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Abstract
We study the tailoring of structured random graph ensembles to real networks, with the objective
of generating precise and practical mathematical tools for quantifying and comparing network
topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can
produce graphs with any prescribed degree distribution and any degree-degree correlation
function, its control parameters can be calculated fully analytically, and as a result we can
calculate (asymptotically) formulae for entropies and complexities, and for information-theoretic
distances between networks, expressed directly and explicitly in terms of their measured degree
distribution and degree correlations.

1. Introduction
In the study of natural or synthetic signaling networks, one of the key questions is how
network structure relates to the execution of the process which it supports. This is especially
true in systems biology, where, for instance, our understanding of how the structure of
protein-protein interaction networks (PPIN) relates to their biological functionality is vital in
the design of a new generation of intelligent and personalized medical interventions. In
recent years, high-throughput proteomics has allowed for the drafting of large PPIN data
sets, for different organisms, and with different experimental techniques and degrees of
accuracy. With this accumulation of information, we now face the challenge of analyzing
these data from a complex networks perspective, and using them optimally in order to
increase our understanding of how PPIN control the functioning of cells, both in healthy and
in diseased conditions. A prerequisite for achieving this is the availability of precise
mathematical tools with which to quantify topological structure in large observed networks,
to compare network instances and distinguish between meaningful and ‘random’ structural
features. These tools have to be both systematic, i.e. with a sound statistical or information-
theoretic basis, but also practical, i.e. preferably formulated in terms of explicit formulae as
opposed to tedious numerical simulations.

Many quantities have been proposed for characterizing the structure of networks, such as
degree distributions [1], degree sequences [2], degree correlations [3] and assortativity [4],
clustering coefficients [5], and community structures [6]. To assess the relevance of an
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observed topological feature in a network, a common strategy is to compare it against
similar observations in so-called ‘null models’, defined as randomized versions of the
original network which retain some features of the original one. The choice of which
topological features to conserve in the randomized models was mostly limited to degree
distributions and degree sequences. Such null models were used to assess the statistical
relevance of network motifs in real networks, viz. patterns which were observed
significantly more often in the real networks than in their randomized counterparts [7, 8, 9].
Whether any such proposed motif is indeed functionally important and/or represent
(evolutionary) arisen principles, is however not obvious; topological deviations from
randomized networks could also be merely irrelevant consequences of some neglected
structural property of the network, i.e. the result of an inappropriate null hypothesis rather
than of a distinctive feature of the process [10, 11]. The definition and generation of good
null models for benchmarking topological measures of real world graphs (and the dynamical
processes which they enable) is a nontrivial issue. Similarly, in comparing observed
networks (which, as a result of experimental noise, will usually not even have identical
nodes), one would seek to focus on the values of macroscopic topological observables, and
know the typical properties of networks with the observed features.

In recent years there have been efforts to define and generate random graphs whose
topological features can be controlled and tailored to experimentally observed networks. In
[12] a parametrized random graph ensemble was defined where graphs have a prescribed
degree sequence, and links are drawn in a way that allows for preferential attachment on the
basis of arbitrary two-degree kernels. In this paper we generalize the definition of this
ensemble, and show that it can be tailored asymptotically to the generation of graphs with
any prescribed degree distribution and any prescribed degree correlation function (and that it
is a maximum entropy ensemble, given the degree correlations). Moreover, in spite of its
parameter space being in principle infinitely large, in contrast to most random graph
ensembles used to mimic real networks, we can derive explicit analytical formulae for the
parameters of the ensemble, to leading order in system size, expressed directly in terms of
the observed characteristics of the network given. Graphs from this ensemble are thus
ideally suited to be used as either proxies or null models for observed networks, depending
on the question to be answered.

Statistical mechanics approaches have been proposed to quantify the information content of
network structures. Especially the (Shannon or Boltzmann) entropy has been instrumental in
characterizing the complexity of network ensembles [13, 14, 15]. Here, the crucial
availability of analytical expressions for the parameters of our ensemble will enable us to
derive explicit formulae, in the thermodynamic limit (based on combinatorial and saddle-
point arguments), for our ensemble's Shannon entropy, and hence also for the complexity of
its typical graphs. These formulae are compact and transparent, and expressed solely and
explicitly in terms of the degree distribution and the degree correlations that our ensemble is
targeting. Finally, along similar lines we can obtain an information theoretic distance
between networks, again expressed solely in terms of their degree distributions and degree
correlations. A companion paper [16] will be devoted to large scale applications to PPIN
data of these complexity and distance measures; here we focus on their mathematical
derivation. Although there is no need for numerical sampling in our derivations (all results
can be obtained analytically), we note that exact algorithms for generating random graphs
from the proposed ensemble exist [17].

Annibale et al. Page 2

J Phys A Math Gen. Author manuscript; available in PMC 2010 September 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2. Definitions and properties of network topology characterizations
2.1. Networks, degree distributions, and degree correlation functions

We study networks (or graphs) of N nodes (or vertices), labeled by Roman indices i,j,… etc,
where every vertex can be connected to other vertices by undirected links (or ‘edges’). The
microscopic structure of such a network is defined in full by an N × N matrix of binary
variables cij ∈ {0, 1}, where the nodes i and j are connected by a link if and only if cij = 1.
We define cij = cji and cii = 0 for all (i, j), and we abbreviate c = {cij}. Henceforth, unless
indicated otherwise, any summation over Roman indices will always run over the set {1,
…,N}.

