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Nonhomologous end joining (NHEJ) plays a major role in double-strand break DNA repair, which involves a series of steps
mediated by multiprotein complexes. A ring-shaped Ku70/Ku80 heterodimer forms first at broken DNA ends, DNA-dependent
protein kinase catalytic subunit (DNA-PKcs) binds to mediate synapsis and nucleases process DNA overhangs. DNA ligase IV
(LigIV) is recruited as a complex with XRCC4 for ligation, with XLF/Cernunnos, playing a role in enhancing activity of LigIV.
We describe how a combination of methods—X-ray crystallography, electron microscopy and small angle X-ray scattering—
can give insights into the transient multicomponent complexes that mediate NHEJ. We first consider the organisation of DNA-
PKcs/Ku70/Ku80/DNA complex (DNA-PK) and then discuss emerging evidence concerning LigIV/XRCC4/XLF/DNA and higher-
order complexes. We conclude by discussing roles of multiprotein systems in maintaining high signal-to-noise and the value of
structural studies in developing new therapies in oncology and elsewhere.

1. Introduction

Nonhomologous End Joining (NHEJ) and Homologous
Recombination (HR) comprise the two major modes of
DNA double-strand break (DSB) repair in human cells.
Although HR is dominant in late S/G2 phases when a sister
chromatid is available [1], NHEJ, which does not require a
template [2], plays a major role in G1/early S phase [1]. It
is predicted that in humans about 50 endogenous DSBs per
cell during each cell cycle may occur [3]. These are mainly
generated by ionizing radiation, reactive oxygen species, and
DNA replication across a nick [2]. Unrepaired DSBs can
cause catastrophic gene loss during cell division, leading to
chromosomal translocations, increased mutation rates, and
carcinogenesis [4]. The NHEJ system is also responsible for
programmed DSBs in V(D)J recombination [5] and class
switch recombination [6] during development of immune
diversity. NHEJ has an alternative end-joining pathway,
which is mostly microhomology-mediated end joining [7]
and is independent of NHEJ components [8]. Here NHEJ
implies the main NHEJ pathway.

The NHEJ pathway comprises three major steps: synap-
sis, end processing and ligation [9]. Synapsis is carried
out by DNA-dependent protein kinase (DNA-PK) con-
sisting of Ku70, Ku80, DNA-PK catalytic subunit (DNA-
PKcs), and DNA. Ku70 and Ku80 form a ring-shaped
heterodimer around the broken DNA ends and maintain
them in proximity [10, 11]. DNA-PKcs, a very large protein
belonging to the phosphatidylinositol-3-OH kinase (PI3K)-
related kinase (PIKKs) family [12], is recruited through
interaction with the C-terminus of Ku80 [13, 14], and
causes the Ku70/80 heterodimer to move about one helical
turn inward from the end [15] to make space for DNA-
PKcs to bind DNA. Two DNA-PK assemblies are prob-
ably required to hold the two DNA ends close together
[16]. Activated DNA-PKcs phosphorylates itself and various
proteins, including the other NHEJ components [17, 18].
Synapsis induces the autophosphorylation of DNA-PKcs
and allows other NHEJ proteins access to DNA ends [19,
20].

The end processing involves nucleases such as Artemis
[21], which is capable of cutting an array of DNA overhangs
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and is thought to be sufficient as a nuclease, although
other nucleases in particular PNK, aprataxin (APTX), and
PNK-APTX-like factor (PALF), a 3′ exonuclease, cannot
be ruled out [22]. Artemis interacts with DNA-PKcs and
opens DNA hairpins in the V(D)J recombination process
[23]. Mutations in Artemis gene cause Radiosensitive Severe
Combined Immunodeficiency (RS-SCID) [21]. Polymerases
Polμ and Polλ use their BRCT domains to bind to Ku/DNA
complexes and terminal deoxynucleotidyl transferase (TdT)
is exclusively expressed in initial lymphoid cells to engage
in NHEJ of the V(D)J recombination process [24–26].
Furthermore, as recently shown Ku in its role as a lyase also
participates in end processing cutting DNA 3′ at abasic sites,
indicating that this protein, like its partner DNA-PKcs, has
enzymatic properties and thus fulfils a number of roles in the
NHEJ pathway [27].

The final ligation step of rejoining is mediated by DNA
ligase IV (LigIV), which is associated with dimeric X-
ray cross-complementation group 4 (XRCC4) [28]. These
proteins form a very stable complex, which is maintained at
2 M NaCl or 7 M urea [29]. XRCC4 stimulates adenylation
and ligase activity [30–32]. Knockouts of these genes in mice
result in the late embryonic lethality in the p53-dependent
manner [33–36] while mutations in lig4 gene result in
LIG4 syndrome characterized by radiosensitivity, unusual
facial features, microcephaly, developmental and growth
delay, pancytopenia, and skin abnormality [37]. XRCC4-
Like Factor (XLF)/Cernunnos (XLF), mutations of which
in humans cause Severe Combined Immunodeficiency, also
interacts with XRCC4, and enhances the ligation by LigIV
[38, 39].

Here we review what is known of the architectures
of the transient multicomponent complexes that mediate
Nonhomologous End Joining. Figure 1 is an attempt to
construct an interaction diagram that summarises our
current understanding of NHEJ protein interactions and
phosphorylation by DNA-PKcs, indicating where structural
information is available. Although the existence of DNA-
PK—the complex between DNA-PKcs, heterodimeric Ku
and DNA—is clearly defined, as is the tight complex between
XRCC4 and LigIV, the temporal and spatial organisation of
higher-order complexes is unclear. Do subcomplexes exist
that allow the Ku to get off the DNA before ligation, or is
there one supercomplex in which DNA-PK, LigIV/XRCC4,
and XLF coexist to achieve ligation? In this case, how does
Ku leave when ends are ligated? In this paper, we first
consider what is known about the structure of the huge
single chain DNA-PKcs and how this might lead to a better
understanding of the target for use in structure-guided
drug discovery. We then discuss the organisation of DNA-
PKcs/Ku70/Ku80/DNA complex (known as DNA-PK), in
order to shed light on the initial events that take place in the
NHEJ pathway. We discuss the emerging evidence concern-
ing 3D structures of LigIV/XRCC4/XLF/DNA complexes,
which should give clues about the binding and functional
mechanism of LigIV/XRCC4 and XLF in NHEJ. Finally we
consider the spatial arrangement of higher-order complexes
in order to give a picture of the NHEJ repair system as a
whole.
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Figure 1: Schematic diagram of interactions of the NHEJ machin-
ery. Colour-filled shapes indicate the proteins and complexes with
known 3D structures. Solid arrows indicate confirmed whereas
dashed arrows are plausible interactions. Phosphorylation events
are indicated by letter “p”.

