
pubs.acs.org/BiochemistryPublished on Web 06/17/2010r 2010 American Chemical Society

Biochemistry 2010, 49, 8155–8168 8155

DOI: 10.1021/bi100286n

Comparisons between Chemical Mapping and Binding to Isoenergetic
Oligonucleotide Microarrays Reveal Unexpected Patterns of Binding to

the Bacillus subtilis RNase P RNA Specificity Domain†

Ruiting Liang,‡ Elzbieta Kierzek,§ Ryszard Kierzek,§ and Douglas H. Turner*,‡

‡Department of Chemistry, University of Rochester, Rochester, New York 14627, and §Institute of Bioorganic Chemistry,
Polish Academy of Sciences, 60-714 Poznan, Noskowskiego 12/14, Poland

Received February 25, 2010; Revised Manuscript Received June 16, 2010

ABSTRACT: Microarrays with isoenergetic pentamer and hexamer 20-O-methyl oligonucleotide probes with
LNA (locked nucleic acid) and 2,6-diaminopurine substitutions were used to probe the binding sites on theRNase
P RNA specificity domain of Bacillus subtilis. Unexpected binding patterns were revealed. Because of their
enhanced binding free energies, isoenergetic probes can break short duplexes, merge adjacent loops, and/or
induce refolding. This suggests new approaches to the rational design of short oligonucleotide therapeutics
but limits the utility of microarrays for providing constraints for RNA structure determination. The microarray
results are compared to results from chemical mapping experiments, which do provide constraints. Results
from both types of experiments indicate that the RNase P RNA folds similarly in 1MNaþ and 10 mMMg2þ.

Binding of RNA to RNA is important for many natural func-
tions, includingproteinsynthesis (1,2), translationregulation (3,4),
gene silencing (5, 6), metabolic regulation (7), RNAmodification
(8, 9), etc. (10-13). Binding of oligonucleotides toRNAs is impor-
tant for therapeutic approaches, such as siRNA, ribozymes, and
antisense therapy (14, 15).Much remains to bediscovered, however,
of the rules for predicting binding sites andpotential therapeutics.

Knowledge of RNA secondary and tertiary structures is useful
for predicting binding sites for oligonucleotides (16-18). Definitive
secondary structures ofRNAcanbe determined byNMR1 (19-21)
and X-ray crystallography (22-25), but these methods are time-
consuming and not applicable to every RNA. Most definitive
RNA secondary structures were determined by comparative seq-
uence analysis, which is based on the theory that homologous
RNAs retain similar secondary structures during evolution even
though their degree of sequence conservation is low (26, 27). This
method works well when a large number of homologous RNAs
are available as inputs. Many novel RNAs, however, are being
sequenced (28), and new RNA functions are often discovered
without a large number of homologues. In these cases, structural
mapping experiments using chemicals such as DMS, OH radicals,
NMIA, etc., and/or ribonucleases provide a useful tool for secon-
dary structure determination (29-32).

High-throughput microarray methods have also been deve-
loped to probe RNA structures (33-38). Thousands of oligo-
nucleotide probes can be printed on a small glass chip. Binding of
an RNA to the immobilized probes reveals all potential binding
sites in a single experiment. Interpretation of the data is simplified
by the use of isoenergetic probes, whose binding free energies are
relatively sequence-independent (37, 38). The probes are chimeras
of 20-O-methyl and locked nucleic acid (LNA) nucleotides with
adenosine sometimes replaced with 2,6-diaminopurine (D). The
modifications greatly enhance the binding free energies relative
to DNA probes such that probes of five or six nucleotides with
the sixth nucleotide being a 30-terminal LNA guanosine provide
sufficient binding strength (39, 40). Thus, it is possible to
interrogate all 1024 unique pentamer binding sites with a single
microarray.

Here, we tested the isoenergetic microarray method combined
with chemical mapping techniques on the secondary structure
of the RNase P RNA specificity domain of Bacillus subtilis
(RNRspBs). RNase P RNA exists in almost all organisms and is
responsible for maturation of tRNA (41-43). In bacteria, the
specificity domain of RNase P RNA recognizes substrate pre-
cursor tRNA (44). The crystal structure of RNRspBs has been
determined byKrasilnikov et al. (22).Mortimer et al. (29) studied
the solution structure of RNRspBs with selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE). The secondary
structure in vivo was deduced by sequence comparison and
confirmed by the crystal structure (22, 45, 46).

The crystal structure of RNRspBs reveals several unique fea-
tures (Figure 1). Most importantly, there are numerous tertiary
interactions. For example, the nucleotides in J11/12 and J12/11
are arranged in a rigid structure by a hydrogen bond network.
This and other tertiary interactions give the RNA a compact
three-dimensional structure. The crystal structure provides an
opportunity to test the information available from microarray
experiments on a highly organized RNA. Unexpected binding
patterns are observed for oligonucleotides.
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MATERIALS AND METHODS

Materials. Plasmids carrying the gene for RNRspBs were
kindly provided byA.Mondrag�on (22).Othermaterials and their
sources are listed in the Supporting Information.
Chemical Synthesis ofDNA,RNA, and 20-O-MethylOligo-

nucleotides. Isoenergetic oligonucleotide probes (pentamers
and hexamers) with a 50-end C6 amino linker were synthesized
as described previously (39, 40). DNA, RNA, and 20-O-methyl
oligonucleotides were synthesized on an Applied Biosystems 392
DNA/RNA synthesizer following the standard phosphorami-
dite approach (47, 48). Deprotection and purification of oligo-
nucleotideswere performed according to the previously described
procedure (36).

Molecularweights of oligonucleotideswere checked byLC-MS
(Hewlett-Packard 1100MSD) with electrospray ionization. Purities
were greater than 90% as determined with a Hewlett-Packard
1100 HPLC Chemstation with an analytical C18 reverse phase
column. Concentrations were determined by UV absorption at
260 nm for DNA oligonucleotides and at 280 nm for RNA and
20-O-methyl oligonucleotides.
Preparation of the B. subtilis RNase P RNA Specificity

Domain. The plasmid carrying the RNRspBs gene was trans-
fected into competent TOP10F0 Escherichia coli cells using the
heat shockmethod in the presence of CaCl2, and the transformed
cells were stored in 20% glycerol stocks at-80 �C. Transformed
E. coli cells from the stock were streaked on a Petri dish and
grown overnight until colonies were∼1mm in diameter. A single
colony was picked and used to inoculate 5 mL of LB-ampicillin
medium. The 5 mL culture was grown overnight to apparent
turbidity and used to inoculate 2 L of LB-ampicillin medium,
which was grown overnight with shaking at 250 rpm. Cells were
collected and lysed, and theDNAplasmidwas purified according
to the standard protocol (49).

