 2 421 443 48.4
Prolif-3 4 734 605 2 062 081 43.6
Diff-1 4 525 321 1 679 081 37.1
Diff-1 duplo 3 101 153 1 252 451 40.4
Diff-2 5 060 041 2 195 263 43.4
Diff-3 4 830 194 1 578 087 32.7

SAGE sample
Prolif-1 5 941 753 3 351 426 56.4
Prolif-2 7 768 787 4 464 057 57.5
Prolif-3 6 723 476 3 878 953 57.7
Diff-1 9 467 926 5 811 947 61.4
Diff-2 7 269 002 4 618 715 63.5
Diff-3 4 392 416 2 494 618 56.8

Indicators for CAGE and SAGE samples: Prolif for proliferating cells
and Diff for differentiating cells, followed by a number representing the
biological triplicates. For CAGE there are sequencing duplicates
indicated by ‘duplo’. The table contains the number of reads, the
number of reads that align uniquely to the repeat-masked genome
and the percent aligned.
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clusters of TSSs (with median lengths of 314 nt). We
identified 742 355 different CAGE regions and 361 655 dif-
ferent SAGE regions. To remove noise and events regarded
as background transcription, we applied an expression
threshold of two tags-per-million [�0.3 copies per cell
(23)]. Increasing our (low) threshold would have eliminated
many of the novel differentially regulated TSSs (defined
below; Supplementary Figure S3). We found 41 862
CAGE and 43 512 SAGE regions with expression above
the threshold of 2 tags-per-million.

Technical reproducibility and biological overlap

To analyze the technical reproducibility and the similarity
between biological replicates, we calculated the correlation
between the expression levels for all CAGE regions or

SAGE tags. A high correlation was observed between
the technical CAGE replicates (median Pearson’s and cor-
relation of 0.981) as well as the biological triplicates
[median Pearson’s and correlation of 0.963 (Figure 2A
and B, Supplementary Table S2]. As expected, correlation
between proliferating and differentiated cells was lower
(median Pearson’s correlation of 0.771), (Figure 2C,
Supplementary Table S2). Similarly, we observed a high
reproducibility for the SAGE experiments (median
Pearson’s correlation of 0.930) between biological tripli-
cates (Figure 2D and Supplementary Table S2). Again, the
correlation between proliferating and differentiated cells
(median Pearson’s correlation of 0.839) was lower than
that between cells from the same condition (Figure 2E
and Supplementary Table S2).

Figure 1. CAGE and SAGE wiggle tracks for proliferating (Prolif) and differentiated (Diff) cells in the UCSC Genome Browser for the myogenic
marker MyoD. We only display reads aligning to the forward strand, the coding direction for MyoD. Chromosomal positions are indicated at the
top. For each track the Y-axis scale corresponds to the number of tags aligned at that genomic position. Scales use a maximum from each relevant
technique in this viewing window (129 for CAGE and 3912 for SAGE). There is 50 and 30 concordance for CAGE and SAGE samples, respectively.
CAGE provides broader peaks, reflecting TSSs plus �26 nt of downstream sequence, wheres SAGE provides discrete peaks. A higher number of tags
are in differentiated compared to proliferating samples.
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Annotation of regions

We annotated the 41 862 CAGE regions using ElDorado’s
mouse genome annotation: 9957 regions map to
annotated exons, 27 190 partially overlap exons and
intronic/intergenic regions, 2368 map to introns and
2347 to intergenic regions. The median number of tags
in the exonic and partial regions (63 tags and 90 tags re-
spectively) were higher than in the intronic and intergenic
regions (45 tags, and 54 tags, respectively). These data
clearly show that our CAGE experiments generally
confirm previously annotated transcripts but also detect
many (lower abundant) TSSs/transcribed regions that
have not yet been identified and/or annotated as such in
current genome databases.
Based on ElDorado annotation of our 41 862 CAGE

regions, 13 541 of the CAGE regions (32%) contained
an annotated TSS, 6331 CAGE regions (15%) were
annotated as promoters (i.e. a genomic region sur-
rounding a TSS containing functional elements like
transcription factor binding sites that are responsible
for the regulation of the expression of the transcript)
and 8028 (19%) CAGE regions contained an
annotated transcript 30-end. The 30-end alignments are
consistent with the previously observed (31) significant
amount of (shorter) transcripts originating from the
30-ends of genes. We compared our CAGE results to

previous CAGE studies (FANTOM3) contained in
ElDorado and identified 31 680 regions (76%) overlapping
with at least one on the FANTOM3 CAGE tags.
Only 6119 (15%) and 5635 (13%) of these regions were
observed in FANTOM3 muscle and heart CAGE
libraries, respectively. This is explained by the small
size of these muscle and heart libraries (31), together rep-
resenting only 1% of all available CAGE tags in
FANTOM3.

