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Deregulated Cdc6 inhibits DNA replication and
suppresses Cdc7-mediated phosphorylation
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ABSTRACT

Mcm2-7 is recruited to eukaryotic origins of DNA
replication by origin recognition complex, Cdc6
and Cdt1 thereby licensing the origins. Cdc6 is es-
sential for origin licensing during DNA replication
and is readily destabilized from chromatin after
Mcm2-7 loading. Here, we show that after origin
licensing, deregulation of Cdc6 suppresses DNA
replication in Xenopus egg extracts without the in-
volvement of ATM/ATR-dependent checkpoint
pathways. DNA replication is arrested specifically
after chromatin binding of Cdc7, but before
Cdk2-dependent pathways and deregulating Cdc6
after this step does not impair activation of origin
firing or elongation. Detailed analyses revealed
that Cdc6 deregulation leads to strong suppression
of Cdc7-mediated hyperphosphorylation of Mcm4
and subsequent chromatin loading of Cdc45, Sid5
and DNA polymerase a. Mcm2 phosphorylation is
also repressed although to a lesser extent.
Remarkably, Cdc6 itself does not directly inhibit
Cdc7 kinase activity towards Mcm2-4-6-7 in
purified systems, rather modulates Mcm2-7 phos-
phorylation on chromatin context. Taken together,
we propose that Cdc6 on chromatin acts as a modu-
lator of Cdc7-mediated phosphorylation of Mcm2-7,

and thus destabilization of Cdc6 from chromatin
after licensing is a key event ensuring proper tran-
sition to the initiation of DNA replication.

INTRODUCTION

To ensure stable maintenance of the genome, initiation of
DNA replication needs to be tightly controlled by the
strict regulation of origin licensing, which is executed by
sequential binding of the origin recognition complex
(ORC), Cdc6, Cdtl and Mcm2-7 to form the
pre-replicative complex (pre-RC) onto origins of DNA
replication (1-3). Cdc6 belongs to the AAA+ ATPase
family and functions in chromatin loading of Mcm2-7, a
putative helicase for DNA replication (4). While individ-
ual subunits of Mcm?2-7 are differentially phosphorylated
during the cell cycle, phosphorylation of Mcm4 is most
pronounced (5). Cdc7-dependent phosphorylation of
Mcmé4 facilitates interaction of Mcm2-7 complex with
Cdc45 (6). It has also been demonstrated that phosphor-
ylation of Mcm2 during DNA replication depends on
Cdc7 and Mcm?2 in an Mcm2-7 complex is efficiently
phosphorylated by Cdc7 in vitro (7-9).

Cdc7, also known as Dbf4- and Drfl-dependent kinase
(DDK), is a serine/threonine kinase conserved from yeasts
to human, which is required for the initiation of DNA
replication (10,11). The kinase activity peaks at the G1/S
transition with the association of the regulatory subunit,
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Dbf4, in yeast (12,13). In embryonic cell cycle in Xenopus,
Drfl has a more important role than Dbf4 (14). Following
Cdc7-mediated phosphorylation of Mcm subunits, Sld5—
Psf1-Psf2-Psf3 (Go-Ichi-Ni-San, i.e. 5-1-2-3 in Japanese;
GINS) complex, Cdc45 and DNA polymerase o (pola)
are loaded onto chromatin in a Cdk2-dependent
manner, thereby starting DNA synthesis.

Regulation of Cdc6 activity during conversion from
pre-RC to pre-initiation complex (pre-IC) is crucial but
still elusive. Cdc6 mostly dissociates from chromatin
after licensing (15,16) and rebinds to chromatin in S
phase as a consequence of progression of replication
forks (17). This dynamic loading—dissociation—reloading
behavior of Cdc6 creates a window of time when Cdc6
is almost absent or loosely bound to chromatin, and the
question arises why Cdcb6 is destabilized even though it is
recruited again in a later stage. Most of the previous
studies suggested that inactivation of Cdc6 prevents
re-replication. It has been shown that over-expression of
Cdcl18, the Cdc6 ortholog in Schizosaccharomyces pombe,
causes multiple rounds of DNA replication while
over-expression of Cdc6 alone is not sufficient to induce
re-replication in Saccharomyces cerevisiae and higher eu-
karyotes (18,19). Thus, the significance of regulating Cdc6
after licensing and the exact consequence of deregulating
Cdc6 protein on DNA replication still remain to be
investigated.

In this study, we aimed to elucidate why Cdc6 needs to
be destabilized from chromatin after licensing using
Xenopus egg extracts. We found that deregulation of
Cdc6 suppresses the initiation of DNA replication and
Cdc7-dependent phosphorylation of Mcm4 on chromatin.
Our data provide novel molecular insights into the
function of Cdc6 beyond origin licensing as well as its
communication with other replication factors in
regulating the initiation of DNA replication.

MATERIALS AND METHODS
Preparation of Xenopus egg extracts

Metaphase-arrested Xenopus eggs were treated with
0.2pg/ml of the calcium ionophore A23187 (Roche
Diagnostics, Basel) to release them into interphase, and
extracts were prepared as described previously (3,20).
Xenopus egg extracts were supplemented with 250 pg/ml
cycloheximide, 25mM phosphocreatine and 15 pg/ml
creatine phosphokinase before use. Xenopus sperm nuclei
were prepared after demembranation with lysolecithin as
described previously (20).