The plasmid was linearized by incubation at 37 �C for 1.5 h
with the FokI restriction enzyme. Completion of FokI digestion
was checked by agarose gel electrophoresis. The linearized plasmid
was used as a template for in vitro transcription with T7 RNA

polymerase at 42 �C for 1 h. RNA transcripts were purified by
electrophoresis on a denaturing 6% polyacrylamide gel. The gel
was visualized against a green fluorescent TLC plate under a
hand-held UV light. The full-length RNA gel band was cut out
with a flamed razor blade, and the RNA was electroeluted in
0.5� TA [1� TA being 40 mM Tris-acetate (pH 8.3)] buffer at
4 �C and 200 V for 2 h. Then, the RNAwas ethanol precipitated,
dried, redissolved in H2O, and quantified by UV absorption at
260 nm assuming 1 OD260=40 μg/mL RNA.
Native Polyacrylamide Gel Electrophoresis (PAGE).

RNRspBs samples were annealed in separate buffers containing
various concentrations of metal ions. Folded RNRspBs samples
were separated on a native 8% polyacrylamide gel cast in 1� TA
buffer and run at 3W and 4 �C for 8 h. After electrophoresis, the
gel was rinsed briefly with H2O and stained with SYBRGreen II
at 4 �C for 30 min with gentle shaking. The fluorescent image of
the gel was scanned and recorded with a Molecular Dynamics
Storm 840 Phosphorimager with a blue laser.
Folding RNA in Different Buffers. Buffers containing

40 mM HEPES, 40 mM NaHEPES, 100 mM NaCl, and x mM
MgCl2 (pH 8.0) are denoted by 140Na/80HEPES/xMg. Buffers
containing 25 mM HEPES, 25 mM NaHEPES, 135 mM KCl,
and x mM MgCl2 (pH 8.0) are denoted by 135K/25Na/
50HEPES/xMg. Buffers containing 25 mM HEPES, 25 mM
NaHEPES, 135mMKCl, and xMNaCl (pH8.0) are denoted by
135K/25Na/50HEPES/xMNa.

For annealing, RNRspBswas first dissolved in buffers without
MgCl2. The RNA sample was incubated at 90 �C for 3 min and
slowly cooled to 37 �C.At 37 �C,MgCl2 was added to the desired
concentration and the sample was incubated at 37 �C for 15 min.
Then the sample was maintained at 37 �C or slowly cooled to
22 �C (room temperature) or 4 �C as desired for the experiments
and further incubated for 20 min.
Labeling of RNRspBs, DNA Primers, and RNA Oligo-

nucleotides.RNRspBs produced byT7 runoff transcriptionwas
dephosphorylated with shrimp alkaline phosphatase and purified
on a denaturing 6% polyacrylamide gel before radiolabeling.

FIGURE 1: RNase P RNA specificity domain of B. subtilis (RNRspBs): tertiary structure (A) and secondary structure (B). Dashed lines in the
secondary structure indicate observed tertiary interactionsbetween connected nucleotides.Reprintedwithpermission fromref 22. Copyright 2003
Macmillan Publishers Ltd.
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Dephosphorylated RNRspBs, chemically synthesized DNA pri-
mers, and RNA oligonucleotides were labeled with 32P by
incubation with [γ-32P]ATP and T4 polynucleotide kinase at
37 �C for 1 h. After being labeled, the mixture was extracted with
a phenol/chloroformmixture once and chloroformonce followed
by ethanol precipitation. The products were purified by running a
denaturing 6% polyacrylamide gel. Product bands were imaged
with X-ray films and cut out. RNRspBs was recovered by
electroelution in 0.5� TA buffer, while DNA primers and
RNA oligonucleotides were recovered by the crush-and-soak
method in H2O. Finally, the nucleic acids were ethanol precipi-
tated and redissolved in H2O.
Chemical Mapping. For mapping with DMS, CMCT, and

kethoxal, RNRspBs was annealed in 20 μL of a folding buffer as
described above and was kept at 22 or 4 �C.Onemicroliter of 400
mMDMS in ethanol, 1 μL of 400mMCMCT in ethanol, or 1 μL
of 300 mM kethoxal in ethanol was added to each 20 μL sample,
and each reaction mixture was incubated at 22 �C for 30 min or
4 �C for 1 h. At the end of the modification reaction, each sample
was brought to 50 μL with H2O and passed through a Clontech
Chroma Spin-30 column immediately to remove chemicals. The
column was further eluted with 50 μL of H2O twice to maximize
the recovery of the modified RNA. The modified RNA was then
ethanol precipitated, dried, and redissolved to a concentration of
4 pmol/μL in H2O.

FormappingwithNMIA,RNRspBs was annealed in 30 μLof
buffer and cooled to 22 or 4 �C as described above. Then 1 μL of
300 mM NMIA in DMSO was added to each sample, and the
reactionmixture was incubated at 22 �C for 3.5 h or 4 �C for 20 h.
Samples were shaken occasionally to ensure an even distribution
ofNMIA in the solution becauseNMIA is only slightly soluble in
H2Oandwould precipitate at the bottomover time.Modification
was stopped by passing samples through Chroma Spin-30
columns to remove NMIA. Then samples were ethanol precipi-
tated, dried, and redissolved to a concentration of 4 pmol/μL
in H2O.
Primer Extension of Chemical Mapping Products. Che-