2. Structural Biology of Individual Components

Considerable advances have been made in the structural
biology of individual components and complexes of the
NHEJ repair machinery, but further work is required to
understand the spatial organisation of this complicated and
dynamic process. Here we discuss what is known about each
component before discussing the multiprotein complexes
that mediate their functions in NHEJ.

2.1. Ku70/80. The double-stranded (ds) DNA end-binding
activity of Ku70 and Ku80 requires their association to form
a heterodimer [40]. The crystal structure of the Ku70/Ku80
heterodimer reveals a similar topology and domain organi-
sation, comprising an amino-terminal α/β domain, a central
β-barrel domain, and a helical C-terminal arm [10]. These
proteins, when associated, form a pseudosymmetrical struc-
ture, in which residues that contribute to the dimer interface
show a low level of sequence identity (approximately 15%;
Figure 2), favouring heterodimer formation over Ku70-Ku70
or Ku80-Ku80 homodimerisation.

The crystal structure of the Ku70/80 heterodimer in
complex with one 55-nucleotide long Y-shaped DNA frag-
ment shows that the Ku70/80 heterodimer adopts the
shape of a ring that encircles duplex DNA (Figure 3). No
large conformational changes occur on binding DNA to
heterodimeric Ku except for the C-terminal domains of Ku70
and Ku80. Indeed, no contacts with DNA bases and only
a few interactions with the sugar-phosphate backbone are
made. The DNA duplex is embraced through the Ku70/80
preformed ring in such a way that one DNA face is relatively
accessible to the solvent and therefore exposed to processing
enzymes that remove damaged nucleotides and fill gaps prior
to ligation. These features can provide structural support to
broken DNA ends and bring the DNA helix into phase across
the junction during end processing and ligation. Although
Ku70/80 heterodimer shows low affinity for circularized
DNA [43] and does not bind any DNA substrates shorter
than 14 bp, it does bind dsDNA fragments of similar length
and structure in a DNA sequence-independent fashion and
irrespective of whether the DNA ends are blunt, with hairpin
loops, or 5′ or 3′ overhangs.
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Figure 2: Ku70 and Ku80 aligned sequences on the basis of their structures. They show a similar domain organisation despite the low
sequence identity. The alignment was created with ClustalW2 [41] and visualized with ESPript [42]. Many residues are conserved (black box)
or semiconserved/similar (gray box).

2.2. DNA-PKcs. The structure of DNA-PKcs has proved
quite elusive. Some beautiful work performed using cryo-
electron microscopy single particle reconstruction of DNA-
PKcs [44–47] has given a good impression of the overall
structure (see Figure 4(a)). This has now been comple-
mented by work in our laboratory. We have shown that
DNA-PKcs crystals can be grown and diffract to about 8.5 Å
resolution but the diffraction is better for the complexes
with C-terminal fragments of Ku80, presumably due to a

stabilization of the DNA-PKcs in the complex leading to
better ordering of the crystal packing. We have recently used
multiwavelength anomalous dispersion with the Ta6Br12

2+

heavy-metal cluster [48] to solve the structure of DNA-
PKcs in complex with C-terminal domain of Ku80 at 6.6 Å
resolution (Figure 4(b)).

Much of the DNA-PKcs polypeptide chain is constructed
from HEAT repeat units (Figure 5) to form several separate
domains. The DNA-PKcs tertiary structure measures 160 Å
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Figure 3: Heterodimerisation of Ku70/80 defines a ring shape that binds DNA. Crystal structures of Ku70/80 heterodimer in the absence of
DNA (a) and in DNA-bound form (b). Adapted from [10].
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Figure 4: Equivalent views of DNA-PKcs as defined by (a) Cryo-electron microscopy and (b) X-ray protein crystallography. References
to the publications and resolutions of the models are given above. Colour coding of these EM structures are as given in their respective
publications [44–47]. The X-ray crystallographic experimental electron density map is as defined by Sibanda et al. [48].
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Figure 5: An example of HEAT-repeat motifs. Two consecutive α-
helical hairpins are shown.

high and 120 Å across as viewed in Figure 6(a). From the
N-terminus, HEAT-repeat motifs comprising about 66 α-
helices fold into a hollow circular structure, which when
viewed from the side resembles a cradle (Figure 6(b)). The
chain changes direction before the circle is complete, thus
leaving a gap (Figure 6(a)). Within this circular structure the
regularity of the HEAT repeats breaks down at certain points,
as indicated in Figure 6(a) with blue arrows. These points of
irregularity may play a part in conformational changes that
have been implicated in the function of this molecule [16].
It is possible that these conformational changes could have
a bearing on the size of the gap (Figure 6(a)), which may
have a role in the release of DNA-PKcs from DNA ends when
NHEJ is complete. The ring structure most likely acts as a
platform for proteins that engage in repair of broken DNA
and together with Ku holds in place the DNA while it is being
repaired.

In the second part of the structure the polypeptide chain
exploits HEAT repeats to fold into a small, globular, putative
DNA-binding domain within the circular structure. It is
known that DNA-PKcs binds both double-stranded and
single-stranded DNA. Williams et al. (2008) have proposed
that “the protrusion” in their cryo-EM structure binds DNA
[47], and this protrusion is equivalent to the small globular
domain located within the circular region of the crystal
structure. This remains the best candidate for both single-
and double-stranded DNA recognition, but further work
on DNA-PK (DNA-PKcs, Ku, DNA complex) crystals at a
higher resolution structure of DNA-PKcs will be needed to
confirm this. Thirdly, the C-terminal region folds into the
Head/Crown that is perched right at the top of the cradle
shaped circular structure and extends further back. This part
contains the FAT, kinase domain, FATC, and various parts
where other proteins, as indicated by biochemical studies,
may bind to form complexes with DNA-PKcs (Figure 7).

The core of the kinase structure from PI(3)Kγ, one of
the family members, was superposed onto this Head/Crown

region resulting in a plausible fit to the N-lobe β-strands and
the C-lobe α-helices (Figure 8). In this location the kinase is
exposed and easily accessible to substrates (Figure 8). From
the location of the kinase domain the positions of the FAT
and FATC regions can be inferred (Figure 7) as the kinase
domain likely “snuggles” in between these two regions [62].