Antibodies and recombinant proteins

Complementary DNA encoding wild-type Xenopus laevis
Cdc6 was amplified by PCR using primers attached with
a recognition site of EcoRI or Notl 2 and subcloned
into pGEX-4T3 expression vector (GE Healthcare).
Glutathione-S-transferase (GST) fusion protein was ex-
pressed in BL21-Codon Plus (DE3)-RIL (Stratagene)
and purified based on a protocol described previously
(21) with some modifications. After cells transfected with
the expression plasmid were grown at 37°C and treated

with 0.1 mM isopropyl B-D-thiogalactside for 1h at 16°C
to induce expression of the recombinant protein, the cells
were harvested by centrifugation, and resuspended in lysis
buffer [I0mM sodium phosphate, pH 7.2, 0.5M NaCl,
ImM EGTA, ImM dithiothreitol (DTT) and 0.25%
Tween-20] containing 0.2mM phenylmethylsulfonyl
fluoride (PMSF). To purifiy the recombinant GST-
Cdc6, the lysate was sonicated gently three times and
centrifuged at 9100g for 20min. The supernatant was
mixed with glutathione-sepharose (GE Healthcare)
pre-washed with lysis buffer, and incubated with gentle
agitation at 4°C for 1 h to facilitate binding of the recom-
binant protein to the beads. After the sepharose resin was
packed into a column and washed with lysis buffer, the
adsorbed proteins were eluted with lysis buffer containing
reduced glutathione (10mM). The eluted protein was
collected in 200 pl fractions and the fractions containing
GST-Cdc6 were pooled, concentrated and dialyzed
against 10mM 4-(2-Hydroxyethyl)-1-piperazineethane-
sulfonic acid (HEPES)-KOH, pH 7.4, 150mM NaCl,
0.1mM DTT and 0.2mM PMSF. The purified fraction
was frozen at —80°C in 10 ul aliquots.

N-terminal hexahistidine-tagged fusion protein of
geminin from a cDNA encoding Xenopus geminin H
lacking a destruction box and His6-tagged p21 were ex-
pressed and purified as described previously (3). Human
Cdc7/Askl and mouse Mcm2-4-6-7 complex was ex-
pressed and purified from baculovirus system as described
previously (22).

Anti-Cdc6 and anti-Cdc7 antibodies were obtained as
described previously (3,23). Anti-ORC1 antibody was
kindly provided by J. Julian Blow (The University of
Dundee), anti-Mcm4 and anti-Mcm?2 atibodies by Yukio
Ishimi (Ibaraki University), anti-Drfl by Tatsuro
Takahashi (Osaka University), anti-SId5 and anti-Cdc45
by Yumiko Kubota and Haruhiko Takisawa (Osaka
University), anti-Smcl and anti-Smc3 by Keiji Kimura
(University of Tsukuba). Anti-histone H3 (ChIP grade)
and anti-PSTAIR (CDK) antibodies were purchased
from ABcam and Sigma-Aldrich Co. (St Louis, MO,
USA), respectively.

Measurement of DNA synthesis in Xenopus egg extracts

For the measurement of DNA replication, [o-**P]JdATP
was added to the reaction mixture and total DNA
synthesized after incubation at 23°C was measured as
the radioactivity incorporated into a fraction insoluble
in 10% TCA as described previously (20). EcoRI,
caffeine and wortmannin were purchased from Takara
Bio Inc. (Ohtsu, Japan), Wako Pure Chemical
Industries, Ltd. (Osaka, Japan) and Sigma-Aldrich Co.
(St Louis), respectively.

Isolation of chromatin fraction

Chromatin fraction was isolated as described previously
(3) and the pellet was resuspended in 40 ul of sample buffer
for Sodium Dodecyl Sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE). Samples were then subjected to
SDS-PAGE for immunoblotting. When nuclei were
isolated to be reincubated in fresh extracts or used in



phosphatase treatment, the isolation was performed in a
similar way except that Triton X-100 was included at
0.01% and the centrifugation was performed only once
at 2100 g for Smin in a swinging bucket rotor.

Isolation of intact nuclei for Chk1 phosphorylation

After an incubation of sperm nuclei in GST-
Cdc6-supplemented extracts for 90min, intact nuclei
were isolated and immunoblotted for phospho-
Chk1-S345 (24). For isolation of intact nuclei, extracts
containing nuclei were underlayered with 10x volume
of intact nuclear isolation buffer (INIB) consisting of
40% sucrose, S0mM HEPES-KOH, pH 7.5, 100mM
KCIl and 2.5mM MgCl,, and centrifuged at 5800g¢ in
a swinging bucket rotor for Smin at 4°C. The pellets
were resuspended in 1ml of INIB and recentrifuged
under the same conditions. For samples that had been
treated with caffeine, 5SmM caffeine was added in INIB
to ensure the inhibition of ATM/ATR kinases during
the isolation process. The isolated nuclei were subjected
to SDS-PAGE and immunoblot analysis to detect
phosphorylated Chkl.