A standard way of characterizing the topology of a network c, as e.g. observed in a
biological or physical system under study, is to measure for each vertex i the degree ki(c) =
Σj cij, the number of the links to this vertex. From these numbers then follow the empirical
degree distribution p(k|c) and the observed average connectivity k̄(c):

(1)

(using the Kronecker δ-symbol for n, m ∈ IN, defined as δnm = 1 for n = m and δnm = 0
otherwise). Objects such as p(k|c) have the advantage of being macroscopic in nature,
allowing for size-independent characterization of network topologies, and for comparing
networks that differ in size. However, networks with the same degree distribution can still
differ profoundly in their microscopic structures. We need observables that capture
additional topological information, in order to discriminate between different networks with
the same degree distribution (1).

To construct macroscopic observables that quantify network topology beyond the level of
degree statistics, it is natural to consider how the likelihood for two nodes of a network c to
be connected depends on their degrees, which is measured by the degree correlation function

(2)

Here [conn|c,k,k′] is the probability for two randomly drawn nodes with degrees (k, k′) to
be connected, and [conn|c] is the overall probability for two randomly drawn nodes to be
connected, irrespectively of their degrees, viz.

(3)

(4)

By definition, Π̃(k, k′|c) is symmetric under exchanging k and k′. For simple networks c0,
with some degree distribution p(k) but without any micro-structure beyond that required by
p(k)‡, it is known (see e.g. [18] and references therein) that in the limit N → ∞ one finds

‡In section 2 we will give a precise and more general mathematical definition of ‘simple networks’, relative to some imposed
macroscopic feature such as the degree distribution p(k).
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(5)

It follows that those topological properties of a given (large) network c, that manifest
themselves at the level of degree correlations and cannot be attributed simply to its degree
statistics, can be quantified by a deviation from the simple law (5); see also [7, 19, 20]. One
is therefore led in a natural way to the introduction of the relative degree correlations

(6)

By definition, Π(k, k′|c0) = 1 for sufficiently large simple networks c0, whereas any
statistically relevant deviation from Π(k, k′|c) = 1 signals the presence in network c of
underlying criteria for connecting nodes beyond its degrees. Just like p(k|c), Π(k, k′|c) is
again a macroscopic observable that can be measured directly and at low computation cost.
It is therefore a natural tool for quantifying and comparing network structures beyond the
level of degree statistics.

2.2. Properties of the relative degree correlation function
To prepare the ground for proving some asymptotic mathematical properties of the relative
degree correlation function Π(k, k′|c), we first simplify the denominator of (3):

(7)

Upon inserting the result for (4) together with (3) into (6) we then find that

(8)

and hence, using cii = 0 for all i,

(9)

We are now in a position to establish three identities obeyed by Π(k, k′|c). The first two of
these, viz. (10,12), are the main ones; they are used frequently in mathematical
manipulations of subsequent sections. The third provides the physical intuition behind
(10,12). It is assumed implicitly in all proofs that k̄(c) remains finite for N → ∞ and that the
limits N → ∞ exist.

• Linear constraints:

(10)

These are easily verified for simple graphs c0, for which Π(k, k′|c0) = 1 ∀k, k
′. However, they turn out to hold for any graph c, as can be proven using (9) as
follows:
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(11)

• Normalization:

(12)

This follows directly from (10) upon multiplying both sides by kp(k)/ k ,
followed by summation over all k.

• Interpretation of the linear constraints:

The LHS of (10) can be rewritten as

(13)

where we used (6), (3) and [conn|c, k] is the marginal probability of [conn|
c, k], which represents the probability that two randomly drawn nodes, one
having degree k, are connected. We conclude that our first (proven) identity
(10) boils down to the claim that for large N one has [conn|c, k] = k/N
(modulo irrelevant orders in N), which is easily understood.

We end this section with two further observations. First, the relations (10) involve the
degree distribution, so one must expect that the possible values for Π(k, k′|c) are dependent
upon (or constrained by) p(k|c). Second, several other useful properties of the kernel Π(k, k′|
c) can be extracted from (10). For instance, the only separable kernel Π is Π(k, k′|c) = 1 for
all (k, k′): a separable kernel is of the form Π(k, k′|c) = G(k|c)G(k′|c) for some function
G(k|c) (Π being symmetric), and insertion of this form into (10) leads immediately to G(k|c)
= 1 |for all k, c.

3. Random graphs with controlled macroscopic structure
3.1. Definition of the random graph ensembles

To study the signalling properties of real-world networks, or generate ‘null models’ to assess
the relevance of observed topological features, one needs random graph ensembles in which
one can control the topological characteristics one is interested in and ‘tune’ these to match
the characteristics of the observed networks. Most ensembles studied in literature so far have
focused on producing graphs with controlled degree statistics. The suggestion that (6) can be
used for identifying network complexity beyond degree statistics goes back at least to [7, 18,
19, 20]. In contrast to these earlier studies, which were mostly limited to measuring (6) for
real networks, here we take further mathematical steps that will allow us to use (6) as a
systematic tool for quantifying complexity and distances in network structure beyond degree
statistics. This requires generating random graphs in which we can control at will both the
degree distribution p(k) and the relative degree correlations Π(k, k′).

It will turn out that we can achieve our objectives with the following random graph
ensembles, in which all degrees ki are drawn randomly and independently from p(k), and
where in addition the edges are drawn in a way that allows for preferential attachment on the
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basis of an arbitrary symmetric function Q(k, k′) of the degrees of the two vertices
concerned:

(14)

(15)

Here  is a normalization constant that ensures Σc Prob(c|k,Q) = 1 for all (k,Q), k̄ =
N−1 Σi ki, and the function Q must obey Q(k, k′) ≥ 0 for all (k, k′) and N−2 Σij Q(ki, kj) = 1.
The ensemble (15) with prescribed degrees k = (k1, …, kN) was defined and studied in [12,
21]. We note that in the above ensemble one will have k̄ = Σk p(k)k + (N−1/2).