The size of the monomer of DNA-PKcs is predicted
by small angle X-ray scattering (SAXS) to be about 155 Å
[63], broadly in agreement with that of the crystallo-
graphic structure. DNA-PKcs dimerizes without DNA in a
concentration-dependent manner. SAXS data indicate a large
conformational change between autophosphorylated and
unphosphorylated DNA-PKcs; the dimension and radius
of gyration of phosphorylated DNA-PKcs increased 25
and 2 Å, respectively, compared to mock DNA-PKcs. Also,
shape reconstruction of phosphorylated DNA-PKcs shows
a wider cleft between head and palm domains than in the
unphosphorylated enzyme.

2.3. DNA Ligase IV. Human LigIV has also proved difficult
to study in isolation due to instability and flexibility but it is
stabilised by interaction with XRCC4 [28]. In human, LigIV
is one of three ATP-dependent DNA ligases, I, III, and IV, and
plays a central role in eukaryotic NHEJ. LigIV can be divided
into the catalytic and interaction regions. There are excellent
reviews of the comparison of structures of DNA and RNA
ligases, and RNA capping enzymes elsewhere [64–67].

LigIV belongs to the nucleotidyltransferase superfamily
and carries out a three-step nucleotidyl transfer reaction: the
formation of covalent enzyme-nucleotide monophosphate
(NMP) intermediate (step 1), the transformation of the
NMP to a 5′-phosphate of polynucleotide (step 2), and
the joining of the 5′-phosphate with 3′-hydroxyl to seal
two polynucleotides (step 3) [68]. These enzymes have
four common motifs (I, III, IV, V) and in addition two
more motifs (IIIα and VI), which are conserved among
the cellular and ASF virus capping enzymes and eukaryotic
ATP-dependent DNA ligases [69]. A recently found motif,
Va, is well conserved among human DNA ligases [70]. The
motif I KX(D/N)G has the catalytic lysine which forms
the NMP-covalent intermediate. Motifs I-V are located in
the nucleotidyltransferase domain (NTase) (Figure 9), the
core of which comprises three mainly antiparallel β-sheets
flanked by six α-helices [64]. Motifs Va and VI belong to
the oligonucleotide/oligosaccharide-binding domain (OBD)
(Figure 9), which has the five stranded Greek-key β-barrel
capped by an α-helix [64, 71]. NTase and OBD are conserved
among capping enzymes and DNA ligases [64]. Most LigIV
syndrome mutations are found in the NTase and OBD [72]
(Figure 9).

Many enzymes in the nucleotidyltrasferase superfamily
have extra domains in addition to conserved catalytic core
domains. N-terminal to the NTase, for instance, the human
DNA ligases have DNA-binding domain (DBD), the three-
dimensional structure of which was first uncovered by Pascal
et al. (2004) with the catalytic domains of human DNA
ligase I (LigI) complexed with an unligatable, nicked DNA
fragment [73]. This domain is also found in archaeal DNA
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Å

Figure 6: Crystal structure of DNA-PKcs. Molecular surface of the DNA-PKcs structure showing (a) front and (b) side views. Also shown
in (a), is the overall size of DNA-PKcs with the potential flexible sites indicated in blue arrows. The molecule is colour coded as follows: the
ring structure that is predominantly HEAT repeats is green; the forehead that is part of the ring structure is light green; the putative DNA
binding domain is magenta; the larger C-terminal part that includes the FAT and FATC domains is red, and the kinase domain is yellow.
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double strand ends to DNA-PKcs [60], the kinase interacting protein (KIP) [61], and c-Abl that binds using its SH3 a binding that is triggered
by DNA damage [60].

ligases [74–76] and possibly other eukaryotic, Poxvirus, and
archaeal DNA ligases [77]. Pascal et al. (2004) showed that
DBD is essential for LigI to bind DNA and to carry out
ligation of DNA nicks [73]. However, this does not seem to be
the case for DNA ligase III [78], although most DNA-binding
affinity of LigIV seems to come from its DBD (T Ochi and
TL Blundell, unpublished results). These results suggest that

DBD of each human DNA ligase has different DNA-binding
properties, although they are likely to have similar structures
[79]. Two LigIV syndrome mutations are severe only when
they are combined with R278H, and they seem to have little
impact on LigIV activity [37]. On the basis of structural
similarities of the catalytic regions of LigI and LigIV, they are
likely to bind DNA in a similar manner.
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In addition to the catalytic region, human DNA ligases
have extra domains [79]. LigIV has a tandem BRCT domain
with a linker predicted to be mostly disordered. This linker
seems to be important for the catalytic activity of LigIV
[80] and has a phosphorylation site at T650 by DNA-
PKcs, the phosphorylation of which stabilizes LigIV [81].
The BRCT domain, which typically has four parallel β-
strands surrounded by three α-helices [82], is common in
cell cycle checkpoint proteins that respond to DNA damage
[83]. LigIV interacts with XRCC4 mainly through the linker

between the two BRCT [80]. As noted above, in addition
to the interaction with XRCC4, the first BRCT domain
(BRCT1) has been shown to interact with Ku70/80 [84].

Structures of tandem BRCT domains of human BRCA1
and MDC1, yeast Crb2, Nbs1, and Brc1, have been solved
with different phosphopeptides. Four key residues that form
the phospho-serine binding pocket—the (S/T)G motif at
the end of the first β-strand (β1) and the (S/T)XK motif
at the beginning of the second helix (α2) [85–93] have
been identified; the residues are conserved in the tandem
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BRCT domain of LigIV except that the second motif is
replaced by NXR. Thus BRCT1 might bind to phosphoser-
ines [94], although the interactions with the two proximal
BRCT domains found in BRCA1, MDC1, Crb2, Nbs1, and
Brc1 are unlikely to occur in LigIV as the tandem BRCT
domains are probably positioned apart [94, 95]. Indeed,
in vitro phosphopeptide binding experiments showed that
BRCT domains of LigIV bound phosphopeptides [96, 97].
However, the precise sequence of a phosphopeptide that
binds to the BRCT domains has not yet been determined.

Since the tandem BRCT domains have a common
globular arrangement of the BRCT domains, LigIV domains
may interact when LigIV is in the free form. The main
dimerization interface of the tandem BRCT domain is α2
in BRCT1, and the first and third helices α′1 and α′3 in
the second BRCT domain (BRCT2) [98]. Interestingly, the
interaction surface of those BRCT domains and XRCC4 is
similar to that of other tandem BRCT domains (as discussed
below). It is possible that a BRCT domain from another
protein interacts with α2 of BRCT1, which is exposed to the
solvent. Thus, although the tandem BRCT domains of LigIV
have a long linker, they have features in common with other
tandem BRCT domains.