mically modified nucleotides were identified by primer exten-
sion. The DNA primer (50GCGAGGGGTTTACCGC), com-
plementary to nucleotides 139-154, was 50-end labeled with
32P and then hybridized to RNA by incubating the mixture at
90 �C for 2 min, followed by annealing at 65 �C for 6 min, and
finally incubating at 35 �C for 20 min. Primer extension was
initiated by addition of 1 μL AMV reverse transcriptase, and
the 10 μL reaction mixture was incubated for 10 min at 37 �C.
The extension reaction was stopped by addition of 1 μL of 4M
NaOH and heating at 95 �C for 5 min. The samples were
ethanol precipitated and redissolved in Loading Buffer II from
Ambion, containing formamide. Extended DNA products
were separated with a denaturing 6% polyacrylamide gel,
which was then dried on Whatman paper and exposed to a
phosphor screen. The phosphor screen was scanned with a
Bio-Rad Personal Molecular Imager, and the bands were
identified by comparison to sequencing lanes and quantified
relative to control lanes with ImageQuant version 5.2.
Isoenergetic Microarrays. A total of 116 isoenergetic

pentamer and hexamer (with 30-LNAG) probes were synthesized
(see Table S1 of the Supporting Information) and printed in
triplicate on microarrays along with mono-U and UUUUU as
negative controls and a 25-mer DNA probe as a positive control.
Spotting buffer was also printed on several spots as a negative
control. Spots were arranged in 16 blocks of 3� 10 spots at a spot

distance of 450 μm, except the last four blocks which had one row
of three spots. The blocks were spaced 1.95 mm apart in length
and 3.60 mm apart in width.

Fabrication of isoenergetic microarrays was based on the
method ofAfanassiev et al. (50), with some changes.Aminoalkyl-
silane-treated glass slides were coated with 2% agarose acti-
vated with NaIO4 at a level of 0.213 g/g of agarose. After the
agarose solidified for 1 h, slides were washed with H2O for 3 h,
dried in air, and stored in the dark at room temperature. Probes
at 200 μM in a spotting buffer (3� SSC (standard saline citrate,
1� SSC being 150 mM NaCl and 15 mM sodium citrate),
0.05% SDS (sodium dodecyl sulfate), 0.001% CHAPS {3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate}) were
printed on the glass slides with a MicroGrid II TAS Arrayer at
the Microarray and Genomics Facility, Roswell Park Cancer
Institute, Buffalo, NY. Printed microarrays were incubated in a
humid chamber at 37 �C for 12 h for the probes to bond with the
agarose gel matrix. After incubation, microarrays were immersed
in a freshly prepared 35 mM NaBH4 solution in PBS buffer
[137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.4 mM
KH2PO4 (pH7.5)] and ethanol (3:1, v/v) at room temperature for
15 min to reduce the uncoupled aldehyde groups. They were
washed three times (30 min each) in H2O at room temperature,
then in 1% SDS at 55 �C for 1 h, and finally three times (30 min
each) in H2O at room temperature. Microarrays were dried at
room temperature and stored in the dark.
Hybridization of RNRspBs on the Microarray. 32P-labeled

RNRspBs was annealed in appropriate buffers as described
previously and cooled to 4 �C.Microarrays were presoaked with
the same buffer at 4 �C for 30 min, and the soaking buffer was
removed by a brief centrifugation of the slides in a clinical centri-
fuge. Immediately afterward, 180 μL of the annealed RNRspBs
sample at 50 nM was dispensed on the surface of the microarray
and the microarray was covered with a probe-clip press seal
incubation chamber. Hybridization proceeded at 4 �C for 24 h in
a humid chamber half-filled with H2O to ensure 100% humidity.
Subsequently, the probe-clip incubation chamber was removed
and the solution was decanted. The hybridized microarray was
centrifuged briefly in a clinical centrifuge to remove excess liquid.
Then, it was washed with the same hybridization buffer at 0 �C
twice, 30 s each, to remove unbound and nonspecifically bound
RNRspBs and briefly centrifuged in a clinical centrifuge to
remove excess liquid. The microarray was wrapped with a plastic
membrane and exposed to a phosphor screen at room tempera-
ture. The screen was scanned and recorded with a Molecular
Dynamics Storm 840 Phosphorimager. Binding intensities were
quantified with ImageQuant version 5.2 and AGScan (AGScan
Project, http://mulcyber.toulouse.inra.fr/projects/agscan).

Only when all three microarray spots corresponding to the
same probe become darker simultaneously was the probe con-
sidered to bind to RNRspBs. The radioactivity of each spot was
integrated over the pixels within the area of a fixed diameter. The
radioactivity for each probe was calculated by averaging the
intensities of the three spots of the probe. The background
intensity was obtained for areas within circles of the same
diameter in the vicinity of the spots and subtracted from the
average intensity to generate the net intensity due to binding of
the probe.
RNRspBs Probe Binding Site Footprinting. Probes

50CULCGLCGL (probe 3) and 50GCLUDLGGL (probe 9), fully
complementary to nucleotides 1-5 and 6-11, respectively, were
hybridized with RNRspBs. RNRspBs bound with probe was
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chemically modified with NMIA and kethoxal to identify the
probe’s binding sites.

Five nanomoles of probewas dissolved in 10 μLof 135K/25Na/
50HEPES/10Mg buffer and added to 25 pmol of RNRspBs
annealed in 30 μL of 135K/25Na/50HEPES/10Mg buffer. The
final RNRspBs concentration was 0.625 μM, and the probe con-
centration was 125 μM. The probe was hybridized to RNRspBs
for 24 h at 22 �C.HybridizedRNRspBswasmodified at 22 �C by
10mMNMIA for 4 h or by 15mMkethoxal for 1 h. The reaction
wasquenchedby two ethanol precipitations and aClontechChroma
Spin-30 column filtration to remove probe andNMIA or kethoxal.
The sites of increased or decreased NMIA and kethoxal modi-
fications were read out by primer extension with a DNA primer,
50TCACTGTGGCACTTTCAAGG, complementary to nucleo-
tides 87-106, as described for chemical mapping.
RNaseHAssaywithAntisenseOligodeoxyribonucleotides.

DNA oligonucleotides were synthesized: 50GCTAGGCTCGC
(GC1-11), 50TCGCTAGGCTCGC (TC1-13), 50ACTGCCC-
TAGCTT (AT20-32), 50GAAGACGTAGGCTT (GT57-70),
50ATACTCAGCCATAT (AT73-86), 50CTTCGTCACTGTG-
GC (CC97-111), and 50GCGTTCCACTC (GC130-140). Their
naming in the parentheses, takingGC1-11 for example, provides
information about the 50- and 30-nucleotides (GC) and the RNA
region it complements (1-11).