Upon making the simplest choice Q(k, k′) = 1 for all (k, k′) one retrieves from (14) the
‘flat’ ensemble, where once the individual degrees are drawn randomly from p(k), all graphs
c with the prescribed degrees carry equal probability:

(16)

This follows from the property that for Q(k, k′) = 1 the factor Πi<j [… δcij,1+… δcij,0] in
(14) depends on c via the degrees {ki(c)} only, and will consequently drop out of the
measure (15):

(17)

3.2. Asymptotic properties of the ensembles
One should expect that macroscopic physical observables such as p(k|c) (1) and Π(k, k′|c)
(8) are self-averaging, and can therefore be calculated, to leading order in N, in terms of
their expectation values over the ensemble (14)§. We should therefore find that each graph
drawn from (14) will for sufficiently large N have as its degree distribution p(k) and will
have relative degree correlations identical to

(18)

It turns out that (18) can be calculated analytically, and expressed in terms of p(k) and Q(k,
k′). The first published result related to this connection in an appendix of [12] was
unfortunately subject to an error; see the corrigendum [21] for the correct relation as given
below, of which the actual derivation is given in Appendix A of this present paper:

§Proving this self-averaging property explicitly for the ensemble (14) is trivial in the case of p(k|c), and nontrivial but feasible in the
case of Π(k, k′|c)
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(19)

where the function F(k|Q) is calculated self-consistently, for any Q(k, k′), as the solution of

(20)

It is satisfactory to observe, upon eliminating Q(k, k′) from (20) via (19), that (20) becomes
identical to the set of relations (10) that we derived earlier for Π(k, k′) solely on the basis of
the latter's microscopic definition. Clearly, (10) must indeed hold for every single graph of
the ensemble (14), provided N is sufficiently large. On the other hand, for finite N a typical
graph of the ensemble (14) will display deviations from (19) that are at least of order (N−1)
(the difference between definition (8) and its asymptotic form (9)), but possibly of order 
(N−1/2) (the typical finite size corrections in empirical averages over (N) independent
samples).

Expression (19) also provides en passant the explicit proof that for graphs in which the only
structure is that imposed by the degree sequence, viz. those generated from (16)
corresponding to Q(k, k′) = 1 for all (k, k′), one indeed finds Π(k, k′) = 1 for N → ∞.
Upon inserting Q(k, k′) = 1 into condition (20) we find that F2(k) = 1 for all k, upon which
the desired result follows directly from (19).

Asymptotically (i.e. in leading relevant orders in N), the probabilities (14) to find graphs c
with the correct degree statistics, i.e. with degrees drawn randomly from p(k), depends on c
via the degree distribution p(k|c) and the kernel Π(k, k′|c) only. To see this we study the
following function for large N,

(21)

The leading order in Ω(c|k, Q) = −N−1 log p(c|k, Q) was studied in [12]. If k(c) ≠ k one has
Ω(c|k, Q) = ∞ (the degrees are imposed as strict constraints), whereas for k = k(c) one has

(22)

where k̄ = N−1 Σi ki. We introduce the further short-hand p̃(k) = N−1 Σi δk,ki, as well as the
notation o(1) to denote finite size corrections that obey limN→∞ o(1) = 0 (to determine the
exact scaling with N of these corrections we would have to inspect e.g. the finite size
corrections to (19)). We write the leading orders of (22) in terms of the kernel Π(k, k′|c),
using (9) and (19), and substituting into (19) the present degree distribution p̃(k), and find
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(23)

where in the last step we used the identities (10). It subsequently follows (21) as

(24)

(25)

with k̄(c) = Σk kp(k|c), Π(c) = {Π(k, k′|c)}, and p(c) = {p(k|c)}. The leading order ½k̄(c) log
N in Ω(c|Q, p) reflects the property that the number of finitely connected graphs grows
asymptotically with N as exp[~N log N]. The next order is found to depend only on the
macroscopic characterization {p(c), Π(c)} of the specific graph c, and on the macroscopic
characterization {p, Π} of typical graphs from (14), with Π calculated for the kernel Q via
(19).

3.3. Existence and uniqueness of tailored ensembles
We will now prove that for each degree distribution p(k) and each relative degree correlation
function Π(k, k′) there exist kernels Q(k, k′) such that their associated ensembles (14) will
for large N be tailored to the production of random graphs with precisely these statistical
features. We identify these kernels and show that they all correspond in leading order in N to
the same random graph ensemble.

• Existence of a family of tailored kernels:

For each non-negative function φ(k) such that p(k)φ(k)Π(k, k′)φ(k′)p(k′) is
nonzero for at least one combination (k, k′), the following kernel satisfies all
conditions required to define a random graph ensemble of the family (14) that
generates graphs with degree distribution p(k) and relative degree correlation
function Π(k, k′) as N → ∞:

(26)

Q(k, k′) is by construction non-negative, symmetric, and correctly normalized.
Also we will always find Z > 0 due to Π(k, k′) ≥ 0 in combination with our
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conditions on φ(k) and the normalization (12). Recovering the correct degree
distribution is built into the ensemble (14) via the degree constraints. To prove

that equations (19,20) are satisfied we define , and use the
fact that by virtue of (19) the condition (20) reduces to (10), and is therefore
guaranteed to hold, provided Π(k, k′) indeed represents a relative degree
correlation function.