2.4. XRCC4. In solution, XRCC4 exists as a salt-dependent
equilibrium of dimers and tetramers [102] see Figure 10.
Tail-to-tail tetramerisation was observed in XRCC4 protein
crystals [103]. Binding of LigIV with the XRCC4 C-terminal
〈α-helical coiled-coil stabilizes the XRCC4 dimer formation.
The binding region between XRCC4 and LigIV overlaps with
the XRCC4 tetramerisation region, which may explain why
LigIV functions to shift XRCC4 to dimer form in solution
[102]. Whether tetrameric XRCC4 has a function during
NHEJ repair pathway is still not known.

The protein sequence of XRCC4 after residue 213 is not
included in XRCC4 crystal structures due to the expected
highly disordered and flexible structure of XRCC4 C-
terminal domain [103]. However, EM studies have revealed
that mouse XRCC4 C-terminal structure is a globular
domain [104]. This domain includes putative nuclear local-
ization sequences [105]. These authors also suggested that
a cluster of acidic amino acids 229–238 is important for
the auto-transcription activity. Furthermore, the XRCC4 C-
terminal domain is the target for NHEJ regulatory proteins.
DNA-PKcs phosphorylates XRCC4 and regulates its binding
with DNA [31]. Residues S260 and S318 in the XRCC4 C-
terminal region were identified to be the main phosphoryla-
tion sites by DNA-PKcs [106]. XRCC4 is also phosphorylated
by CK2, residue T233 and the phosphorylation by CK2
recruits PNK, which is likely to participate in NHEJ [107].
Indeed the structure of the ForkHead-Associated (FHA)
Domain of PNK with a XRCC4-derived phosphopeptide has
been solved [108]. XRCC4 residue K210 was also reported
to be important for small ubiquitin-like modifier (SUMO)
modification, which regulates XRCC4 cellular localization
[109]. The XRCC4 C-terminal region, together with the N-
terminal region (residues 1–28) and central region (residues
168–200), may facilitate cooperative DNA binding [31].
Thus, definition of the structure of the C-terminal region
structure will contribute to understanding how XRCC4
binds to LigIV and DNA in order to carry out its function.

2.5. XLF. XLF was identified through a cDNA functional
complementation cloning study of patient 2BN following
discovery of a group of NHEJ deficiency patients (2BN)
[38, 110]. It was also independently identified through
yeast two-hybrid screening for XRCC4 interactors [39]. XLF
is evolutionarily conserved throughout a wide range of
eukaryotes such as vertebrates, insects, and even in fila-
mentous fungi [111]. Full-length human XLF contains 299
residues. At its extreme C-terminus, a small conserved basic
cluster constitutes the nuclear localization sequence. Using
immunofluorescence staining, XLF was observed localizing
in nucleus of human cells [39].

The crystal structure of XLF with a C-terminal trunca-
tion, solved independently at 2.3 Å resolution by Andres et
al. [112] and in our laboratory [101], exists as a homodimer
containing a globular N-terminal head domain and extended
coiled-coil helical tail, which is folded back around the
coiled-coil (Figure 11). The N-terminal head domain starts
with a single helix α1, which is followed by a seven-stranded
antiparallel β structure sandwiching a helix-turn-helix motif
between β4 and β5. The tail structure contains three helices
α4, α5, and α6. While α4 extends away from N-terminal
head domain around 60 Å, α5 and α6 fold back and make
contact with the head domain. The α4 helices from the two
protomers interact as a coiled-coil structure burying highly
conserved and hydrophobic residues at the interface. This
dimerization of XLF is further enhanced through the folding
back of the α5 and α6 helices to encircle the α4 helices of
the other protomer to form a clamp, leading to burying of a
surface area of ∼6500 Å2. Gel filtration, protein crosslinking
and analytical ultracentrifugation are also consistent with
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Figure 11: Crystal structure of XLF/Cernunnos. Ribbon diagram of the XLF/Cernunnos dimer. One protomer is rainbow colour going from
N-terminus (blue) to C-terminus (red). Adapted from Li et al. [101].

a stable homodimer form of XLF in solution [101]. XLF
was found to have concentration-dependent higher-order
complex formation during gel filtration experiments [112].
The homodimer of XLF, however, is the smallest stable
functional unit.

Due to the predicted disordered structure for the XLF C-
terminal region after residue 245, around 70 residues were
removed from the XLF C-terminus in the crystal structure
analyses [101, 112]. The approximate location of the XLF C-
terminal region, however, can be predicted to be near the
N-terminal head domain region according to the helix α6
direction.

Although XLF and XRCC4 have similar architectures,
large structural differences from head to tail occur between
these two proteins. For the head domain, both proteins
contain the same seven-stranded antiparallel β-structure
sandwiching a helix-turn-helix motif, but XLF contains an
extra helix at the N-terminus. As we have seen, the tail
structure of XLF contains distinct helices folding back, while
the extended coiled-coil tail structure of XRCC4 contains the
LigIV binding region near the C-terminus. The differences
in sequence and structure between XLF and XRCC4 tails
explain why LigIV does not bind to XLF in the same way as
XRCC4.

The functions and mechanisms of action of XLF in
NHEJ are still not fully understood. XLF not only stabilizes
LigIV/XRCC4 at broken DNA ends, but also enhances the
LigIV/XRCC4 end-joining process. XLF has also been found
to be essential for repairing mismatched 3′ overhangs and the
gap-filling process together with DNA polymerase polλ and
polμ [113, 114]. Understanding how XLF functions in NHEJ
through studying its interaction with other NHEJ proteins
structurally will help unravel the exact role of XLF. It will
contribute towards our current understanding of DNA repair
in NHEJ and may also potentially lead to future therapeutic
application for NHEJ defects patients.

3. Structural Biology of Complexes

3.1. DNA-PKcs/Ku70/Ku80/DNA Ternary Complex (DNA-
PK). The crystal structure of the Ku70/80 heterodimer does
not include the C-terminal DNA-PKcs interaction domain
of Ku80 (Ku80CTD), which is dispensable for the binding of
Ku70/80 to DNA but is required for DNA-PK recruitment
to the sites of damaged DNA [13, 14]. Nuclear magnetic
resonance analysis of 19 kDa Ku80CTD (residues 545–732)
defines an α-helical structure [115, 116]. Further structural
studies of full-length Ku70/80 with and without DNA have
been conducted using single-particle electron microscopy
(EM) [117] and SAXS combined with live cell imaging
[63]. The position of Ku80CTD was proposed to be under
the α/β domain of Ku70 by EM, but the domain was
found to be flexible in the SAXS study. Molecular dynamic
simulations of Ku80CTD produced an ensemble of confor-
mations, supporting the idea of Ku80CTD being a region
of high flexibility [63]. Taken together, the studies show
that association of Ku70 and Ku80 to form a heterodimer is
required for binding dsDNA ends, that Ku-dependent DNA
binding drives the recruitment of DNA-PKcs and that the
latter interaction involves the helical domain located at the
C-terminus of Ku80. Although Ku80CTD was included in
the crystal structure of DNA-PKcs, its position could not be
unequivocally defined, presumably due to the dominance of
similar alpha helical structures in the DNA-PKcs itself [48].