Comparison of CAGE, SAGE and microarray
expression data

To compare gene expression levels and analyze differential
gene expression, we assigned CAGE and SAGE regions to
genes (including 1000 bases upstream and downstream of
the gene). Expression above a threshold of two transcripts
per million (�0.3 copies per cell) (38) was observed
for 10 409 and 10 987 genes, respectively. Expression
profiles for both methods showed a high correlation
(Figure 3A–C), with 9240 genes being expressed in both
methods above two transcripts per million (Figure 3D).
Supplementary Figure S2 shows that the relative overlap
is even bigger when higher detection thresholds are
applied, obviously at the expense of many more genes
not reaching the detection threshold. The 4304 genes
were differentially expressed between proliferating and

Figure 2. High reproducibility was found in CAGE regions between sequencing duplicates (A) and biological replicates (B). (C) Shows correlation
between CAGE samples from proliferating and differentiated cells. High reproducibility can also be found between SAGE biological replicates (D).
(E) Shows the correlation between SAGE samples from proliferating and differentiated cells. The plotted values represent the square root of the
number of tags per region.
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differentiated cells (Bayesian error rate <0.05) according
to the CAGE data and 3 46 according to the SAGE data
with 2144 genes present in the lists of significant genes
(Figure 3E). Most others were just borderline significant
according to one of the methods.

We compared the top 30 most differentially expressed
genes for both methods (Table 2) to results from a similar
microarray data set on myogenic differentiation in the
same cell line (12). In general, the genes identified by
CAGE and SAGE also demonstrated very significant
changes on the microarrays. However, in the top 30, 13
genes identified by CAGE and 10 identified by SAGE
were not represented on the array, demonstrating the com-
prehensive nature of the CAGE- and SAGE-based gene
expression profiling techniques. The biological processes
controlled by the top 30 CAGE, SAGE and microarray
geneswere annotated with the Anni2.1 text-mining tool
(Table 3). All CAGE- and SAGE-derived GO terms can
readily be related to muscle development, whereas 3/10
GO terms associated with the microarray-derived gene
list cannot (‘cyclin-dependent protein kinase inhibitor
activity’, ‘6-phosphofructokinase’ and ‘tumor suppressor
activity’).

Differential TSS use and validation

In our CAGE data, we identified 196 regions, 111 regions
upstream of the start of a known gene and 85 CAGE
regions downstream of an annotated gene, with signifi-
cantly different numbers of tags in proliferating and
differentiated cells (Supplementary Table S3). The differ-
ential expression of transcripts originating from seven out
of eight of these regions (upstream from genes Bpag,
Cpeb1, Junb, Myl1, Pik3ca, Ppt2, Sertad4x and Usp34)

were confirmed by RT–PCR/qPCR (Figure 4B and
Supplementary Figure S4). To evaluate if these novel
exons were contained in a transcript of the gene of
interest, we inspected the following tracks in the UCSC
Genome Browser: UCSC genes, Ensembl genes, Vega
genes, Other RefSeq, AceView Genes, N-SCAN
and Transcriptome (Figure 4A and Supplementary
Figure S5). In all but Junb we found the CAGE regions
overlapping at least one exon from an additional track
connected to the gene of interest (Figure 4A and
Supplementary Figure S5). This indicates that these
CAGE regions usually represented alternative transcripts
that are not yet properly annotated in all resources,
including the mainstream UCSC and Ensembl annota-
tions. This suggests that the mainstream genome annota-
tion are far from complete and that additional evidence,
including our CAGE data, is required to more precisely
define transcript structure.
To support that differential transcription in the 196

CAGE regions is regulated by myogenic transcription
factors, we searched for overrepresented transcription
factor binding sites and found the binding sites for the
master regulators MyoD (P-value 6.49� 10�03 from
CORE_TF’s binomial test), Myogenin (P-value:
3.87�10�02) and the Ebox motif (P-value 6.02�10�03)
[frequently found in muscle promoters (39,40)] to be sig-
nificantly overrepresented in 2000 bp of sequence
composed of the CAGE and surrounding regions
(Supplementary Table S4).
For one of these novel CAGE regions, Myl1, we con-

firmed by standard RT–PCR that there is a transcript
extending from the novel CAGE region into the UCSC-
defined exon 1 (Figure 4C). The CAGE sequencing,