What remains is to show that there exist functions φ(k) that meet the relevant

conditions. The simplest candidate is φ(k) = k/ k , for which we find Z = 1
via (12) and which is easily confirmed to meet all criteria. It gives what we
will call the canonical kernel:

(27)

• Completeness of the family of tailored kernels:

The set of kernels defined by (26) is complete: if a kernel Q(k, k′) generates
random graphs with statistics p(k) and Π(k, k′), then is must be of the form
(26).

The proof is simple. If Q(k, k′) generates graphs with relative degree
correlation function Π(k, k′), according to (19) it must be of the form Q(k, k′)
= F(k)Π(k, k′)F(k′) for some function F(k). Since both Π(k, k′) and Q(k, k′)
must be non-negative, the same must be true for F(k). Hence Q(k, k′) is also of

the form (26), with  and with the formula for Z in (26) satisfied
automatically due to Q(k, k′) having to be normalized.

A further corollary is that all kernels tailored to the generation of graphs with
statistics p(k) and Π(k, k′) are related to the canonical kernel (27) via separable
transformations, with suitably normalized non-negative functions G(k):

(28)

• Asymptotic uniqueness of the canonical ensemble:

The random graph ensembles of all kernels of the family (26), tailored to
generating random graphs with statistical properties p(k) and Π(k, k′), are
asymptotically (i.e. for large enough N) identical: if all {ki} are drawn
randomly from p(k), and Q(k, k′) belongs to the family (26) with canonical
member Q*(k, k′) defined in (27), then

(29)

This follows from (24), which tells us that in the two leading orders in N the
probabilities of graphs generated from (26) depend on the kernel Q(k, k′) of
the ensemble only via its associated function Π(k, k′), so that N−1 log Prob(c|p,
Q) − N−1 log Prob(c|p, Q*) = o(1).

The above results imply that we may regard the random graph ensemble (14), equipped with
the kernel (27), as the natural ensemble for generating large random graphs with topologies
controlled strictly by a prescribed degree distribution p(k) and prescribed relative degree

correlations Π(k, k′). We will call p(c|p, Q*), with Q*(k, k′) = Π(k, k′)kk′/ k 2, the
canonical ensemble for graphs with p(k) and Π(k, k′). Note that for Π(k, k′) = 1 one has
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Q*(k, k′) = kk′/ k 2, which is indeed equivalent to the trivial choice Q(k, k′) = 1 (as it is
related to the latter by a separable transformation).

We can now also define what we mean by ‘null models’. Given the hypothesis that a
network c has no structure beyond that imposed by its degree statistics, the appropriate null
model is a random graph generated by the canonical ensemble with degree distribution p(k)
= p(k|c) and relative degree correlations Π(k, k′) = 1 (giving the trivial kernel Q(k, k′) = 1;
these are usually referred to as ‘simple graphs’). Similarly, given the hypothesis that a
network has no structure beyond that imposed by its degree statistics and its degree-degree
correlations, the appropriate null model is a random graph generated by the canonical
ensemble with degree distribution p(k) = p(k|c) and relative degree correlations Π(k, k′) =
Π(k, k′|c).

Finally, self-consistency demands that p(k) and the canonical kernel (or a member of its
equivalent family, related by separable transformations) are also the most probable pair {p,
Q} in a Bayesian sense. The probability Prob(p, Q|c) that a pair {p, Q} was the ‘generator’
of c via (14) can be expressed, via standard Bayesian relations, in terms of the probability
Prob(c|p, Q) of drawing c at random from (14):

(30)

The most probable pair {p, Q} is the one that maximizes log Prob(p, Q|c) = log Prob(p, Q) +
log Prob(c|p, Q) (modulo terms independent of {p, Q}), so in the absence of any prior bias,
i.e. if Prob(p, Q) is independent of {p, Q}, it is the kernel that maximizes Prob(c|p, Q). Since
Σc Prob(c|p, Q) = 1 for any {p, Q}, finding the most probable {p, Q} for a graph c boils
down to finding the smallest ensemble of graphs compatible with the structure of c.
Intuitively this makes sense: a more detailed characterization of the topology of an observed
graph allows for more information being carried over from the graph to the ensemble,
reducing the number of potential graphs allowed for by the ensemble. The smaller the
number of graphs in the ensemble, the more accurate will these graphs be when used as
proxies for the observed one.

Maximizing Prob(c|p, Q) over {p, Q} means minimizing Ω(c|p, Q) in (21), of which the
leading orders in N are given in (24). Demonstrating Bayesian self-consistency of our
canonical graph ensemble for large N hence boils down to proving that the maximum of (25)
over {p, Π} (subject to the relevant constraints) is obtained for {p, Π} = {p(c), Π(c)}. The
constraints include the set (10). There are clearly more, e.g. Π(k, k′) ≥ 0 for all (k, k′),
however we show below that maximizing (25) over {p, Π} subject only to (10) and Σk p(k) =
1 already generates the desired result: {p, Π} = {p(c), Π(c)}. Extremizing (25) with the
Lagrange formalism, leads to the following equations, which are to be solved in combination
with (10) and Σk p(k) = 1:

(31)

(32)

in which {λ(ℓ)} and μ are Lagrange multipliers. Working out (31) gives
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(33)

Since both Π(k, k′) and Π(k, k′|c) must satisfy the constraints (10), with degree distributions
p(k) and p(k|c), respectively, it follows from (33) that

(34)

With this expression we eliminate λ(k) from (33) to find

(35)

Next we work out (32) and substitute (34) into the result. This gives, using symmetry of Π:

(36)

The normalization conditions Σk p(k|c) = Σk p(k) = 1 then tell us that μ = ½, so p(k) = p(k|c)
for all k, and finally also (via (35)):

(37)

Hence, the choice {p, Π} = {p(c), Π(c)} indeed extremizes the leading two orders in N of
(24), subject to (10) and to normalization of p(k). The above extremum must be a maximum,
since by making pathological choices for {p, Π} (viz. choices inconsistent with the structure
of c) we can make prob(c|p, Q) arbitrary small, and hence Ω[p(c), Π(c); p, Π] arbitrarily
small. Hence our canonical ensembles are indeed self-consistent in a Bayesian sense, as
expected.