Insights into the DNA-PKcs/Ku70/Ku80 holoenzyme
structures and possible synaptic complexes have been
obtained using cryo-electron microscopy and SAXS.
Boskovic et al. (2003) used electron microscopy at low
resolution (∼30 Å) to demonstrate large conformational
changes in human DNA-PKcs when double-stranded DNA
binds, and suggested that this may correlate with the
activation of the kinase [118]. Subsequently, Spagnolo et al.
(2006) have used single-particle electron microscopy at
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∼25 Å resolution to study human DNA-PKcs/Ku70/Ku80
holoenzyme assembled on DNA [16]. They again found
evidence for conformational changes on binding of Ku
and DNA to DNA-PKcs. They identified dimeric particles
comprising two DNA-PKcs/Ku70/Ku80 holoenzymes,
which they consider are likely to be synaptic complexes,
maintaining broken ends and providing a platform for other
components required for end processing and ligation. A
SAXS study of DNA-PK revealed that it had two different
modes of dimerization as was observed previously with
DNA-PKcs [63]. Depending on the presence of either
40 bp hairpin DNA or 40 bp Y-shaped DNA, DNA-PK
formed the head-to-head or palm-to-palm dimer. Very
recently Perry et al. (2010) have taken study of the DNA-
PKcs/Ku70/Ku80 holoenzyme further by analyzing their
earlier SAXS studies in the light of the crystal structure of
DNA-PKcs [119]. They have impressively demonstrated that
DNA-PK phosphorylation causes a large conformational
change, sufficient to open the gap in the ring and provide
access to or release from DNA. Ku80CTD has been shown
to be flexible and to extend in solution to the benefit of
recruitment of DNA-PKcs. It is possible that Ku80 interacts
with DNA-PKcs on both sides of BSB [63].

3.2. DNA Ligase IV/XRCC4 Complexes. LigIV is stabilized by
forming a tight complex with XRCC4 [28]. About 99% of
LigIV is preadenylated when purified together with XRCC4
and it is difficult to readenylate after single-nick ligation
[120], implying that the LigIV/XRCC4 complex is ready to
ligate DNA. Unlike other human DNA ligases LigIV/XRCC4
can efficiently ligate one of the nicks of a DSB, although
the other is unligatable [26], and it can ligate DNA strands
across gaps and fully incompatible ends [121]. Furthermore,
it has been shown that LigIV can ligate single-stranded poly-
T DNA [122]. Interestingly, the ligation efficiency is higher
with long DNA substrates ≥157 bp than short ones ≤53 bp

[123]. This might be related to the observation that a single
LigIV/XRCC4 bridges two DNA ends [124].

The crystal structures of the XRCC4 dimer complexed
with the tandem BRCT domain of LigIV shows that the
linker between the two BRCT domains is well ordered and
forms a helix-loop-helix (HLH) clamp around the coiled-
coil [29, 94] (Figures 12(a) and 12(b)). The same interaction
mode and secondary structure arrangement are observed in
the orthologous yeast complex between XRCC4 (Lif1p) and
LigIV (Lig4p) [95] (Figure 12(c)). The two BRCT domains in
the human and yeast complexes extend the clamp, encircling
the coiled-coil domain. The 310-helix in BRCT1 is located
close to the conserved XRCC4 interaction region of the linker
(XIR: residue 748–784) between two BRCT domains. The
corresponding 310-helix in BRCT1 of 53BP1 participates in
the interaction surface of p53 [125, 126]. The interaction
of XRCC4 with LigIV produces a kink in one helix of the
coiled-coil of XRCC4 dimer and switches the left-handed
heptad repeat into a right-handed undecad coiled-coil; as a
result, the LigIV interaction surface becomes flat [29, 94].
The kink bends in the opposite direction in the complex
between XRCC4 with XIR and with the tandem BRCT
domain [94]. The former structure might be an intermediate
state of LigIV/XRCC4 interaction. If so, this dynamical
conformational change might have a biological role in vivo.
This kink does not appear in Lif1p/Lig4p even though the
refinement of the structure against a new 3.5 Å diffraction
data set was carried out (see [127], T Ochi and TL Blundell,
unpublished results). Thus, the kink may be unique to
human and some other higher organisms.

The second helix in HLH mediates a hydrophobic
interaction with the opposite side of the flat surface of
the XRCC4 to where XIR interacts [94] and a similar
extensive hydrophobic interaction is observed in Lif1p/Lig4
(residues 827–839) [95]. LigIV additionally interacts with
the coiled-coil of XRCC4 via α′1 and α′3 of BRCT2, in a
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manner that resembles the interaction between BRCT1 and
BRCT2 of other tandem BRCT domains. Superposition of
LigIV/XRCC4 and Lif1p/Lig4p based on XIR and the corre-
sponding region of Lig4p (LIR) shows that, apart from the
kink described above, a further change occurs in the position
of BRCT1 (Figure 13). This may be a crystallographic artefact
because BRCT1 is closely packed with BRCT2 belonging
to another molecule in both human and yeast structures.
However, the NMR structure of BRCT1 (PDB code: 2E2W)
has the same conformation as the crystallographic one,
suggesting at least human BRCT1 and the following linker
is likely to have the same conformation in solution.

A recently published EM structure of the LigIV/XRCC4
complex shows the N-terminal of LigIV in proximity to the
head domain of XRCC4 [128]. The authors compared two
LigIV/XRCC4 constructs, one with the full-length sequences,
and the other with a full-length LigIV and a truncated
XRCC4 (residues 1–213). From the differences of the two EM
images, they determined the position of the C-terminal of
XRCC4 and by labelling the hexahistidine tag with gold, they
identified the N-terminus of LigIV. Although the authors
reconstructed 2D averaged images of LigIV/XRCC4, the 3D
reconstruction failed partially because of heterogeneity of
the LigIV/XRCC4 conformation. Thus, they proposed that
the catalytic region of LigIV is connected to the C-terminal
region by a flexible linker and this may have functional
importance (see also Perry et al. (2010) [119]).