Figure 3. Correlation of CAGE versus SAGE for proliferating samples (A), differentiated samples (B), and the ratio of proliferating and
differentiated cells (C). Values are the square root of the number of tags per gene for A and B. For C, the values are the log ratio of the normalized
number of tags per gene in differentiated over proliferating cells. The overlap of detectable genes (D) and differentially expressed genes (E) between
CAGE and SAGE is indicated.
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RT–PCR/qPCR within the region, and the standard PCR
into exon 1 all confirmed that this transcript is only
present in differentiated cells, explaining why it is
missing in standard genome annotations. For functional
evidence that this region is used as a promoter, we also
looked for conserved transcription factor binding sites in
and upstream of this region. Within the Genomatix Suite,
we identified orthologous sequence regions from human
and horse corresponding to the CAGE region and 50-
upstream (promoter) sequence. In this area, we identified
conserved binding sites for NKX, GATA and SRF
(Figure 4D), all of which are known to be involved in
the regulation of muscle genes (41). This makes it likely
that the region directly upstream of the novel exon 1 is
used as an alternative promoter.

DISCUSSION

Using CAGE and SAGE methods with next-generation
sequencing, we have measured gene expression levels
during myogenic differentiation and identified muscle-
specific TSSs. By elucidating promoter regions and
regulation in these myogenic cells, we hope to better
understand the process of muscle development and regen-
eration, providing clues to cure muscle-related illnesses.
Since biologists and clinicians often study (first) exons
and 50-promoter regions, it is crucial to know the positions

of TSSs in the genome. Our data will help them identify
potentially pathogenic mutations in transcripts and pro-
moters used during myogenic differentiation, which might
have been overlooked with current genome annotations.
On a technical level, this is the first time CAGE and
SAGE have been evaluated using the same RNA samples.

We found both the technically demanding CAGE
method and the slightly less laborious SAGE method
to be extremely robust. Biological triplicates with inde-
pendent sample preparations and sequencing runs were
found to have high correlations (Figure 2,
Supplementary Table S2). This is in line with previous
findings in the FANTOM4 CAGE study (42) and our
previous (23) finding with SAGE. Higher technical repro-
ducibility also enhances the ability to verify low expressed
genes, which was an obstacle in microarray analysis. The
high quality of the data implies that more investments
should be made in biological than technical replicates.

This study also highlights other advantages over micro-
arrays. For a third of the top 30 genes, (13/31 CAGE
genes and 10/30 SAGE genes, Table 2), there was no
probe on the microarray. Finding many more significant
genes not interrogated by the microarrays stresses the
more comprehensive transcript profiling by next-
generation sequencing-based methods. We also found
more muscle-related biological processes associated with
the top 30 CAGE and SAGE genes compared to the

Table 2. Differential gene expression

CAGE gene Ratio Microarray P-value SAGE gene Ratio Microarray P-value

Hfe2 4073 NA RP23-36P22.5 576 NA
Myom3 1624 NA Neb 525 NA
Lmod2 1305 NA Mylpf 504 1.70� 10�15

Myh7 1124 5.98� 10�3 Ttn 380 NA
Mb 908 1.07� 10�14 Myh3 368 2.40� 10�14

RP23-36P22.5 735 NA Xirp1 306 2.24� 10�13

Pygm 717 4.82� 10�17 1110002H13Rik 263 NA
Myl4 614 8.86� 10�20 Tnnc1 232 1.24� 10�11

Synpo2l 595 NA Cav3 150 3.58� 10�22

Myh1 561 3.64� 10�15 Cbfa2t3 133 2.89� 10�10

Tnni1 529 2.24� 10�9 Chrng 115 4.63� 10�9

Tnni2 442 3.20� 10�11 Myom2 105 6.66� 10�16

Mpa2l 410 NA Tnnt1 100 1.15� 10�10

Ctrb1 406 7.55� 10�7 Ryr1 92 7.03� 10�14

Ttn 402 NA Apobec2 84 2.95� 10�15

Neb 374 NA Cox6a2 72 2.45� 10�16

Kcnq4 365 NA Dio2 64 2.14� 10�10

Mylpf 341 1.70� 10�15 C1qtnf3 52 4.36� 10�5

1110002H13Rik 341 NA Htr2b 43 3.76� 10�6

Inpp4b 328 NA Sgcg 42 1.15� 10�12

Xirp1 307 2.24� 10�13 Fndc5 39 NA
Atp2a1 304 2.06� 10�14 Jsrp1 36 NA
Casq2 297 4.74� 10�6 Ankrd23 36 NA
Cacna1s 296 5.20� 10�19 AK031267 29 NA
Ces2 245 NA Sema6a 26 3.08� 10�3