3.4. The random graphs ensemble as a conditioned maximum entropy ensemble
In this section we show that our canonical ensemble gives the maximum entropy within the
subspace of graphs with prescribed degrees and upon imposing as a constraint the average

values Π(k, k′) = Π(k, k′|c)  of the relative degree correlations. First we define our
constraining observables, i.e. the degree sequence and the re-scaled degree correlation:

(38)

(39)

Note that if N−1 Σi δk,ki(c) = p(k) and k  = Σk p(k), then

(40)

We are interested in the maximum entropy random graph ensemble p(c) (limited to
symmetric graphs without self-interactions) such that q(k, k′) = Σc p(c)q(k, k′|c) for all (k, k
′) and ki = ki(c) for all i. This is given by the ensemble p(c) for which the Shannon entropy
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(41)

is maximal subject to our constraints. Extremization of (41) with Lagrange multipliers gives,
without enforcing p(c) ≥ 0 explicitly,

(42)

(43)

(44)

(45)

with Ƶ such that Σc p(c) = 1. As expected for an ensemble of random graphs with maximum
entropy, where a set of averages of obervables are constrained to assume prescribed values,
the result of the extremization gives an exponential family, where the parameters {λ(ki, kj)
are to be calculated from the equations for the constraints. What is left is to show that the
exponential family can be reduced to the micro-canonical ensemble (15), where degrees are
prescribed, by a simple redefinition of the Lagrange multipliers. Let us first rewrite (45)

(46)

(47)

We can then redefine our Langrange multipliers in terms of the function Q(k, k′) via

This results in

(48)

The first product in (48) only depends on the constrained degrees {ki} (in fact, to leading

order this dependence is only via their average k , since Πi<j(1− k Q(ki, kj)/N)−1 =

eN k /2+ (1)), so it drops out of the measure, and hence (48) can be rewritten as
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(49)

(50)

which indeed reduces to (15), as claimed.

3.5. Shannon entropy
The (rescaled) Shannon entropy of the canonical ensemble Prob(c|Q*, p), as defined by

Q*(k, k′) = Π(k, k′)kk′/ k 2 in combination with (14), is an important quantity as it
allows us to define and calculate the effective number of graphs [p, Π] in the ensemble:

(51)

(52)

In (51) one defines as always 0 log 0 = lim∈↓0 ∈ log ∈ = 0. For large N we can use our
earlier results (21,24,25) to find the leading orders of the entropy, since

(53)

where π(k) denotes the Poissonian degree distribution with average degree k , viz. π(k) =

e− k k k/k!. To prove various properties of the above expression for the entropy it will
be convenient to introduce a new (symmetric) quantity W(k, k′), defined as the probability
that a randomly drawn link in a graph that has Π(k, k′|c) = Π(k, k′) connects two nodes with
degrees k and k′. It can be shown to be related to Π(k, k′) via

(54)

Irrespective of its exact meaning, the crucial mathematical advantage here of working with
W(k, k′|p, Π) is that it represents a probability distribution: W(k, k′) ≥ 0 and Σkk′ W(k, k′) =
1 (normalization follows from (10)). One also verifies explicitly that W(k) = Σk′ W(k, k′) =

p(k)k/ k  for all k. If we use (54) to eliminate Π(k, k′) from (53) in favour of W(k, k′) we
get
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(55)

The term in (55) with W(k, k′) is seen to be proportional to minus the mutual information
between two connected sites, and is therefore non-positive, vanishing if and only if Π(k, k′)
= 1 for all (k, k′). Furthermore, the term in (55) involving π(k) is minus a KL-divergence,
and therefore also non-positive, vanishing if and only if p(k) = π(k) for all k. Our result (55)
therefore has a clear and elegant interpretation:

• For the simplest graphs of the Erdös-Rényi type, where only the average degree k

 is imposed, one has p(k) = π(k) for all k and Π(k, k′) = 1 for all (k, k′). This
gives W(k, k′) = W(k)W(k′), and the entropy takes its maximal value:

(56)

• For graphs where the degree distribution p(k) is imposed, but without further
structure (i.e. still Π(k, k′) = 1 for all (k, k′)), the entropy decreases by an amount
Σk p(k) log[p(k)/π(k)] which is the KL-distance between the imposed p(k) and the
Poissonian degree distribution with the same average connectivity:

(57)

• For the more sophisticated graphs where both a degree distribution p(k) and
nontrivial degree correlations defined via Π(k, k′) are imposed, one no longer has

W(k, k′) = W(k)W(k′) and the entropy decreases further by an amount ½ k
Σkk′ W(k, k′) log [W(k, k′)/W(k)W(k′)], which is proportional to the mutual
information regarding degrees of connected nodes:

(58)

4. Quantitative tools for networks
In the previous sections we have shown that ensemble (14) is tailored, for large N, to the
production of graphs with degree distribution p(k) and degree correlation Π(k, k′) given by
(19,20). Conversely, for each desired function Π(k, k′), one may always choose the

canonical kernel Q*(k, k′) = Π(k, k′)kk′/ k 2 in (14) to tailor the ensemble to the
production of graphs with the desired degree correlation.