Immunodepletion of proteins from Xenopus egg extracts

Immunodepletion was performed as described previously
(3). For the depletion of Cdc6, we employed the same
protocol using anti-Cdc6 antibody but repeated twice for
an efficient removal of Cdc6. The efficiency of the deple-
tion was confirmed by immunoblot analyses or measure-
ment of DNA replication activity.

Phosphatase treatment of chromatin fraction

After incubating sperm nuclei in extracts for 45min to
allow phosphorylation to occur, nuclei were isolated
and incubated further with A-phosphatase (A-PPase)
in the presence or absence of EDTA, by which phosphat-
ase activity was compromised. To detect hyper-
phosphorylation of Mcm4, half of the chromatin
precipitate was subjected to 10% SDS-PAGE and the
latter half was subjected to 7.5% SDS-PAGE with
Bio-Rad Precision Prestained Marker (Bio-Rad), and
were electrophoresed until 25 and 10 kDa marker bands
reached bottom of 7.5% and 10% PAGE, respectively.
The gels were then subjected to immunoblot analyses as
described previously (3).

In vitro kinase assay of Cdc7

Standard in vitro kinase assay for Cdc7 was conducted as
described previously (25) using mouse Mcm2—4-6-7
complex as a substrate for human Cdc7-ASK in the
absence or presence of GST-Cdc6. Twenty-five ul reac-
tions containing [y->>P]JATP were incubated at 30°C for
60 min and loaded onto 7.5% SDS-PAGE (59:1). The
gels were stained with silver, dried and subjected to
autoradiography.
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Data presentation

All figures in this article indicate representative results
obtained from independent experiments to verify their
reproducibility.

RESULTS

Deregulated Cdc6 inhibits DNA replication in Xenopus
egg extracts independent of ATM/ATR checkpoint
pathways

We wanted to directly investigate the consequences of de-
regulation of Cdc6. To this end, we purified recombinant
wild-type GST-Cdco6 from Escherichia coli
(Supplementary Figure S1A) and added it to Xenopus
egg extracts in order to create a state in which more
Cdc6 protein binds on chromatin for longer period
even after origins have been licensed. As was expected,
Figure 1A (upper panel) shows that the amount of Cdc6
loaded onto chromatin increased with the increase in Cdc6
concentration, and reached plateau at 700 nM of supple-
mented Cdc6. Under this condition, the amount of
chromatin-loaded Cdc6 was higher than the endogenous
one ‘after licensing’ but was comparable to that observed
‘before licensing’, which can be physiologically loaded in
the presence of geminin, a licensing inhibitor. Then, we
investigated the effects of Cdc6 deregulation on DNA rep-
lication. To our surprise, as the concentration of Cdc6
increased, the amount of newly synthesized DNA
decreased drastically and DNA replication was almost
completely inhibited at as low as 700nM (Figure 1A,
lower panel). The dose—response curves varied slightly de-
pending on the preparation of Cdc6 but the overall
tendency remained the same. As Cdc6 is a positive regu-
lator of DNA replication, we then asked if the preparation
might even be functional and examined the GST-Cdc6
protein for its ability to replace the native Cdc6 after
immunodepletion of the egg extract. The result confirmed
that the recombinant GST-Cdc6 fraction was fully func-
tional for licensing (Supplementary Figure S1B). The
above experiments were repeated with at least three differ-
ent protein preparations and different egg extracts. For
further validation, we have confirmed that DNA replica-
tion is also suppressed by endogenous Cdc6 partially
purified from Xenopus egg extracts or N-terminal
hexahistidine- and FLAG-tagged Cdc6, and that the in-
hibition is solely caused by the addition of Cdc6, but not
GST tag, dialysis buffer or presence of contaminating
proteins (Supplementary Figure S1C-E). Therefore, we
made use of GST-Cdc6 that sufficiently meets the
criteria of endogenous Cdc6. The concentration of en-
dogenous Cdc6 in the extracts used was estimated as
~200nM similar to previous reports (21,26) and our
results suggest that DNA replication is inhibited by
Cdco6 at a concentration <5-fold excess over the endogen-
ous level at a maximal estimation. Hereafter, we used
700nM  of supplemented Cdc6 unless mentioned
otherwise.

In time-course experiments, we observed a strong sup-
pression of DNA synthesis in Cdc6-supplemented extracts
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Figure 1. DNA replication is inhibited by excess Cdc6 in a manner
independent of ATM/ATR-dependent checkpoint pathways. (A)
Upper panel: chromatin was isolated after incubation of sperm nuclei
(3ng DNA/ul) for 20min with extracts containing buffer (none),
geminin (100nM) or various concentrations of GST-Cdc6. Isolated
chromatin was subjected to immunoblotting. Open and closed arrow-
heads represent endogenous Cdc6 and GST-Cdc6, respectively.
Egg extracts (Ex; 2 pl) were also applied. Lower panel: DNA synthesis
was measured after a 90-min incubation of sperm nuclei (3ng DNA/ul)
with Xenopus egg extracts supplemented with various concentrations of
GST-Cdc6. (B) Synthesized DNA at indicated time points was
measured after incubation of sperm nuclei (3ng DNA/ul) with
extracts supplemented without (open symbol) or with GST-Cdc6
(700 nM; closed symbol). (C) Nuclei were isolated after sperm nuclei
(3ng DNA/ul) were incubated with egg extracts supplemented with
aphidicolin (40ng/pl) or GST-Cdc6 (700nM) in the presence or
absence of 5mM caffeine. The isolated fractions were immunoblotted
for phospho-Chkl (ChkI-P) and histone H3 (H3). Egg extracts (Ex;
2 ul) were also applied. (D) DNA synthesis was measured after 90-min
incubation of sperm nuclei (3ng DNA/ul) with extracts supplemented
with buffer (none), EcoRI (0.2U/ul) or GST-Cdc6 (700nM) in the
presence or absence of SmM caffeine.