Twenty picomoles of RNRspBs was annealed as described
previously in 20 μL of 135K/25Na/50HEPES/10Mg buffer. Indi-
vidual DNA oligonucleotides at 20 nmol each in 20 μL of 135K/
25Na/50HEPES/10Mg buffer were added to annealed RNRspBs,
and the hybridization mixture was incubated for 24 h at 22 �C.
Then, 10 units ofRNaseHwas added, and the samples were incu-
bated for 4 h at 22 �C. Reactions were stopped by acid phenol/
chloroform (pH4.5) extraction that removedbothRNaseHenzyme
and antisense DNA oligonucleotides. The samples were precipi-
tated with 100% ethanol, washed with 80% ethanol, and redis-
solved in H2O. Cleavage sites were read out by primer extension
as described for chemical mapping.
Calculations of Binding Free Energies.Binding free energies

of probes that bind strongly to the RNA at the predicted binding
sites and potential alternative binding sites were calculated at 4,
22, and 37 �C using the nearest neighbor model and 20-O-methyl
RNA/RNA parameters with bonuses for LNA modifications
(37-40). If probes are complementary to base-paired nucleo-
tides, then they may bind by causing the RNA to rearrange its
structure. In that case, only local structural rearrangements were
considered. For probe binding to the folded RNA in solution,
bimolecular folding of probe was considered while unimolecular
folding of the probe was ignored due to the short length of the
probes. When binding occurs on the surface of the microarray,
however, the probes are immobilized on the microarray surface
and unlikely to associate bimolecularly. Therefore, only the uni-
molecular folding of the RNA and the bimolecular folding of the
probe with the RNA were considered.

RESULTS

Structural Response ofRNRspBs toDifferent IonicCondi-
tions Revealed by Native PAGE. The compact structure of
RNRspBs is stabilized by extensive tertiary interactions (22) that
are dependent on salt conditions (29). The effects of varying con-
centrations of monovalent and divalent metal ions on RNRspBs
structurewere qualitatively studied by themobility and sharpness
of RNA bands in native PAGE (Figure S1 of the Supporting
Information). The sharpest bands are observed atg5mMMg2þ.

The RNA always migrates as a single band, but the sharpness of
the band indicates the degree of rigidity of the tertiary structure.
Evidently, the tertiary interactions are completely formed to give
the RNA a single compact folding when theMg2þ concentration
is above 5 mM. Sharp bands are also observed when buffers
contain 1 M NaCl or 500 mM KCl in the absence of Mg2þ.
Chemical Mapping of RNRspBs. RNRspBs was crystal-

lized at 5mMMgCl2 (pH 6.0) withoutNaþ orKþ (22). Chemical
mapping with 1-methyl-7-nitroisatoic anhydride (1M7) in 100mM
NaCl and 6 mM MgCl2 (pH 8.0) to identify conformationally
flexible and solvent accessible ribose rings gave results consistent
with the crystal structure (29). To test the structure of RNRspBs
and its reactivity to other chemicals under different conditions,
we chemicallymapped it withDMS,CMCT, kethoxal, andNMIA
at both 4 and 22 �C. DMSmodifies N1 atoms of adenosines and
N3 atoms of cytidines; CMCTmodifiesN3 atoms of uridines and
to a lesser extentN1 atoms of guanosines (31), and kethoxalmodi-
fies N1 andN2 atoms of guanosines (32). 140Na/80HEPES/10Mg,
135K/25Na/50HEPES/10Mg, 135K/25Na/50HEPES/0Mg, and
135K/25Na/50HEPES/1MNa buffers were used. The modifica-
tions arevery similar atboth temperatures, indicating thatRNRspBs
folding is independent of temperature between 4 and 22 �C.
The modifications are also similar in 140Na/80HEPES/10Mg,
135K/25Na/50HEPES/10Mg, and 135K/25Na/50HEPES/1MNa
(Figure 2). The similarity of results when 10 mM Mg2þ is repla-
ced with 1 M Naþ indicates that 1 M Naþ stabilizes the tertiary
structure, consistent with the native PAGE experiment. Many
moremodifications are observed in 135K/25Na/50HEPES/0Mg,
however, particularly for nucleotides 89-96, for J11/12 and J12/11,
and for the GAAA tetraloop (Figure 2). This has also been
seen with 1M7 (29) and is expected if Mg2þ stabilizes tertiary
interactions (52-54).

Chemicalmapping in all the buffers is consistent with the secon-
dary structure determined by X-ray crystallography (Figure 2).
Reactive nucleotides are mostly in the hairpin loops of P8, P9,
and P10.1 and in the lower internal loop in P10.1. In 135K/25Na/
50HEPES/0Mg buffer, nucleotides in J11/12 and J12/11 and
hairpin loopGAAA inP12 become strongly reactive (Figure 2C).
In the presence of 10 mM Mg2þ, J11/12 and J12/11 have a
complex hydrogen bonding and stacking network that largely
protects these nucleotides from being modified by chemicals.
Evidently, this structure is not stable when the only cations are
135mMKþ and 25mMNaþ. Similarly, the GAAAhairpin loop
forms tertiary interactions with the tetraloop receptor region (top
internal loop) in P10.1 and is also not accessible when Mg2þ is
present (Figure 2A,B). These tertiary interactions are also appa-
rently not stable in 135 mM Kþ, 25 mM Naþ, and 0 mM Mg2þ

(Figure 2C). Another difference between 135K/25Na/50HEPES/
10Mgand135K/25Na/50HEPES/0Mgbuffers is that nucleotides
89-95 are strongly modified in 135K/25Na/50HEPES/0Mg buffer
(inset of Figure 2C), but protected in the presence of 10 mM
Mg2þ. These nucleotides are buried at the center of the RNA in
the crystal structure (22). Evidently, this shields the nucleotides
from chemicalmodificationwhenMg2þ stabilizes the tertiary struc-
ture. WhenMg2þ is replaced with 1 MNaþ, more nucleotides in
J11/12 and J12/11 aremodified but not as strongly as in the buffer
containing only 135 mM Kþ, 25 mM Naþ, and 0 mM Mg2þ