The availability for any given/observed network c of a well-defined canonical random graph
ensemble, that produces random graphs with microscopic topologies controlled solely by the
observed degree statistics and degree correlations of the given c, allows us to develop
practical quantitative tools with which to analyze and compare (structure in) real networks.
Here we focus on three such tools.
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4.1. Quantifying structural network complexity
The natural definition of the complexity of a given network c is based on the number [p,
Π] of graphs in its canonical ensemble {p, Π}, and hence on the entropy per node S[p, Π]
given in (55). It makes sense to write this entropy for large N as S[p, Π] = S0 − C[p, Π] +

o(1), with a first (positive) contribution  that originates simply
from counting the total number of bonds and would also be found for structureless Erdös-
Rényi graphs (where only the average degree is prescribed), minus a second term C[p, Π]
which acts to reduce the entropy as soon as there is structure in the graph beyond a
prescribed average degree. This latter quantity C[p, Π] can be identified as the complexity of
graphs in the canonical ensemble associated with c, and hence as the complexity of c:

(59)

where π(k) is the Poissonian distribution with average degree k :

(60)

The larger C[p, Π], the more ‘rare’ or ‘special’ are graphs with characteristics {p, Π}. For
every N, the complexity is bounded from above by (56); at this value the network undergoes
an entropy ‘crisis’, as (58) vanishes and the degree distribution ceases to be graphical, i.e. no
network can be found with this degree distribution (see [22] for the notion of graphicality).

Note, however, that our results were obtained in the limit k   N; they no longer apply
for degree distributions with an average connectivity of the order of the system size. For e.g.
fully connected graphs, where the complexity is maximal, the entropy should vanish,
whereas (58) indeed yields an incorrect (N) result. As an illustration one may check how
close to the entropy crisis are PPIN of different species (PPIN typically meet the

requirements k   N for our theory to apply). For this purpose we have computed the
(58) for protein interaction networks of different species and show the results in Fig. 1. A
more systematic and extensive application of our tools to PPIN will be published in [16].

4.2. Quantifying structural distance between networks
In the same spirit we can now also use our tailored graph ensembles to define an
information-theoretic distance DAB between any two networks cA and cB, based solely on
the macroscopic structure statistics as captured by their associated (observed) structure
function pairs {pA, ΠA} and {pB, ΠB}. The natural definition would be in terms of the
Jeffreys divergence (i.e. the symmetrized KL-distance) between the two associated
canonical ensembles, which is non-negative and equals zero if and only if {pA, ΠA} = {pB,
ΠB}, i.e. if the graphs cA and cB belong to the same canonical ensemble:

(61)

Working out this formula, using (24) and (55), gives for large N:
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(62)

This quantity is used in [16] for comparing and clustering PPIN data sets, even if these differ
in size, solely on the basis of their degree sequence and degree correlations. The
combination of its information-theoretic origin and explicit nature (so that it involves almost
no computational cost) makes (62) an efficient practical tool in bio-informatics.

4.3. Numerical generation of canonical ‘null models’
We have shown that for any given network c it is possible to define a tailored ensemble of
graphs, that share with c those structural aspects that follow directly from its degree
distribution and degree correlations, and used it to define and calculate complexities and
structural distances. Our next aim is to use the ensemble for generating random graphs with
structure {p, Π} identical to that of a given network. The problems associated with
generating complex random graphs with controlled properties are well known [23, 24, 25,
26, 27, 28, 29, 30]. In [17] a general method was proposed for generating random graphs
with built-in constraints and specific statistic weights, such as described by the invariant
measure (14), in the form of a Monte-Carlo process that is guaranteed to evolve from any
initial graph c0 that meets the relevant constraints towards the prescribed invariant measure
(14). The initial graph c0 can be constructed by hand, for any choice of p(k), such that for
sufficiently large N it will have the required degree statistics (see e.g. [31]). With the general
and exact algorithm [17] we can generate graphs according to the measure (14), with the
kernel Q(k, k′) of (27) chosen such as to impose any desired degree correlations Π(k, k′).
These graphs can then serve as ‘null models’, allowing us, for instance, to determine to what
extent specific small motifs in biological networks (such as short loops) can be regarded as
mere consequences of the overall structure dictated by their degree statistics and degree
correlations, or whether they reflect deeper biological principles. See [16] for the results of
such tests.

Here we generate, as an illustration, a synthetic network which is to have the same degree
sequence and the same degree correlations as the protein interaction network of Escherichia
coli, as given in [32], (i.e. we produce a member of the tailored graph ensemble of this

particular PPIN), where N = 2457 and k  = 7.05. The degree correlations of the resulting
graph after 67,147 accepted moves of the Markov chain algorithm of [17] are shown in
figure 2(b), and are seen to be in very good agreement with the degree correlations of the
PPIN that are being targeted, displayed in figure 2(a) (note that there is no need to compare
degree distributions, since all degrees are guaranteed to be conserved by the graph dynamics
[17]). To rule out the possibility that the observed similarity in degree correlations between
the synthetic graph and the original PPIN could have arisen from poor sampling of the
microscopic configurations (and just reflect direct similarities in the connectivity matrices),
we also calculated the Hamming distance between the connectivity matrices c and c′ of the
original PPIN and the synthetic graph,

(63)
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(the prefactor is chosen such that when the two matrices differ in all the 2N k  entries
which could be different, then ρ(c, c′) = 1). The Hamming distance vanishes if the two
matrices are identical. In the present case we find ρ = 0.90, which implies that although our
two graphs have similar macroscopic structure, their microscopic realizations are indeed
very different.