until 90 min, which is sufficient to allow almost complete
replication in control extracts (Figure 1B). Interestingly,
however, prolonged incubation for 180-240min rescued
the inhibition by Cdc6 (Supplementary Figure S1F) sug-
gesting a kinetic delay of DNA replication in
Cdco6-deregulated extracts. It has been reported that
Cdc6 is needed to trigger checkpoint activation during
replication stress in Xenopus egg extracts (17) and during
mitotic exit in yeasts, Cdc6 cooperates with Sicl to inacti-
vate Cdks, which is probably mediated by activation of
Chkl1 kinase (27,28). Therefore, we investigated the in-
volvement of checkpoint pathways in Cdc6-induced repli-
cation inhibition by monitoring Chkl phosphorylation.
Chkl is activated by phosphorylation on Ser345 by
ATR in response to a variety of genomic insults (29,30).
Sperm DNA was incubated with extracts supplemented
with aphidicolin or GST-Cdc6 in the presence or
absence of caffeine, an inhibitor of ATM/ATR kinases,

and the isolated nuclear fraction was subjected to
western blotting. Figure 1C shows that aphidicolin
induced Chkl phosphorylation, which was blocked by
the addition of caffeine, consistent with activation of
ATR checkpoint pathways by aphidicolin treatment. On
the other hand, no phospho-Chkl band was detected in
Cdco6-supplemented extracts.

To further assess the involvement of caffeine-sensitive
checkpoint pathways, we examined whether Cdc6-
mediated inhibition of DNA replication was abrogated
by caffeine. Consistent with our previous result (31),
DNA replication repressed by EcoRI treatment was
restored by co-addition of caffeine (Figure 1D).
However, caffeine did not restore DNA replication sup-
pressed by the addition of Cdc6, suggesting that the
presence of excess Cdc6 does not activate checkpoint
pathways to halt DNA replication. Thus, we speculated
that Cdc6 may directly inhibit replication machinery,
which likely occurs before checkpoints become able to
sense perturbations of DNA replication process.

Deregulated Cdc6 blocks DNA replication after origin
licensing, but before Cdk2-dependent steps

The above results prompted us to determine the step at
which DNA replication was arrested by Cdc6. To get an
overall idea, we added GST-Cdc6 to egg extracts at
various time points after the start of incubation and
measured DNA synthesis in a total incubation of 90 min
(Figure 2A and B). Whereas the addition of GST-Cdc6 at
the start of incubation caused complete inhibition of DNA
synthesis, adding Cdc6 between 5 and 15min caused
partial inhibition and that later than 30 min showed little
or no suppression of DNA synthesis, suggesting that
excess Cdc6 has a target at an earlier stage of DNA
replication.

Since Cdc6 is one of the pre-RC components, it was
speculated that excess Cdc6 would lead to impaired
origin licensing. To address the issue, chromatin
was isolated from egg extracts supplemented with or
without GST-Cdc6 in the presence or absence of
geminin (Figure 2C and D). Previous studies have
shown that Cdc6 has high affinity for chromatin before
licensing, which drops drastically after Mcm2-7 loading
(15-17). Consistent with this, ORC1 and Cdc6 remained
at high levels on chromatin in the presence of geminin
even in Cdco6-supplemented extracts (Figure 2D). In
addition, the chromatin binding of ORCI1 and Mcm4 in
Cdc6-supplemented extracts did not differ significantly
from that in control extracts. This result suggests that
excess Cdc6 does not impair licensing-dependent Mcm?2—
7 loading.

As Cdcb6 is directly involved in Mcm2-7 loading, it was
possible that excess Cdc6 disturbed normal Mcm2-7
loading, resulting in malfunction of the loaded Mcm2-7
complex without altering the amount of the loaded
proteins. If this were the scenario, chromatin licensed
under excess Cdc6 should fail to replicate in fresh
geminin-treated extracts in which de novo Mcm2-7
loading was inhibited. To address this possibility, sperm
DNA was incubated in egg extracts supplemented
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Figure 2. Cdc6 inhibits DNA replication after origin licensing at an
earlier stage of DNA replication. (A and B) GST-Cdc6 (700 nM) was
added to the reaction mixture at indicated times after the commence-
ment of incubation of sperm nuclei (3ng DNA/ul) with egg extracts.
Synthesized DNA was measured after 90 min from the start of incuba-
tion. (C) A schematic representation of the experimental procedures
for D and E. (D) Chromatin was isolated after incubation of sperm
nuclei (3ng DNA/ul) for 20 min with extracts containing buffer (none)
or GST-Cdc6 (700nM) in the presence or absence of geminin
(100nM). Isolated chromatin was subjected to immunoblotting. Open
and closed arrowheads represent endogenous Cdc6 and GST-Cdc6,
respectively. Egg extracts (Ex; 2ul) were also applied. (E) Sperm
nuclei (15ng DNA/ul) were incubated with extracts supplemented
with buffer (none) or GST-Cdc6 (700 nM) for 20 min in the presence
or absence of geminin (100 nM). Chromatin was isolated and incubated
for 90min with fresh geminin-supplemented extracts containing
[-**P]dATP. DNA synthesis in the second incubation was measured
and represented as a percentage of the radioactivity incorporated into
DNA in the samples of interest to that after incubation with control
extracts for 90 min.