Cox6a2 241 2.45� 10�16 Lgr5 23 9.33� 10�1

Myog 238 2.36� 10�6 Pdlim3 22 3.18� 10�6

Myh3 234 2.40� 10�14 Klhl31 22 NA
Tmem182 216 NA ORF63 21 NA
Tnnc1 215 1.24� 10�11 Gfra2 19 2.98� 10�2

Top 30 genes from SAGE and CAGE expression data. All genes with a Bayesian error rate <1� 10�50 were sorted on the ratio (normalized tags
from differentiated/proliferating cells) and the highest ratios for differentiated cells displayed. The microarray P-values are adjusted P-values for
differential gene expression from a similar experiment [proliferating and differentiated C2C12 cells (12)]. NA, no probe annotation for the gene.
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microarray top 30 genes (Table 3), indicating the higher
relevance of the top hits for the process under study.

The data provided by these methods have expanded our
knowledge of muscle-specific transcription. Only 32% of
the analyzed CAGE regions contained an annotated TSS,
indicating that we discovered many novel TSSs. Seventy-
six percent of CAGE regions matched known FANTOM3
CAGE tags. The high overlap with previous FANTOM

CAGE regions indicates that our CAGE regions reflect
true TSSs. However, <20% of our regions matched
known muscle-related CAGE tags. This is likely due to
the lower sequencing depth in the previous FANTOM3
muscle studies. This shows that we have greatly enriched
the annotation of muscle-related TSSs and that there is
currently a lack of information on tissue-specific TSS
usage. To exemplify this point, we identified 196 intergenic

Figure 4. The UCSC display of (A) UCSC/Ensembl-defined first exon and an upstream Myl1 CAGE region (reverse strand reads only, on which
the gene lies) for samples Prolif-1 and Diff-1. The Y-axis indicates the number of tags aligned at each position in the genome. We also dis-
play additional track information (UCSC genes, Ensembl genes, Vega genes, Other RefSeq, AceView Genes, N-SCAN and Transcriptome),
several of which confirm the presence of the upstream CAGE region. (B) qPCR with primers within the CAGE region for Prolif, Prolif-C
(reverse transcriptase control), Diff and Diff-C (reverse transcriptase control). The qPCR results are plotted as threshold cycle (Cp) values
(lower=higher expression), with bars indicating a range of one SD between technical duplicates. (C) Standard PCR on agarose gel with
forward primer in the novel CAGE region and reverse primer in the conventional exon 1. Comparison with the genomic control verifies the
presence of an intron of 200 bases. A 100-bp ladder is included. (A–C) are consistent with higher expression in differentiated than proliferating
cells. (D) Cross-species conserved muscle-specific transcription factor binding sites around and upstream of the Myl1 CAGE region support its role as
a promoter for this region.

Table 3.

CAGE GO SAGE GO Microarray GO

(1) Regulation of striated muscle contraction (1) Regulation of muscle contraction (1) Cyclin-dependent protein kinase inhibitor activity
(2) Cardiac muscle contraction (2) Cardiac muscle contraction (2) Myogenesis
(3) Myogenesis (3) Myogenesis (3) Skeletal muscle development
(4) Regulation of muscle contraction (4) Regulation of striated muscle contraction (4) Myoblast differentiation
(5) Skeletal muscle development (5) Skeletal muscle development (5) 6-Phosphofructokinase activity
(6) Muscle Development (6) Myofibril assembly (6) Muscle Development
(7) Striated muscle contraction (7) Muscle Development (7) Muscle cell differentiation
(8) Myoblast differentiation (8) Myoblast fusion (8) Tumor suppressor activity
(9) Muscle cell differentiation (9) Striated muscle contraction (9) Myofibril assembly
(10) Sarcomere organization (10) Muscle cell differentiation (10) Heart development

The top 10 GO biological processes associated with the top 30 genes for CAGE, SAGE and microarray experiments indicate clear muscle relations,
with the exception of three (in italics) processes in the microarray data.
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regions significantly different between proliferating and
differentiated cells, indicating muscle-specific alternative
promoter and first exon usage. We found overrepre-
sentation of muscle-specific transcription factor binding
sites for MyoD and Myogenin and E-boxes in these
regions, indicating that the identified regions potentially
serve as promoters. Several of these were verified by PCR
and additional UCSC track evidence. This, also taking
into account the overall lower level of expression
compared to known TSSs (Supplementary Figure S3),
shows that our methods are reliable to detect rare tran-
scriptional events.
This is the first study to compare NGS of CAGE and