For comparison, we also show in figure 2(c) the degree correlations of a synthetic graph
obtained via the Markov chain dynamics of [17], starting from the same initial graph, but
now targeting degree correlations described by Π(k, k′) = 1 for all (k, k′). All residual
deviations in the bottom plot of figure 2 from the objective Π(k, k′) = 1 ∀ (k, k′) are due to
finite size effects. Again we also calculate the Hamming distance between the original and
the synthetic matrix, giving ρ = 0.93. This value is similar to the one found previously, but
now the macroscopic structure of the synthetic graph in terms of the degree correlations is
considerably different from the underlying PPIN.

It has been noted by several authors that most PPINs are disassortative, i.e. nodes with high
degrees tend to connect with nodes with low degrees [4]. Measures of degree assortativity
have been proposed in [3, 4, 33]. A conventional measure of assortativity is the correlation

coefficient ( kk′  − k  k′ )/( k2  − k2 ), calculated over the joint distribution
W(k, k′) in (54). Degree-assortativity has been shown to have important consequences on
both the topology of a network and the process which it supports. In particular, it was shown
that assortative networks are more resistant to random attacks, i.e. random vertex removal,
whereas disassortative networks are less resistant [4]. It may be useful from a practical point
of view to generate networks with a prescribed assortative character. This can again be
achieved by using the measure (14), where the kernels Q(k, k′) are now chosen to produce
assortative or disassortative graphs. In [17] it was shown that the kernel

(64)

tailors the ensemble (14) to the production, for large N, of graphs with degree correlations

(65)

where the three coefficients αl are to be solved numerically from

(66)

This degree correlation has a disassortative character. In fact, any kernel of the form

(67)

with C such that Σk,k′ p(k)p(k′)Q(k, k′) = 1 will tailor the ensemble (14), for large N, to the
production of graphs with increasingly negative assortative coefficients as n increases. A
prototype of an assortative kernel would be

(68)
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where C = Σk,k′ p(k)p(k′)[1 + |k − k′|n]. For sufficiently large N, the predicted values for
Π(k, k′) follow from (19), where F(k) is to be solved numerically from (20). As an example
we generated two synthetic graphs, both with the same degree sequence as the PPIN of
Homo sapiens (the experimental data used was taken from the human protein reference
database (HPRD), [34]). In the first graph we enforced an assortative connectivity using (68)
with n = 1, and in the second one a disassortative connectivity using (67) with n = 1. Both
graphs were generated with the algorithm of [17], starting from the actual Homo sapiens
PPIN. In Fig. 3(a) we show the colour plot of the relative degree correlations Π(k, k′) as
measured in the Homo sapiens PPIN, and in Fig. 3(c) and 3(e) we show the same quantity in
the two synthethic graphs generated. For comparison we also show (Fig. 3(b) and 3(d),
respectively) the functional Π(k, k′) that are being targeted, via the kernels in (68) and (67).

5. Discussion
In this paper we have studied the tailoring of a particular structured random graph ensemble
to real-world networks. We have first derived several mathematical properties of this
ensemble, including information-theoretic properties, its Shannon entropy, and the relation
between its control parameters and the statistics and correlations of the degrees in the
network to which the ensemble is tailored. We were then able to use the mathematical
results in order to derive explicit and transparent mathematical tools with which to quantify
structure in large real networks, define rational distance measures for comparing networks,
and for generating controlled null models as benchmark graphs. These tools are precise and
based on information-theoretic principles, yet they take the form of fully explicit formulae
(as opposed to implicit equations that require equilibration of extensive graph simulations).
We therefore hope and anticipate that they will be particularly useful in bio-informatics;
indeed a subsequent paper will be fully devoted to their application to a broad range of
protein-protein interaction networks, involving multiple organisms and multiple
experimental protocols [16].

Let us turn to the limitations of this study. Our work so far has focused on characterizing
network structure macroscopically at the level of degree distributions and degree-degree
correlations, and was limited to undirected networks and graphs. We therefore envisage two
main directions in which the present theory could and should be developed further. The first,
and relatively straightforward, one is generalization of the analysis to tailored directed
random graph ensembles. Here one does not envisage insurmountable obstacles, and it
would in bio-informatics open up the possibility of application to e.g. gene regulation
networks. The second direction is towards the inclusion of measures of macroscopic
structure that take account of loops, such as the distribution of length-three loops in which
individual network nodes participate. Here the mathematical task is much more challenging,
since in entropy calculations it is no longer clear whether and how one can achieve
factorization over nodes.

Acknowledgments
ACCC would like to thank Conrad Pérez-Vicente for stimulating discussions and the Engineering and Physical
Sciences Research Council (UK) for support in the form of a Springboard Fellowship.

Appendix A

Degree correlations in the random graph ensemble
In this appendix we prove the validity of the crucial relation (19), with Π(k, k′) as defined in
(18) for the random graph ensemble (14):
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(A.1)

Let us work out the sum over the graphs c in (A.1), using the integral representation

 to deal with the N degree constraints δki,ki(c). This introduces and
N-fold integration over ω = (ω1, … , ωN) ∈ [0, 2π]N. With a modest amount of foresight we
introduce the two abbreviations ω · k = Σiωiki and

(A.2)

These allow us to write

(A.3)

We next expand the function W(ω, k), as defined in (A.2), in leading orders for large N,
using the abbreviation P(q, ω|ω, k) = N−1 Σi δq,kiδ(ω − ωi):

(A.