(Figure 2D). This indicates that 1MNaþ can partially restore the
tertiary interactions disrupted due to the absence of Mg2þ.
Modeling RNRspBs Secondary Structure. RNRspBs has

a complex three-dimensional structure and thus provides a stringent
test of methods for modeling secondary structure. When no
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constraints are applied, RNAstructure 4.6 with “Window Size”
set at 0 and “Temperature” set at 310.15 K predicts a minimum
free energy (MFE) structure that has 79.5% of known canonical
base pairs (Table 1) and a folding ΔG�37 of -49.9 kcal/mol cal-
culated with Energy Function 2 (EFN2) (Figure 3, left structure),
which calculates the free energy with more rules than used in the
dynamic programming algorithm (51). The 20 structures with the
lowest free energies have an average of 68.4% accurately predi-
cted base pairs. The best predicted structure has a 93.2% accu-
racy, is predicted to fold at-47.6 kcal/mol, and is ranked 22ndby
ΔG�37 (Figure 3, right structure). Compared to the correct struc-
ture, whose predicted free energy is-41.6 kcal/mol, the best pre-
dicted structure is different only in three places: (1) the formation
of 4 bp (G103-C138, U104-A137, C107-G134, and G108-U133)
between J11/12 and J12/11, (2) the missing G28-C46 base pair
between the A45 bulge and the four-way multibranch loop, and
(3) the slipping of the C147-C148-C149 sequence that results in
slipping the U96-A146 base pair to U96-A144, slipping of the
A144-A145 bulge loop to the A145-A146 bulge loop, and leaving

C149 unpaired. The misprediction by the RNAstructure algo-
rithm is the result of its inability to consider stabilizing tertiary
interactions that can have subtle effects on secondary structure.
A partition function calculation (55) shows that nucleotides in
P7, P8, and P12 have a>99%probability of forming base pairs
and nucleotides in P9 have a >95% probability of forming
base pairs (Figure 3). Base pairs in other predicted duplexes
have lower certainties and are indeed prone to misprediction.
All base pairs predicted with >95% probability are present in
the known structure and comprise 45.5% of the known base
pairs.

The RNAstructure algorithm can constrain reactive nucleo-
tides not to be in aWatson-Crick base pair flanked on each side
by aWatson-Crick base pair.When the strong and intermediate
chemical modifications are used as constraints in RNAstructure
4.6, the MFE secondary structure still has 79.5% of known base
pairs but the structure with 93.2% correctly predicted Watson-
Crick base pairs is now ranked between sixth and eighth, and
the most accurate structure is improved to have 95.5 or 97.7%

FIGURE 2: Chemical modifications of RNRspBs at 22 �C byDMS (9), CMCT (b), kethoxal (2), and NMIA ([) in (A) 135K/25Na/50HEPES/
10Mg, (B) 140Na/80HEPES/10Mg, (C) 135K/25Na/50HEPES/0Mg, and (D) 135K/25Na/50HEPES/1MNa. Filled symbols indicate strongmodi-
fications. Empty symbols indicate moderate modifications. Base pairs colored orange and red are predicted by RNAstructure 4.6 constrained
by strong plus medium reactivity in mapping data to have >95 and >99% base pair probability, respectively.
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correct Watson-Crick base pairs (Table 1). The average accu-
racy of the 20 structures with the lowest free energies is improved
and is between 81.4 and 82.4%.

Themisprediction in theMFE structure occurs in P10, the base
of P10.1, and P11, which close multibranch loops (Figure 3).
Helix, 50G47G48C49A50/30C99C98G97U96, is formed, forcing
nucleotidesU89-G95 to form abulge loop and nucleotidesG141-
C148 to form a hairpin loop (Figure 3). Constraints from chemi-
cal mapping work well in RNAs consisting of long duplexes.
In RNRspBs, however, the initial helix of P10 has 2 bp and
P11 contains a G97-U143 wobble pair next to an A144-A145
bulge loop. Therefore, the constraints are not enough for RNA-
structure to determine which nucleotides are base-paired and
which nucleotides are single-stranded in the prediction of the
MFE structure.
Isoenergetic Oligonucleotide Microarray. RNRspBs has

150 pentamer binding sites. Isoenergetic pentamer and hexamer
probes that areWatson-Crick complementary to 127 of the sites
were printed on microarrays. The other 23 positions have long A
and U stretches for which no probes can be designed with the
required binding free energies. The pentamer probes are identi-
fied by the position of the nucleotide in RNRspBs that binds to
the middle nucleotide of the probe. Hexamer probes are identi-
fied as pentamers ignoring the 30-terminal LNA G. There are
19 pentamer and 97 hexamer probes (Table S1 of the Supporting
Information). Eleven probes each have two fully complementary
pentamer sites.

The isoenergetic probes’ binding free energies for binding to
complementary unstructured RNA are much more favorable
than those of both 6-mer DNA probes and 20-O-methyl probes
without LNA or 2,6-diaminopurine modifications. They are also
roughly sequence-independent compared to 6-mer DNA probes
(Figure S2 of the Supporting Information). At 37 �Cand 100mM
NaCl, the isoenergetic probes specific for RNRspBs have predic-
ted binding free energies ranging from -7.9 to -12.7 kcal/mol,
withmost between-8.0 and-11.0 kcal/mol. Six hexamer probes
bind to the unstructured target with a free energy more favorable
than -12.0 kcal/mol because the 30-LNA G’s form GL-C pairs
with the RNA. The LNA G at the 30-end of the hexamer
probes increases stability by approximately 1.5 kcal/mol when
it formsGL-A,GL-G, orGL-Umismatcheswith the target and by
∼3.5 kcal/mol when it forms GL-C pairs (56). The average of
predicted binding free energies of the isoenergetic probes used in
the study is-10.0( 1.0 kcal/mol in 100 mMNaCl at 37 �C. For
comparison, the 20-O-methyl probes of the same sequences with-
out any modifications average -6.1 ( 0.9 kcal/mol and range
between -3.6 and -8.9 kcal/mol. Hexamer DNA probes calcu-
lated from OligoWalk (57) range from -0.3 to -8.1 kcal/mol
with an average of -4.5 ( 1.6 kcal/mol at 37 �C and 1 M NaCl
(Figure S2 of the Supporting Information). The greater stability
of duplexes formed between isoenergetic probes andRNA allows
the use of short probes inmicroarray experiments. Table S1 of the
Supporting Information contains complete information about
probes, including predicted ΔG�37 values for binding to unstruc-
tured RNA.
RNRspBs Binding to Oligonucleotides on Isoenergetic