We have carried out SAXS studies of the tandem
BRCT domain of LigIV/mutated XRCC4 (BmX4) and
LigIV/mutated XRCC4 (LmX4) in order to investigate
the conformation of the catalytic region in solution
(Figure 14(a)) [129]. Here, mutated XRCC4 is identical to
the one used for solving the structure of XIR/XRCC4 [29].
The linearity of the respective Guinier plots confirmed that
the protein solutions were homogeneous and monodisperse

(Figure 14(b)). The deduced radius of gyration and the max-
imum molecular dimension of LmX4 are 9 Å and 43 Å larger,
respectively, than those of BmX4. The simulated scattering
profile using the crystallographic structure of BmX4 (PDB
code: 3II6) fitted the measured SAXS curve well (χ2 =
3.687, data not shown). Moreover, the ab initio 3D shape
restoration of BmX4 reproduced an overall conformation
consistent with the crystal structure (Figure 14(c)). The
ab initio shape reconstruction of LmX4 revealed that the
catalytic region may contribute additional density to the
head domain of XRCC4 or the tandem BRCT domain of
LigIV when compared with the conformation of BmX4
(Figure 14(c)). Since the extended, open conformation of
the catalytic region in solution has also been observed in an
archaeal DNA ligase [74], the extra density may correspond
to a similar conformation of the catalytic region of LigIV
to the closed conformation observed in other archaea DNA
ligases [75, 76]. As the shape restorations of LmX4 yielded
a reproducible conformation (also indicated by the normal-
ized spatial discrepancy (NSD) value after shape averaging),
this finding might imply interactions between the catalytic
region and BmX4. However, electrophoretic mobility shift
assay and protease analysis (data not shown) indicate that the
catalytic region is unlikely to have strong interactions with
BmX4. Thus, although the majority of LmX4 in solution may
have the extended open conformation, the catalytic region is
flexibly attached to BmX4. Our observations agree with the
EM study [128].

3.3. XLF/XRCC4 Complexes. The interaction between XLF
and XRCC4 is salt sensitive, it does not depend on DNA
[39, 133] and interactions occur through the head regions as
shown by yeast two-hybrid study of various mutants [134].
XLF bound to beads at its C-terminal was still able to pull
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q2 (Å−2)

LigIV(654–911)(violet)

q < 1.3/Rg

q (Å−1)
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at the University of California, San Francisco (supported by NIH P41 RR-01081) [132]. The crystallographic model of BmX4 (PDB code:
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down LigIV/XRCC4, implying that the C-terminal of XLF is
not important for interaction with LigIV/XRCC4 [135].

Mutagenesis studies indicate that the structurally
exposed XLF residue L115 (Figure 16 shown in green)
located in the β6-β7 loop is important for XLF/XRCC4
interaction [112]. Residues K63, K65, and K99 (Figure 15
shown in green) of XRCC4 are essential for interaction and
are located on the region of the head domain close to the
helical tail [112]. Nonessential interaction residues of XLF
are mainly located outside the head domain region whereas
the nonessential XLF/XRCC4 binding residues in XRCC4 are
mainly located on the topside of N-terminal head domain
and on the helical tail structure before the LigIV binding
region (Figures 15 and 16 shown in grey) [112]. These
studies are consistent with a linear side-by-side interaction
model, in which XLF head domains slide into the space
created by XRCC4 head domains and N-terminal part of the
tail structure [112] (Figure 17). However, we cannot exclude
a model for XLF/XRCC4, involving XLF and XRCC4 binding
together in a side-by-side manner but with a degree of twist
introducing curvature and possibly a circular complex. This
would have the advantage of forming a finite and discrete
complex. Further X-ray small angle scattering experiments
may be the best approach to resolving this, especially if
the complexes are dynamic as gel filtration experiments
suggest. However, some encouragement that well-defined

complexes can be identified is found in the observation that
XLF/XRCC4 complexes have been crystallized and X-ray
data collected, albeit to low resolution (Q Wu, TL Blundell
unpublished data).

3.4. Spatial Arrangement of Higher-Order Complexes. In
order to give a picture of the spatial and temporal organ-
isation of the NHEJ repair system as a whole, an under-
standing of the order of interactions during the assembly
of the DNA-PKcs/Ku70/Ku80/DNA ternary complex and
the LigIV/XRCC4/XLF/DNA quaternary complex will be
essential.

Ku70/80 and DNA-PKcs, which have higher DNA-
binding affinity compared to LigIV/XRCC4/XLF, most likely
form the DNA-PKcs/Ku70/Ku80/DNA ternary complex first.
For the following LigIV/XRCC4/XLF/DNA complex forma-
tion, the order and dynamics of protein assembly are still
to be determined. The interaction between XRCC4 and XLF
is relatively weak compared to the strong binding between
XRCC4 and LigIV. It is not clear whether the XLF-dimer
interactions with XRCC4-dimer are maintained when the
ligase is recruited. Protein interaction assays have confirmed
the XRCC4 independent, XLF recruitment to DSBs ends
through interaction with Ku70/80 only in the present of
DNA. This may imply that XLF can act independently
without XRCC4.
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Figure 16: Surface views of XLF1–233 (PDB code: 2QM4). Residue L115, which is important for XLF-XRCC4 binding is labeled in green.
Nonessential residues for XLF-XRCC4 interaction I105, E111, E169, L174, R178, L179, E185, and I195 and residues after 224 are labeled in
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Live cell imaging techniques have identified the imme-
diate recruitment of XLF to laser-induced DSBs with
Ku70/80 protein bound [136]. XRCC4 is dispensable for
XLF recruitment to DNA ends, but its presence can stabilize
the XLF/DNA interaction [136]. Protein interaction assays
have confirmed the interaction between Ku70/80 and XLF,
and this interaction only occurs in the presence of DNA
[136].

Both XRCC4 and XLF require a long piece of DNA
for binding. How DNA is structurally involved in all the
higher-order protein complexes is of fundamental interest.
The phosphorylation of LigIV, XRCC4, and XLF by DNA-
PKcs does not interfere greatly with the core functions of
these proteins, but could alter the relative binding affinities of
various protein-protein or protein-DNA interactions, which
are important for correct spatial arrangement of the higher-
order complexes. All of this uncertainty underlines the need
for further studies to characterise complexes temporally as
well as spatially.