with buffer or Cdc6 for 20 min to allow sufficient time for
Mcm2-7 loading. Chromatin was then isolated
and transferred to fresh geminin-treated extracts so
that the origins licensed in the first incubation could
only support replication in the secondary extracts
(Figure 2C). Figure 2E confirmed that the capability of
DNA replication was no less for chromatin isolated from
Cdco6-supplemented extracts than that from control
extracts, indicating that Mcm2-7 complexes loaded in
Cdco6-deregulated extracts were fully functional.
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In Xenopus egg extracts, replisome assembly occurs in a
stepwise manner with several discrete isolatable intermedi-
ates. Then, we investigated the consequences of additive
Cdc6 on origin firing or elongation steps separately. First,
we examined the effects of Cdc6 on elongation. We
incubated sperm chromatin in interphase extracts supple-
mented with aphidicolin, an inhibitor of DNA polymer-
ases. Under this condition, DNA replication was arrested
at the onset of elongation (32). Nuclei were then isolated
(aphidicolin nuclei) and individual aliquots were
transferred to fresh extracts supplemented with buffer,
aphidicolin or Cdc6 (Figure 3A and B). Aphidicolin
nuclei fully supported DNA replication even in the
presence of additive Cdc6, whereas untreated sperm chro-
matin failed to replicate, indicating that Cdc6 inhibits
DNA replication before elongation steps.

We exploited similar protocol using Cdk2 inhibitor, p21
(33), instead of aphidicolin in order to determine whether
Cdc6 influences Cdk2-dependent processes. Similar to
aphidicolin nuclei, p21 nuclei were also fully competent
to support DNA replication in Cdc6-supplemented
extracts (Figure 3C). Together, these results strongly
suggest that Cdc6 deregulation halts DNA replication at
a step that lies between pre-RC assembly and
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Cdk2-dependent events consistent with the idea that Cdc6
deregulation does not affect later stages of DNA replica-
tion (Figure 2A).

Cdc6 inhibits Cdc7-dependent hyperphosphorylation
of Mcm4

We then focused on the events between pre-RC assembly
and Cdk2-dependent origin firing, and investigated chro-
matin binding of replication-related proteins in
Cdco6-supplemented extracts (Figure 4A). In control
extracts, chromatin association of Mcm4, Mcm2 and
Mcm6 was observed at 10min and loading of Cdc7 and
Drfl almost overlapped with that of Mcm4. Chromatin
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Figure 4. Cdc6 inhibits DNA replication after Cdc7 has been loaded.
(A) Sperm nuclei (3ng DNA/ul) were incubated in extracts supple-
mented with buffer (none) or GST-Cdc6 (700nM). Chromatin was
isolated at indicated time points and subjected to immunoblotting.
Egg extracts (Ex; 2ul) were also applied. (B) DNA synthesis in
sperm nuclei were measured after incubation for 90 min in non-treated
extracts (column 1), extracts supplemented with 700 nM of GST-Cdc6
(column 2) or Cdc7-depleted (ACdc7) extracts (column 3). Sperm nuclei
(15ng DNA/pl) were incubated in extracts supplemented without
(non-treated) or with 700nM of GST-Cdc6 (+GST-Cdc6) for 45 min,
followed by nuclear isolation. DNA synthesis was assayed after the
nuclei isolated from non-treated or GST-Cdc6 supplemented extracts
were incubated for 90min with Cdc7-depleted extracts (ACdc7) con-
taining 100 nM of geminin (column 4 or 5, respectively). DNA synthesis
is represented as a percentage of the radioactivity incorporated into
DNA in the samples of interest to that after incubation with control
extracts for 90min. Inset: Mock-treated (m) and Cdc7-depleted (A)
extracts (Ex; 2pl) were subjected to immunoblotting. (C) Sperm
nuclei (15ng DNA/ul) were incubated for 45min in extracts supple-
mented with buffer (none) or GST-Cdc6 (700nM) and were isolated
(lanes 1 and 2). The isolated nuclei were incubated with Cdc7-depleted
extracts supplemented with geminin (100nM), and the chromatin-
bound proteins at indicated time points were detected by immunoblot-
ting (lanes 3-6). Open and closed arrowheads represent endogenous
Cdc6 and GST-Cdc6, respectively.