Microarrays. Binding of RNRspBs to isoenergetic microarrays
at 4 �C was assessed in 140Na/80HEPES/10Mg, 135K/25Na/
50HEPES/10Mg, and 135K/25Na/50HEPES/1MNa (Figure 4).
For all three buffer conditions, probe 17 binds strongly to the
hairpin loop closed by P8. As shown in Figure 5, the intensities of
spots were normalized to the intensity for probe 17 to compareT
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binding under different buffer conditions:

normalized intensity

¼ average intensity of three spots-background intensity

ðaverage intensity of three spots-background intensityÞprobe17
Probes with normalized intensities that are more than one-third
of themaximumnormalized intensity are considered strong bind-
ing. Probes with normalized intensities between one-third and one-
ninth of the maximum normalized intensity are considered inter-
mediate binding. Probes with normalized intensities that are less
thanone-ninth of themaximumnormalized intensity are considered
weak or no binding. Qualitative results are summarized in Table 2.

Comparisons of binding in 140Na/80HEPES/10Mg and 135K/
25Na/50HEPES/1MNa buffers to that in 135K/25Na/50HEPES/
10Mg buffer are made by taking the differences of their normal-
ized intensities according to

relative intensity ¼ normalized intensitybuffer X

- normalized intensity135K=25Na=50HEPES=10Mg

Buffer X denotes 140Na/80HEPES/10Mg or 135K/25Na/
50HEPES/1MNa. The relative intensities are plotted inFigure 6.

The binding sites formany probes are ambiguous either because
two sites have identical sequences or the predictedΔG� for a probe
binding an alternative site with a mismatch is more favorable
than-8 kcal/mol and RNRspBs binds moderately or strongly to
the probe with perfect complementarity to the site. In Table 2,
probes targeting two sites with identical sequences have the second
site listed in parentheses. Alternative sites that could bind a given
probe are listed in brackets. Figure 7 provides a summary of probe
binding.

The strongest or second strongest binding is seen for probe 17,
which targets the largest hairpin loop. Two of the three other
hairpin loops also bind to probes. The exception is the GAAA
tetraloop capping P12. This tetraloop is also the hairpin loop
least reactive to small chemicals in the presence of 10 mM Mg2þ

(Figure 2).
Several helical regions unexpectedly bind probes. These include

P7, P8, the base helix of P10.1, and P12. Probes are apparently
able to invade intramolecular helices that abut multibranch or
large internal loops.

Strong and intermediate binding sites in 135K/25Na/50HEPES/
1MNa are similar to those in the buffers containing 10mMMg2þ,
although the intensity of bound radioactivity is often stronger

FIGURE 3: RNRspBs structural prediction by RNAstructure 4.6 without experimental constraints. The minimum free energy (MFE) structure
has the lowest free energy calculated by EFN2 (left), and the best predicted structure has the most accurately predicted Watson-Crick pairs
(right).RedX’s indicatemissing base pairs. Blue lines indicate incorrect base pairs. The color code indicates the base pair probability calculated by
partition function (55).

FIGURE 4: Results of hybridization of RNRspBs to isoenergetic microarrays in three different buffers at 4 �C: (A) 140Na/80HEPES/10Mg,
(B) 135K/25Na/50HEPES/10Mg, and (C) 135K/25Na/50HEPES/1MNa.
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in 1 M Naþ (Table 2 and Figures 4-7). The results suggest that
1 M Naþ supports tertiary interactions to some extent, which

is consistent with the results from native PAGE and chemical
mapping.

FIGURE 5: Quantification ofmicroarray hybridization results. RNRspBs was folded in (A) 140Na/80HEPES/10Mg, (B) 135K/25Na/50HEPES/
10Mg, and (C) 135K/25Na/50HEPES/1MNa buffers and hybridized to an isoenergetic microarray at 4 �C for 24 h. Probe binding strength is
represented by normalized intensity: normalized intensity = (average intensity - background intensity)/(average intensity - background
intensity)probe 17, where average intensity is the average of three spots of the sameprobe. Probeswithnormalized intensities that aremore thanone-
third of the maximum normalized intensity (red line) are strong binding. Probes with normalized intensities between one-third and one-ninth of
the maximum normalized intensity (green line) are intermediate binding. Probes with normalized intensities that are less than one-ninth of the
maximum normalized intensity are weak or no binding.
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Hybridizations in other buffers and at other temperatures were
also performed. These include 140Na/80HEPES/5Mg and 140Na/
80HEPES/0Mg at 4 �C, 135K/25Na/50HEPES/10Mg at 22 �C,
and 140Na/80HEPES/10Mg at 37 �C (data not shown). The bind-
ing intensities of probes depend on the hybridization conditions
and are reduced to various degrees. Only a few probes remain
strongly bound and give apparent signals. For example, probes
11 and 17 remain strongly bound in 140Na/80HEPES/5Mg, while
the binding intensities of other probes are reduced compared
to that in 140Na/80HEPES/10Mg at 4 �C. In 140Na/80HEPES/
0Mg, only probe 17 still binds strongly at 4 �C. In 140Na/80HEPES/
10Mg buffer at 37 �C, only probes 9 and 17 show binding signals,

albeit very weak. When the microarray experiment was conduc-
ted in 135K/25Na/50HEPES/10Mgat 22 �C,only probe 17 remains
strongly bound and probes 9, 32(112), and 33(67) show weak to
intermediate binding signals.
Footprinting of Probe 3 and 9 Binding Sites on RNRspBs.