4. Discussion

The challenges of structural characterisation of dynamic
multiprotein systems clearly demand a combination of
SAXS, EM, X-ray crystallography, and other approaches.
All will be advantaged by methods for stabilization and
fixation of the complexes. Modified constructs, for example,
phospho-mimicking mutation and truncation as well as
postmodification, for example, phosphorylation and methy-
lation, need to be explored in order to identify stable com-
plexes. For single particle cryo-EM studies, GraFix has been
successfully introduced to stabilize macromolecules [137].
This exploits glycerol gradient centrifugation into increasing
concentrations of chemical fixation reagent to stabilize
individual macromolecules and to prevent opportunistic
aggregation. A similar approach might be used for other
structural studies including X-ray crystallography, although
here molecular surface modification of the complexes may
prevent the formation of ordered crystals.
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Figure 17: XLF/XRCC4 linear side-by-side interaction model. Adapted from [112].

Crystals of large multiprotein assemblies suitable for
high-resolution X-ray diffraction remain a challenge. So the
development of methods to analyse low-resolution X-ray
diffraction data is essential. In this respect free-electron laser
(FEL) light sources may allow single particle X-ray FEL
(XFEL) imaging. X-ray crystallography with nanocrystals is
also a promising method.

X-ray crystallography is still the only technique to give
atomic resolution of large structures and high resolution
is essential for studying the binding of small molecules.
Indeed chemical tools that allow specific intervention in
NHEJ should allow dissection of the roles of the various
components. These tools would also likely contribute to the
discovery of lead compounds and preclinical candidates for
therapeutic intervention at allosteric and other regulatory
interaction sites in oncology and for patients with defects in
the NHEJ pathway.

The immediate interest, developing from the emerging
structure of DNA-PKcs, is the improvement of design
of inhibitors that bind at the ATP site of the protein
kinase moiety. Such inhibitors would not only inform the
development of useful therapeutic agents but should also
be of immediate value in investigating the possibility of
improving stability of the kinase domain, and the quality and
resolution of crystals.

Eventually, we would hope to pursue a structure-guided
approach to optimize the design of such inhibitors. Similar
approaches could be taken with the ligase active site. In
our view a more exciting and adventurous approach would
be to design new chemical entities that bind at allosteric
sites, templates or adaptor binding sites—so called allo-
targeting—that are critical to the activation, colocalisation
and/or specificity of the regulation of NHEJ. The use of
fragment-based methods [138–140] in this context is attrac-
tive. Likely targets would be the head-to-head interactions of
XRCC4 and XLF, the interactions of BRCT domains, and the
interaction of Ku70/80 and the DNA-PKcs.

In conclusion, a spatial and temporal understanding
of NHEJ should provide insights into the mechanism of
this critical cellular process and also suggest approaches to
designing useful chemical tools. Indeed the design of small
chemical agents that noncovalently modulate interactions
would also likely contribute to the discovery of lead com-
pounds that allow therapeutic intervention in oncology and
treatment of patients with defects in the NHEJ pathway.
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analysis of multiple sequence alignments in PostScript,”
Bioinformatics, vol. 15, no. 4, pp. 305–308, 1999.



16 Journal of Nucleic Acids

[43] W. S. Dynan and S. Yoo, “Interaction of Ku protein and DNA-
dependent protein Kinase catalytic subunit with nucleic
acids,” Nucleic Acids Research, vol. 26, no. 7, pp. 1551–1559,
1998.

[44] C. Y. Chiu, R. B. Cary, D. J. Chen, S. R. Peterson, and P.
L. Stewart, “Cryo-EM imaging of the catalytic subunit of
the DNA-dependent protein Kinase,” Journal of Molecular
Biology, vol. 284, no. 4, pp. 1075–1081, 1998.

[45] K. K. Leuther, O. Hammarsten, R. D. Kornberg, and G. Chu,
“Structure of DNA-dependent protein Kinase: implications
for its regulation by DNA,” The EMBO Journal, vol. 18, no. 5,
pp. 1114–1123, 1999.

[46] A. Rivera-Calzada, J. D. Maman, L. Spagnolo, L. H. Pearl, and
O. Llorca, “Three-dimensional structure and regulation of
the DNA-dependent protein Kinase catalytic subunit (DNA-
PKcs),” Structure, vol. 13, no. 243, p. 495, 2005.

[47] D. R. Williams, K .J. Lee, D. J. Chen, J. Shi, and P. L. Stewart,
“Cryo-EM structure of the DNA-dependent protein Kinase
catalytic subunit at subnanometer resolution reveals alpha
helices and insight into DNA binding,” Structure, vol. 16, pp.
468–477, 2008.

[48] B. L. Sibanda, D. Y. Chirgadze, and T. L. Blundell, “Crystal
structure of DNA-PKcs reveals a large open-ring cradle
comprised of HEAT repeats,” Nature, vol. 463, no. 7277, pp.
118–121, 2010.

[49] A. Fujimori, R. Araki, R. Fukumura et al., “Identification of
four highly conserved regions in DNA-PKcs,” Immunogenet-
ics, vol. 51, no. 11, pp. 965–973, 2000.

[50] C. Xiaoping, Y. Yaping, S. Gupta, Y.-M. Cho, S. P. Lees-Miller,
and K. Meek, “Autophosphorylation of DNA-dependent
protein Kinase regulates DNA end processing and may also
alter double-strand break repair pathway choice,” Molecular
and Cellular Biology, vol. 25, no. 24, pp. 10842–10852, 2005.

[51] P. Douglas, G. P. Sapkota, N. Morrice et al., “Identification of
in vitro and in vivo phosphorylation sites in the catalytic sub-
unit of the DNA-dependent protein Kinase,” The Biochemical
Journal, vol. 368, no. 1, pp. 243–251, 2002.

[52] Y. Ma, U. Pannicke, H. Lu, D. Niewolik, K. Schwarz,
and M. R. Lieber, “The DNA-dependent protein Kinase
catalytic subunit phosphorylation sites in human artemis,”
The Journal of Biological Chemistry, vol. 280, no. 40, pp.
33839–33846, 2005.

[53] P. Douglas, X. Cui, W. D. Block et al., “The DNA-dependent
protein Kinase catalytic subunit is phosphorylated in vivo on
threonine 3950, a highly conserved amino acid in the protein
Kinase domain,” Molecular and Cellular Biology, vol. 27, no.
5, pp. 1581–1591, 2007.

[54] M. Le Romancer, S. C. Cosulich, S. P. Jackson, and P.
R. Clarke, “Cleavage and inactivation of DNA-dependent
protein Kinase catalytic subunit during apoptosis in Xenopus
egg extracts,” Journal of Cell Science, vol. 109, no. 13, pp.
3121–3127, 1996.

[55] Q. Song, S. P. Lees-Miller, S. Kumar et al., “DNA-dependent
protein Kinase catalytic subunit: a target for an ICE-like
protease in apoptosis,” The EMBO Journal, vol. 15, no. 13,
pp. 3238–3246, 1996.