binding of Dbf4 was observed from the beginning consist-
ent with a previous report (14). The accumulation of SId5
and pola on chromatin peaked around 45 min, concomi-
tant with the peak of nascent strand synthesis (Figure 1B).
In Cdc6-supplemented extracts, the chromatin binding of
Mcm4, Dbf4 and Cdk2 was not altered compared to that in
control extracts although chromatin loading of Cdc7 and
Drfl appeared slightly lower. Then, we assessed whether
Cdc6-induced replication block was due to the decrease in
Cdc7 on chromatin. However, Figure 4B shows that chro-
matin isolated from Cdc6-deregulated extracts could rep-
licate well in Cdc7-depleted extracts in which replication of
sperm chromatin was severely attenuated, implying that
chromatin-loaded Cdc7 in the isolated fraction is sufficient
to support replication. This observation suggests that Cdc6
does not essentially inhibit chromatin loading of Cdc7 to
suppress DNA replication, rather the inhibition step lies
after Cdc7 has been loaded on licensed chromatin.
Furthermore, we investigated chromatin-bound Cdc6
and other proteins under these conditions (Figure 4C).
The result shows that in control extracts, endogenous
Cdc6 bound to chromatin at lower level at 45 min when
strong chromatin binding of Cdc6 was still observed in
Cdco6-supplemented extracts (first incubation). Chromatin
was then isolated and incubated with fresh Cdc7-depleted
extracts supplemented with geminin to prevent de novo
origin licensing (second incubation). In second incubation,
Cdc6 dissociated rapidly from chromatin as soon as 2 min
and almost disappeared later than 5min. Intriguingly,
chromatin binding of Sld5, which was suppressed in the
first incubation in Cdc6-deregulated extracts, drastically
recovered in second incubation paralleling with the dissoci-
ation of Cdc6 from chromatin. These results strongly
suggest that DNA replication is inhibited after chromatin
loading of Cdc7, but before chromatin loading of SId5 in
Cdco6-deregulated extracts.

Next, we employed 7.5% SDS-PAGE to address
phosphorylation status of Mcm2-7 in the chromatin
fraction (Figure 5A and Supplementary Figure S2).
While individual subunits of the Mcm2-7 complex are
differentially phosphorylated during the cell cycle, the
changes in phosphorylation are most pronounced and
dynamic for the Mcm4 subunit (5). The phosphatase-
treated band is likely to be the non-phosphorylated form
(Band 1 in Supplementary Figure S2), and Mcm4 band
in extracts migrated more slowly than Band 1 (Band 2,
basal phosphorylation), reconfirming that Mcm4 is
phosphorylated in interphase prior to DNA replication.
During 30—45 min incubation in control extracts, two add-
itional slowly migrating bands appeared (Bands 3 and 4,
hyperphosphorylated forms). Figure 5A shows that,
although the basal phosphorylation state was not
affected in Cdc6-supplemented extracts, hyperphos-
phorylated forms of Mcm4 were strongly suppressed in
the presence of Cdc6.

Several lines of studies indicate that subunits of Mcm2-
7 complex are phosphorylated by Cdc7, Cdk2 and check-
point kinases during the course of DNA replication
(6,14,22,34). Thus, we attempted to determine the kinase
responsible for the hyperphosphorylation observed on
Mcm4 that was inhibited by Cdc6. Figure 5B shows that
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Figure 5. Cdc6 inhibits Cdc7-dependent phosphorylation of Mcm4.
(A) Chromatin was isolated at 30 and 45min from extracts supple-
mented with buffer (none) or GST-Cdc6 (Cdc6; 700 nM) and subjected
to A-PPase treatment in the presence of absence of EDTA, followed by
immunoblotting analysis. Egg extracts (Ex; 2pul) were also applied.
(B) Chromatin was isolated after a 45-min incubation of sperm nuclei
(3ng DNA/ul) with extracts supplemented with buffer (none), GST-
Cdc6 (Cdc6; 700nM), p2l (Sng/ul), caffeine (caff; SmM) or
wortmannin (wort; 100 uM) and subjected to immunoblotting. Egg
extracts (Ex; 2 pl) were also applied. (C) Chromatin was isolated after
a 75-min incubation of sperm nuclei (15ng DNA/ul) with mock-treated
(mock) or Cdc7-depleted (ACdc7) extracts. Isolated chromatin was
treated with A-PPase in the presence or absence of EDTA, and then
subjected to immunoblotting. Mock-treated (m) and Cdc7-depleted (A)
extracts (Ex; 2 pl) were also applied.

the hyperphosphorylation of Mcm4 was insensitive to the
treatment of extracts with p21, caffeine or wortmannin,
excluding Cdk2, ATM/ATR or DNA-dependent protein
kinase from the kinases potentially affected by the excess
Cdc6. On the other hand, immunodepleting Cdc7 from
interphase extracts almost completely abolished the
hyperphosphorylation of Mcm4 observed in our condition
(Figure 5C), suggesting that the presence of excess Cdc6
during DNA replication inhibits Cdc7-dependent
hyperphosphorylation of Mcm4. In addition, phosphoryl-
ation of chromatin-bound Cdc7 detected in control
extracts was also suppressed in the presence of excess
Cdc6 (Figure 5B). Importantly, we observed that Cdc6
did not affect the phosphorylation status of Mcm4 that
had already been hyperphosphorylated (Supplementary
Figure S3) and also, the suppressed phosphorylation of
Mcm4 in Cdc6-deregulated extracts recovered paralleling
with the dissociation of Cdc6 from chromatin (Figure 4C).
Together, these results strongly support the idea that de-
regulation of Cdc6 blocks DNA replication before Mcm4
has been hyperphosphorylated.