The chemical mapping results confirmed that theRNRspBs secon-
dary structure in solution is consistent with that determined from
the crystal structure (22), from sequence comparison (45, 46), and
from 1M7 chemical mapping under somewhat different condi-
tions (29). Comparison of the secondary structurewith themicro-
array results led to the hypothesis that binding of probes on
the microarray surface may induce structural rearrangement

Table 2: Binding Strengths of Isoenergetic Probes in 140Na/80HEPES/10Mg, 135K/25Na/50HEPES/10Mg, and 135K/25Na/50HEPES/1MNa Buffers at 4 �Ca

binding strengthe

nucleotide position in target

RNA binding to middle of probeb
sequence of

probec
ΔG�37

(probe/RNA, 0.1 M NaCl) (kcal/mol)d
140Na/80HEPES/

10Mg

135K/25Na/

50HEPES/10Mg

135K/25Na/

50HEPES/1MNa

3 CULCGLCGL -10.3 s s s

4 GLCULCGL -9.1 w m s

5 GGCLUCL -9.4 w m s

6 (60) [32] AGLGCLUGL -10.6 [-10.3] m s s

7 (61) UDLGGLCGL -10.5 s w m

8 CUDLGGLGL -10.5 s s m

9 GCLUDLGGL -12.7 s s s

11 UCLGCLUGL -10.2 s s s

12 [140] ULUCLGCLGL -10.3 [-11.2] w m w

14 (110) DCLUULCGL -10.0 w m w

16 ULGDLCULGL -8.9 w m m

17 DLUGLDCLGL -10.4 s s s

32 (112) DLGDLCULGL -11.7 m s m

33 (67) DLDGLDCLGL -10.5 w s s

34 DLDDLGALGL -9.3 m s s

37 ULCULDDLGL -9.0 m m w

38 CLUCLUDLGL -10.2 m m m

39 CCLUCLUGL -10.1 m m m

50 CCLUGLC -9.7 m m w

52 ULUCLCULGL -10.8 m m s

53 ULUULCCLGL -8.4 w w m

59 [4] [5] GLGCLUULGL -10.0 [-12.2] w m m

60 (6) [32] AGLGCLUGL -10.6 [-10.3] m s s

61 (7) UDLGGLCGL -10.5 s w m

67 (33) DLDGLDCLGL -12.0 w s s

68 [34] GDLDGLDGL -9.7 [-8.0] s m m

71 UCLCGLDGL -10.5 w m w

88 [34] DLDGLGDLGL -11.5 [-9.4] s m w

102 [140] [141] DCLUGLUGL -11.1 [-11.4] m m s

110 (14) DCLUULCGL -10.0 w m w

112 (32) DLGDLCULGL -9.5 m s m

113 [33] [66] [67] GDLGDLCGL -9.8 [-8.1] [-10.2] m m m

114 ULGDLGDLGL -11.0 w m w

128 CUCLDCLGL -9.8 w w m

130 CUCLUCLGL -10.0 m w m

152 GCLGDLG -9.6 m w w

aProbes that bind to RNRspBs weakly in all three buffers are not listed. Probes corresponding to nucleotide positions 19, 20, 35, 36, 54-58, 75, 84, 91-95,
120-123, and 144-146 in RNA were not used because no modifications can provide sufficient binding free energies. bPentamer probes are identified by the
position of the nucleotide in RNRspBs that binds to the center nucleotide of the probe. Hexamer probes are identified as pentamer probes ignoring the 30-LNAG.
Alternative fully complementary sites are listed in parentheses. Potential alternative binding sites are listed in brackets. cProbes are 20-O-methyl and LNA
chimera oligonucleotides. LNA nucleotides are designated by a superscript L. dValues indicate the predictedΔG�37 values of probes binding to their unfolded
complementary sites. The ΔG�37 values of probes binding to their potential alternative binding sites are listed in brackets corresponding to the first column.
Only one ΔG�37 value is given for two adjacent potential alternative binding sites of a probe. Calculation considers only the formation of 5 bp formed between
the probe and its binding site in RNRspBs and the base pair (-3 kcal/mol) or mismatch (-1.5 kcal/mol) formed between the 30-terminal LNAG of the probe
and C or A, G, andU ofRNRspBs in some cases (56) but does not consider the 30- or 50-dangling ends fromRNRspBs. es indicates strong binding (normalized
binding intensity that is at least one-third of the maximum normalized intensity). m indicates intermediate binding (one-third of the maximum normalized
intensity>normalized binding intensity g one-ninth of the maximum normalized intensity). w indicates weak or no binding (normalized binding intensity<
one-ninth of the normalized intensity). Normalized binding intensity is calculated by the equation normalized intensity=(average intensity of three spots -
background intensity)/(average intensity of three spots- background intensity)probe 17, where both spot and background intensities are directly measured from
the radioactivity on the microarray.
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of RNRspBs. To test that hypothesis, binding of probes 3 and 9
was footprinted in solution separately with NMIA and kethoxal
(Figure S3 of the Supporting Information).

In the presence of probe 3, an increased degree of NMIA
modification is observed atU8,G10, andC11 (Figure S3A, lane 2
vs lane 1) and an increased degree of kethoxal modification at
G9 (Figure S3B, lane 3 vs lane 1). This is consistent with probe 3,
50CULCGLCGL, binding to nucleotides 1-5 and causing the nuc-
leotides at the 30-terminus of the RNA to pair with nucleotides
22-27, leaving nucleotides 6-11 open for NMIA or kethoxal
modification. In the presence of probe 9, 50GCLUDLGGL, an
increased degree of NMIA modification is observed for nucleo-
tides 25-28 (Figure S3A, lane 3 vs lane 1) and an increased degree
of kethoxalmodification atG22,G26,G27, andG28 (Figure S3B,
lane 2 vs lane 1). Probe 9 is fully complementary to nucleotides
6-11. The binding of probe 9 to the RNA apparently breaks the
double helix and leaves nucleotides 22-27 open formodification.
Probe 8 probably causes a structural rearrangement similar to
probe 9. The same NMIA modification experiment with probe
8 did not reveal any difference from the unmodified control
(result not shown), however. This is likely because probe 8,
50CUDLGGLGL, has three consecutive guanosines, which may
favor G-quadruplex formation in solution (58). Optical melting
experiments showed that probe 8 at 10 μM in 135K/25Na/
50HEPES/10Mg melted above 70 �C (data not shown). Evi-
dently, quadruplex formation prevented probe 8 from binding to
RNRspBs in solution.
RNase H Cleavage Induced by Antisense Oligodeoxy-

ribonucleotides. Themicroarray and probe footprinting experi-
ments suggested that design of antisense oligonucleotides and
small interfering RNA (siRNA) for an RNA target with known
secondary structure could be counterintuitive. For example, the

long single strands J11/12 and J12/11 in RNRspBs are expected
to be a good target for antisense DNA or siRNA.Microarray ex-
periments, however, show that they may not bind to short probes
and therefore may not be good targets. On the other hand, nuc-
leotides near the 50-terminus are expected to be poor targets because
they are all base paired in the secondary structure. RNase H
experiments were conducted to test whether results from isoener-
getic microarrays provide guidance for choosing antisense DNA
sequences.