[56] H. Teraoka, Y. Yumoto, F. Watanabe et al.,
“CPP32/Yama/apopain cleaves the catalytic component
of DNA-dependent protein Kinase in the holoenzyme,” The
FEBS Letters, vol. 393, no. 1, pp. 1–6, 1996.

[57] S. Kumar, P. Pandey, A. Bharti et al., “Regulation of DNA-
dependent protein Kinase by the Lyn tyrosine Kinase,” The
Journal of Biological Chemistry, vol. 273, no. 40, pp. 25654–
25658, 1998.

[58] U. Yavuzer, G. C. M. Smith, T. Bliss, D. Werner, and S.
P. Jackson, “DNA end-independent activation of DNA-PK
mediated via association with the DNA-binding protein
C1D,” Genes and Development, vol. 12, no. 14, pp. 2188–2199,
1998.

[59] T. Wechsler, B. P. C. Chen, R. Harper et al., “DNA-PKcs
function regulated specifically by protein phosphatase 5,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 101, no. 5, pp. 1247–1252, 2004.

[60] S. Jin, S. Kharbanda, B. Mayer, D. Kufe, and D. T. Weaver,
“Binding of Ku and c-Abl at the Kinase homology region
of DNA-dependent protein Kinase catalytic subunit,” The
Journal of Biological Chemistry, vol. 272, no. 40, pp. 24763–
24766, 1997.

[61] X. Wu and M. R. Lieber, “Interaction between DNA-
dependent protein Kinase and a novel protein, KIP,” Muta-
tion Research/DNA Repair, vol. 385, no. 1, pp. 13–20, 1997.

[62] R. Bosotti, A. Isacchi, and E. L. L. Sonnhammer, “FAT: a
novel domain in PIK-related Kinases,” Trends in Biochemical
Sciences, vol. 25, no. 5, pp. 225–227, 2000.

[63] M. Hammel, Y. Yu, B. L. Mahaney et al., “Ku and
DNA-dependent protein Kinase dynamic conformations
and assembly regulate DNA binding and the initial non-
homologous end joining complex,” The Journal of Biological
Chemistry, vol. 285, no. 2, pp. 1414–1423, 2010.

[64] A. J. Doherty and S. W. Suh, “Structural and mechanistic
conservation in DNA ligases,” Nucleic Acids Research, vol. 28,
no. 21, pp. 4051–4058, 2000.

[65] T. Ellenberger and A. E. Tomkinson, “Eukaryotic DNA
ligases: structural and functional insights,” Annual Review of
Biochemistry, vol. 77, pp. 313–338, 2008.

[66] J. M. Pascal, “DNA and RNA ligases: structural variations and
shared mechanisms,” Current Opinion in Structural Biology,
vol. 18, no. 1, pp. 96–105, 2008.

[67] S. Shuman, “DNA ligases: progress and prospects,” The
Journal of Biological Chemistry, vol. 284, no. 26, pp. 17365–
17369, 2009.

[68] S. Shuman and C. D. Lima, “The polynucleotide ligase and
RNA capping enzyme superfamily of covalent nucleotidyl-
transferases,” Current Opinion in Structural Biology, vol. 14,
no. 6, pp. 757–764, 2004.

[69] S. Shuman and B. Schwer, “RNA capping enzyme and DNA
ligase: a superfamily of covalent nucleotidyl transferases,”
Molecular Microbiology, vol. 17, no. 3, pp. 405–410, 1995.

[70] C. Marchetti, S. A. Walker, F. Odreman, A. Vindigni, A. J.
Doherty, and P. Jeggo, “Identification of a novel motif in
DNA ligases exemplified by DNA ligase IV,” DNA Repair, vol.
5, no. 7, pp. 788–798, 2006.

[71] A. G. Murzin, “OB(oligonucleotide/oligosaccharide
binding)-fold: common structural and functional solution
for non-homologous sequences,” The EMBO Journal, vol. 12,
no. 3, pp. 861–867, 1993.

[72] D. A. Chistiakov, N. V. Voronova, and A. P. Chistiakov,
“Ligase IV syndrome,” European Journal of Medical Genetics,
vol. 52, no. 6, pp. 373–378, 2009.

[73] J. M. Pascal, P. J. O’Brien, A. E. Tomkinson, and T.
Ellenberger, “Human DNA ligase I completely encircles and
partially unwinds nicked DNA,” Nature, vol. 432, no. 7016,
pp. 473–478, 2004.

[74] J. M. Pascal, O. V. Tsodikov, G. L. Hura et al., “A flexible
interface between DNA Ligase and PCNA supports confor-
mational switching and efficient ligation of DNA,” Molecular
Cell, vol. 24, no. 2, pp. 279–291, 2006.



Journal of Nucleic Acids 17

[75] H. Nishida, S. Kiyonari, Y. Ishino, and K. Morikawa, “The
closed structure of an archaeal DNA Ligase from pyrococcus
furiosus,” Journal of Molecular Biology, vol. 360, no. 5, pp.
956–967, 2006.

[76] D. J. Kim, O. Kim, H.-W. Kim, H. S. Kim, S. J. Lee, and
S. W. Suh, “ATP-dependent DNA ligase from archaeoglobus
fulgidus displays a tightly closed conformation,” Acta Crys-
tallographica Section F, vol. 65, no. 6, pp. 544–550, 2009.

[77] I. V. Martin and S. A. MacNeill, “ATP-dependent DNA
ligases,” Genome Biology, vol. 3, no. 4, article 3005, 2002.

[78] E. Cotner-Gohara, I.-K. Kim, A. E. Tomkinson, and T. Ellen-
berger, “Two DNA-binding and nick recognition modules in
human DNA ligase III,” The Journal of Biological Chemistry,
vol. 283, no. 16, pp. 10764–10772, 2008.

[79] A. E. Tomkinson, S. Vijayakumar, J. M. Pascal, and T.
Ellenberger, “DNA ligases: structure, reaction mechanism,
and function,” Chemical Reviews, vol. 106, no. 2, pp. 687–699,
2006.

[80] U. Grawunder, D. Zimmer, and M. R. Lieber, “DNA ligase
IV binds to XRCC4 via a motif located between rather than
within its BRCT domains,” Current Biology, vol. 8, no. 15, pp.
873–876, 1998.

[81] Y.-G. Wang, C. Nnakwe, W. S. Lane, M. Modesti, and K. M.
Frank, “Phosphorylation and regulation of DNA ligase IV
stability by DNA-dependent protein Kinase,” The Journal of
Biological Chemistry, vol. 279, no. 36, pp. 37282–37290, 2004.
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