Regarding the reduction in chromatin loading of Cdc7
and Drfl seen in Figure 4A, it is possible that phosphor-
ylation of Mcm4 and/or Cdc7 stabilizes Drfl-Cdc7 on
chromatin although the stabilization is not essential
for DNA replication. Furthermore, chromatin loading
of the cohesin subunits, Smcl and Smc3, was significantly
suppressed in  the  Cdc6-deregulated  condition
(Supplementary Figure S4), which reportedly depends on
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Figure 6. Cdc6 inhibits Cdc7-dependent phosphorylation of Mcm2-7
on chromatin during DNA replication. (A) Silver staining (upper) and
autoradiography (lower) profiles of the kinase assay using recombinant
proteins. Mouse Mcm2-4-6-7 complex was incubated at 30°C for
60 min without (lanes 7 and 8) or with human Cdc7-ASK (lanes 1-6)
in the absence (lanes 7 and 8) or presence of GST-Cdc6 (160, 320, 480,
640, 800 and 800nM for lanes 2, 3, 4, 5, 6 and 7, respectively). (B)
Chromatin was isolated after 0-, 15-, 30- or 45-min incubation of sperm
nuclei (3ng DNA/ul) with extracts supplemented with buffer (none)
or GST-Cdc6 (700nM). Isolated chromatin was subjected to
immunoblotting.

Cdc7 kinase activity (35). Together, these results strongly
argue that Cdc6-induced replication inhibition is linked to
Cdc7 kinase activity.

Cdc6 inhibits Cdc7-dependent phosphorylation of Mcm2-7
on chromatin

To gain insight into the mechanism of inhibition of
Cdc7-dependent phosphorylation events by Cdc6, we
examined whether Cdc6 directly modulated the kinase
activity of Cdc7. We assayed Cdc7 kinase activity using
purified recombinant human Cdc7-ASK and mouse
Mcm2-4-6-7 complex as a substrate (22,25). As we men-
tioned above, Mcm?2 is a well-known target of Cdc7 kinase
during the course of DNA replication, and Mcm?2 in the
Mcm2-4-6-7 complex is efficiently phosphorylated by
Cdc7-ASK in this assay. Cdc7 also phosphorylates
Mcmd and Mcm6 in vitro, albeit to lesser extent, which
can be detected as smeared bands above the lowest Mcm4
band after Cdc7-mediated phosphorylation reaction (see
silver staining profile of Figure 6A). Remarkable phos-
phorylation of Cdc6 was also observed in the presence
of Mcm2-4-6-7, but independent of Cdc7. This might
be due to a little contamination of Cdk2 in the Mcm
fraction, which did not affect phosphorylation status of
Mcm proteins by Cdc6 addition. Figure 6A shows that
phosphorylation of Mcm2 and Mcm4 by Cdc7-ASK
was not suppressed, rather slightly stimulated in the
presence of Cdc6 possibly due to the stimulation of
Cdc7 kinase by the acidic amino acids on Cdc6 (295).
Thus, the above result indicates that Cdc6 itself does not
act as a direct inhibitor of Cdc7 kinase.

Finally, we questioned if the suppression by Cdc6 was
specific to phosphorylation of Mcm4 subunit. We isolated
nuclear fraction at various time points after incubation
of sperm nuclei with egg extracts, and detected Mcm4,
Mcm2 and phosphorylation of Ser40/41 (S40/41) and
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Ser108 (S108) in Mcm?2 in the fraction (34). As shown in
Figure 6B, phosphorylation of Mcm?2 on S40/41 and S108
was partially suppressed even under the condition in
which hyperphosphorylation of Mcm4 was mostly
blocked. These results together suggest an ‘on-chromatin’
regulation of the Cdc7-mediated phosphorylation of
selected residues on Mcm2-7 complex, preferentially on
Mcm4, rather than a direct inactivation of Cdc7 kinase
by Cdc6.

DISCUSSION

In this study, we tried to elucidate the significance of
regulating Cdc6 during DNA replication by dissecting
the consequences of its deregulation on specific stages of
DNA replication and came up with the finding that de-
regulation of Cdc6 leads to Cdc7-dependent phosphoryl-
ation of Mcm2-7 and DNA replication instead of
stimulating over-replication in Xenopus egg extracts.
These findings extend our current understanding of Cdc6
function beyond origin licensing in two ways: (i) Cdc6 has
the capability to halt DNA replication before initiation;
and (ii) chromatin-bound Cdc6 acts as a modulator of
Cdc7-mediated phosphorylation of Mcm2-7.