4)

We now insert the following representation of unity, for each combination of (q, ω),

(A.5)

and convert the previous expression for W(ω, k) into the form of a functional integral, with

a path integral measure  (where the values of ω ∈ [0, 2π] are
first discretized, with the discretization spacing Δω sent to zero as soon as this is possible):
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(A.6)

with

(A.7)

(A.8)

We can now integrate over the N-fold angles ω ∈ [0, 2π]N, and obtain

(A.9)

and write the ratio of integrals in (A.3) as

(A.

10)

with

(A.11)

Therefore we find upon combining the previous intermediate results that the quantity of
interest (A.1) can be written in the following form:

(A.

12)

where
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(A.13)

We conclude from (A.12), in which the functional integrals can be done by steepest descent
in the limit N → ∞, that Π(k, k′) takes the form

(A.14)

with

(A.15)

and where the functions P(k, ω)and (k, ω) are to be solved from extremization of Ψ[{P,

}] + Φ[{P}] + Ω[{ }], with the three functions given in (A.7,A.8,A.13), leading to the

two coupled functional saddle-point equations δ[Ψ + Φ]/δP = 0 and δ[Ψ + Ω]/δ  = 0.

The last step in this appendix is to derive from the saddle-point equations an equation for the

function F(k|Q) in (A.14). Upon transforming exp[−i (k, ω)] = R(k, ω), our saddle-point
equations simplify to

(A.16)

(A.17)

Elimination of P(k, ω) from this set gives, using the identity ∫dω P(k, ω) = p(k),

(A.18)

in which F(k|Q) is defined in (A.15), and G(k|Q) = k  Σk′p(k′)Q(k, k′). Insertion of our

expression for R(k, ω) into (A.15), using exp[−i (k, ω)] = R(k, ω), leaves us with an
equation for F(k|Q) only, from which the object G(k|Q) simply drops out since it gives an
identical prefactor exp[−G(k|Q)] in both the numerator and the denominator of the formula
for F(k|Q):

(A.19)

Equivalently:
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(A.20)

Note that the present derivation of the combined result (A.14,A.20) also serves as the
explicit proof of the validity of corrigendum [21].
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Figure 1.
Shannon entropy per node S[p, Π] (markers connected by solid lines) and complexity C[p,
Π] (markers connected by dashed lines) of the canonical ensembles tailored to the
production of random graphs with microscopic topologies controlled solely by the degree
sequence and degree correlation of experimentally determined PPINs. The methods/sources
for the experimental data sets are the following: BGD, BioGrid database; Y2h, yeast two-
hybrid screen; PMs, purification mass spectrometry; HPRD, human protein reference
database; DI, data integration (database with combined experimental data); PCA, protein
fragment complementation assay. The studied organisms are listed in alphabetical order on
the x-axis. Data sets properties and references are summarised in Table 1.
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Figure 2.
Results of Markov chain graph dynamics proposed in [17] tailored to generating equilibrium
random graph ensembles with specific degree sequences and specific degree correlations.
(a): Colour plot of the relative degree correlations Π(k, k′|c) as measured in the Escherichia

coli PPIN (here N = 2457 and k  = 7.05). (b): colour plot of Π(k, k′|c) in the synthetic
graph c′ generated with Markov chain dynamics targeting the measured degree correlation if
the PPIN, after 67, 147 accepted moves. (c): colour plot of Π(k, k′|c′) in the final graph
generated with dynamics targeting Π(k, k′) = 1 ∀ (k, k′), after 1,968,000 accepted moves.
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Figure 3.
Colour plots of the relative degree correlations Π(k, k′) of networks which all have the
degree sequence of the Homo sapiens (from the HPRD database) PPIN (with N = 9463 and

k  = 7.4). (a): Π(k, k′|c) as measured for the Homo sapiens PPIN. (b): the target
assortative function Π(k, k′) given in (68). (c): the actual function Π(k, k′|c′) measured after
203,441 accepted moves of the Markov chain in [17], on the right. (d): the target
disassortative function Π(k, k′) given in (67). (e): the actual function Π(k, k′|c′) measured
after 266,763 accepted moves, on the right. These results confirm the efficiency of our
canonical graph ensemble and its associated Markov chain algorithm, in generating
controlled null models.
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Table 1

Maximum degree kmax, detection method/source and reference for the biological network data sets. The
detection methods/sources are abbreviated as in Fig. 1

Species k max Method Reference

C.elegans 99 Y2h [35]

C.jejuni 207 Y2h [36]

D.melanogaster 176 BGD [37]

E.coli 641 PMs [32]

H.pylori 55 Y2h [38]

H.sapiens I 125 Y2h [39]

H.sapiens II 95 Y2h [40]

H.sapiens III 314 PMs [41]

H.sapiens IV 247 HPRD [34]

M.loti 401 Y2h [42]

P.falciparum 51 Y2h [43]

S.cerevisiae I 24 Y2h [44]

S.cerevisiae II 55 Y2h [45]

S.cerevisiae III 279 Y2h [45]

S.cerevisiae IV 62 PMs [46]

S.cerevisiae V 118 DI [47]

S.cerevisiae VI 53 PMs [48]

S.cerevisiae VII 32 DI [49]

S.cerevisiae VIII 955 PMs [50]

S.cerevisiae IX 141 PMs [51]

S.cerevisiae X 127 DI [52]

S.cerevisiae XI 58 PCA [53]

S.cerevisiae XII 86 Y2h-PCA [54]

Synechocystis 51 Y2h [55]

T.pallidum 285 Y2h [56]
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