SAGE libraries from the same RNA samples. Gene ex-
pression measurements by CAGE and SAGE are general-
ly consistent. The high correlation between methods
(Figure 3A–C), large overlap between genes detected
(Figure 3D) and differential gene lists (Figure 3E),
and gene involvement in similar biological pathways
(Table 3) indicate that these methods are both useful for
expression profiling. However, in studies into promoter
regulation, one should preferably use CAGE, whereas in
studies regarding micro-RNA regulation, RNA transcript
stability and alternative polyadenylation one should pref-
erably use SAGE.
Of the 4304 and 3846 genes differentially expressed

between proliferating and differentiated cells with
CAGE and SAGE, respectively, over half (2144) of the
genes are identical. More changes in CAGE than SAGE
levels could indicate that alternative promoter usage is
more common than that of alternative 30-ends. The detec-
tion of genes by one technique, but not the other, is mostly
inherent to the use of thresholds, as application of higher
thresholds than the one applied (2 transcripts per million)
resulted in a higher percentage-wise overlap. Alternatively,
a minority of transcripts may be missed entirely by one of
the methods due to the absence of a CATG site in the
transcript (SAGE) or because of our filtering for
non-unique sequences, which was done to increase the re-
liability of the mapping. For both techniques, we frequent-
ly detected multiple regions in the same gene. Seventy-five
percent of the genes had multiple SAGE tags with abun-
dance above the threshold of two transcripts per million.
In our previous paper (23), we discussed that this is
probably not a technical artifact but most likely due to
different 30-ends and usage of multiple polyadenylation
sites.
Similar to previous studies (31), we found a large

number of CAGE tags aligning to the 30-end of known
transcripts. This phenomenon has been previously
validated by the rapid amplification of cDNA ends
(RACE) method and explained as potential 30-derived
regulatory non-coding RNAs (31). This type of
non-coding RNAs, frequently derived from regions in or
around the 30-UTR, have been reviewed before (43).
Gustincich et al. (43) also report that they tend to have
an additional gene downstream on the opposite strand,
indicating a sense–antisense mechanism or protection.
With additional analysis steps, CAGE could serve as a
method for identification of non-coding RNAs. In
addition, these should be recognized as a potential

source of erroneous expression levels measured in SAGE
and 30-based microarrays.

Likewise, 67% of the genes contained multiple CAGE
regions. These observations are consistent with the finding
of many (short) transcripts from exonic regions in a tiling
array study (44). Apart from alternative TSSs, resulting
in alternative RNA isoforms with different first exons,
coding for different protein isoforms, these CAGE
regions may represent degradation products of the
mRNA. This phenomenon was previously referred to as
‘exon painting’ (44). Examples of genes, where nearly all
exons are covered by CAGE tags are Col1a1 and Col1a2
(Supplementary Figure S6A and B, respectively). It is not
likely that these are random degradation products, given
the high RNA integrity in all samples, the observation of
genes with a highly abundant peak at the 50-end without
any exon painting (Supplementary Figure S6C and D) and
the high reproducibility of the exon painting patterns in
independent CAGE sample preparations. This suggests
that there is a biological explanation for the exon
painting phenomenon. From our study, it is highly likely
that many of these shorter transcripts contain a cap struc-
ture. The process of recapping of transcript fragments has
been documented before (44). Fejes-Toth et al. (44)
propose that long RNAs are spliced into mature and
translatable RNAs, but that these mature RNAs can
also be further processed. This further processing
involves cleavage into smaller RNA fragments and
possible modification by additional 50-capping (44). The
presence of exon painting complicates the identification of
novel TSSs and is the reason why we focused on the dis-
covery of novel TSSs in intergenic regions and did not
report alternative TSSs within annotated genes. A
positive consequence of the exon painting phenomenon
is that the CAGE technique gives additional information
on the exon structure of many genes.

The large data yield and reproducibility should serve as
an example of the advantages of applying next-generation
sequencing to CAGE and SAGE techniques. This work
has provided a substantial increase in our knowledge of
myogenic TSSs and expression. These methodologies
should be expanded to other tissues and processes in the
future to enrich our knowledge of the transcriptional regu-
lation and to enrich current genome annotations. As
demonstrated in this manuscript, with the use of biological
replicates, appropriate techniques and sequencing depth,
and proper analysis (e.g. thresholds) it is possible to
reliably monitor gene expression and rare transcriptional
events.

SUPPLEMENTARY DATA

Supplementary Data are availble at NAR online.
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