Previously, the effects of Cdc6 deregulation have been
investigated by several groups in an attempt to study the
nuclear transport mechanism mediated by Cdk2. While
two of the groups did not find any inhibition by retaining
Cdc6 in the nucleus (26,36), two other groups have

demonstrated that retention of Cdc6 in the nucleus
perturbs DNA replication at an early stage (37,38). The
exact reasons behind these controversies remained unclear
because of lack of further investigations at molecular level.
Furthermore, most of these over-expression studies had
been performed using cancer cell lines (36-38) and, there-
fore, these results do not necessarily reflect those in
normal cell cycle. Notably, a previous study using
Xenopus egg extracts has shown that retention of excess
Cdc6 in the nucleus still support one round of DNA rep-
lication (26), which is in apparent contrast to our study.
Cells might use this regulation in a reversible manner
because we have observed that prolonged incubation dras-
tically rescues the inhibition of DNA replication by excess
Cdc6 (Supplementary Figure S1F), and the differences in
detailed conditions of experiments might result into
contradictory observations. In the present study, we
have addressed the effects of Cdc6 on specific stages of
DNA replication process rather than simply describing
gross effects, and found that deregulated Cdc6 halts
DNA replication before Cdc7-dependent phosphorylation
of Mcm2-7.

After licensing has been completed, the chromatin asso-
ciation of Cdc6 and ORC is destabilized and Cdc6 is
reloaded to chromatin after the commencement of elong-
ation phase. This Cdc6-destabilization period overlaps
with the timing of DDK-dependent phosphorylation of
Mcm2-7 subunits. Since Cdc6 did not inhibit Cdc7
kinase activity in purified systems, Mcm proteins are
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Figure 7. Outline of the observations leading to the inhibition of DNA replication by deregulated Cdc6. (A) Cdc6 is targeted to origin after
chromatin binding of ORC. (B) Mcm2-7 is recruited to chromatin by Cdtl. (C) After Mcm2-7 has been loaded onto chromatin (licensing),
Cdc6 is destabilized from chromatin. (D) Origin firing occurs by Cdc7 (DDK)-dependent phosphorylation of Mcm2-7 in concert with Cdk2
kinase activity. (E) When Cdc6 is deregulated resulting in insufficient removal from chromatin after licensing, DNA replication is arrested after
chromatin loading of DDK. (F) Persisting Cdc6 on chromatin after origin licensing prevents Cdc7-dependent phosphorylation of Mcm2-7 thereby

blocking further steps.



supposedly required to be included in pre-RC for
Cdco6-induced inhibition of their phosphorylation by
Cdc7. Indeed, a recent study has shown that, in the
context of pre-RC, DDK preferentially targets a
conformationally distinct subpopulation of Mcm2-7
complexes that is tightly linked to the origin DNA (39).
A study in yeast showed that the N-terminal
DDK-docking domain of Mcm4 interacts with Cdc7 for
substrate specification (40). The authors hypothesized that
this interaction facilitates ‘autophosphorylation” of Cdc7
that in turn boosts phosphorylation event of Mcm4.
Therefore, it is likely that Cdc6 is topologically situated
in close proximity to Mcm4 on chromatin, and thus
masks site(s) recognized by Cdc7 thereby suppressing
hyperphosphorylation of Mcm4 and autophosphorylation
of Cdc7.

Now, the question arises by what mechanism Cdc6
dissociates from chromatin. A recent report has
demonstrated that in human cells, Cdc6 is acetylated
by GenS5, a histone acetyltransferase, which results into
chromatin dissociation of human Cdc6 followed by
Cdk2-CyclinA-mediated phosphorylation on Ser106 to
promote nuclear exclusion (41). Therefore, it is possible
that intra-molecular regulatory program by acetylation
and/or other post-translational modifications of Cdc6 is
linked to subsequent DDK-mediated phosphorylation
events of Mcm2-7 complex. Given that phosphorylation
of Mcm4 by DDK facilitates its interaction with Cdc45
(6), and that Cdc45, Mcm2-7 and GINS complex
probably form the replicative helicase that unwinds
double-stranded DNA during the elongation stage (42),
it is plausible that regulation of Cdc6 is possibly one of
the mechanisms that help insulating pre-RC formation
from initiation by modulating establishment of replicative
helicases. These ideas are compatible with our observation
that Cdc7-catalyzed phosphorylation of Mcm2-7 and sub-
sequent loading of GINS, Cdc45 and pol o remain sup-
pressed in Cdc6-deregulated condition. A summary of our
observations is outlined in Figure 7.

Our results do not rule out the possibility that Cdc6 also
influences some other unknown pathway(s) that leads to
suppression of phosphorylation of Mcm4 paralleling chro-
matin loading of GINS complex to inhibit DNA replica-
tion. Nonetheless, there is no doubt that the inhibitory
step lies before DDK-mediated Mcm2—-7 phosphorylation
events and the suppression of chromatin loading of SId5
directly reflects the inhibition of DNA replication. Our
present work provides insight into the regulation of the
activation of replicative helicase by modulating phosphor-
ylation status of one of the subunits, Mcm4, as well as
Mcm2, and gives a hint why Cdc6 needs to be regulated
as soon as origin has been licensed. In the next stage, it
would be interesting to explore how cells overcome this
regulation during the progression of carcinogenesis where
in many cases Cdc6 is over-expressed.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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