As shown in Table S2 and Figure S4 of the Supporting Infor-
mation, the strongest RNaseH cleavages were induced by probes
CC97-111,GC130-140,AT73-86, andAT20-32 (seeMaterials
andMethods for the nomenclature). This does not correlate with
either microarray binding or chemical modification. Because
CC97-111 and GC130-140 cover all nucleotides in J11/12 and
J12/11, respectively, they apparently break tertiary interactions in
the internal loop. GC1-11 and TC1-13 induced only weak or
moderate cleavage of the double-stranded region at the 50-terminus
and also induced cleavage at sites not completely complementary
to the probe. Probe GT57-70 induced no clear cleavage.

DISCUSSION

The rapid discovery ofmany novel RNA functions has changed
our understanding of the importance of RNA in life processes.
RNA functions depend on secondary and tertiary structures.
Determining RNA structures, determining structure-function
relationships, and determining how to interfere with them are
important steps in controlling RNA functions. Toward this end,
computer programs have been developed to predict RNA struc-
ture from sequence (59-62) and the binding of oligonucleotides
to folded RNA (57, 63, 64). Because of the extensive base pairing
ability of nucleotides and the flexibility of the phosphate-ribose

FIGURE 6: Relative intensities of RNRspBs binding to probes under different salt conditions. Blue bars indicate relative intensities of probes in
140Na/80HEPES/10Mg and 135K/25Na/50HEPES/10Mg. Red bars indicate relative intensities of probes in 135K/25Na/50HEPES/1MNa and
135K/25Na/50HEPES/10Mg. Relative intensities are calculatedwith the equation, relative intensity=normalized intensitybuffer X- normalized
intensity135K/25Na/50HEPES/10Mg. Buffer X denotes 140Na/80HEPES/10Mg or 135K/25Na/50HEPES/1MNa. Positive values indicate that probes
bind more tightly in 140Na/80HEPES/10Mg or in 135K/25Na/50HEPES/1MNa buffer than in 135K/25Na/50HEPES/10Mg buffer. Negative
values indicate that probes bind more tightly in 135K/25Na/50HEPES/10Mg buffer than in either 140Na/80HEPES/10Mg or 135K/25Na/
50HEPES/1MNa buffer.
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backbone (65), however, RNA molecules have a large folding
space.As a result, only a few classes ofRNA secondary structures
have been determined definitively by comparative sequence
analysis or experimentalmethods such asNMR, crystallography,
and chemical and enzymatic mapping (19-27). When tested
against these structures, on average 70% of Watson-Crick and
GU base pairs are contained in minimum free energy structures
predictedbyprograms likeRNAstructure (51) andMFOLD(59).
Usually, the predictions can be improved when experimental
constraints on paired or unpaired nucleotides are used to limit
folding space (19, 51, 66). Oligonucleotide microarrays can
rapidly generate a large amount of data that in principle could
also be used to restrain RNA folding space (36-38). The results
presented here, however, indicate that such applications will
require an understanding of factors affecting probe binding that
is more sophisticated than what is currently available. Such under-
standing should also inform the rational design of oligonucleo-
tides to interfere with RNA function.

The RNA studied in this work, RNRspBs, has many unique
features that can complicate probe binding and structure predic-
tion. It contains many duplexes of only 2, 3, or 4 bp. A three-way
multibranch loop and a four-waymultibranch loop are separated
only by the 2 bp stem of P10 at the core of the structure. StemP11
has four Watson-Crick base pairs interrupted by an AA bulge
loop and a GU wobble pair, and stem P11 separates the three-
way multibranch loop from the large internal loop comprised of
J11/12 and J12/11.
Implications forStructurePrediction.Even thoughRNRspBs

has a complex structure, free energy minimization with or with-
out chemical mapping constraints correctly predicts 79.5%of the
known base pairs (Table 1). The incorrect base pairing occurs in

the region flanking the two multibranch loops (Figure 3), a motif
for which there is little information about the sequence depen-
dence of stability. While chemical mapping constraints do not
improve the predicted minimum free energy structure, they do
eliminate many possible structures and raise the rank of a struc-
ture that is 93.2% accurate (Table 1). The calculations use free
energy parameters determined in 1 M NaCl (51, 67, 68). The
chemical mapping results, however, indicate that the secondary
structure is the same in 135mMKþwith orwithout 10mMMg2þ.
In addition, chemical mapping, microarray binding, and native
PAGE results indicate that the secondary structure is the same in
135 mM Kþ with 10 mM Mg2þ or 1 M NaCl. Chemical map-
ping experiments with the cyclized Tetrahymena group I intron
have also indicated similar secondary structure in the presence of
10 mMMg2þ or 1 M Naþ (69). Evidently, parameters measured
in 1 M Naþ provide reasonable approximations for other salt
conditions.
Probe Binding Is Surprising. While the chemical mapping

results are consistent with the known secondary structure, some
of themicroarray binding results are surprising. Three of the four
hairpin loops bind probes as expected, but stems P7, P8, P10.1,
and P12 bind probes unexpectedly (Figure 7). NMIA and
kethoxal footprinting of probe 3 is consistent with strong binding
to stem P7 inducing a rearrangement of stems P7 and P8, which
results in formation of newbase pairs,G22-C154,C23-G153,A25-
U151, G26-C150, G27-C149, and perhaps G28-C148 (Figure S5
of the Supporting Information). Binding of probe 3 to rearranged
RNRspBs has a predicted ΔG�37 of -6.5 kcal/mol. NMIA and
kethoxal footprinting of probe 9 is consistent with strand inva-
sion that breaks P8 (Figure S6 of the Supporting Information).
Strand invasion is promoted by the favorable free energy of 3 or
4 kcal/mol provided by modifications in the probes. The overall
binding free energy,ΔG�37, is predicted to be-3.3 kcal/mol. This
suggests that strand invasion and secondary structure rearrange-
ment are easier than expected. Intramolecular rearrangement of
secondary structure on amillisecond time scale has been observed
for the 50-leader sequence of Leptomonas collososa (70).

The strong binding of probe 8 to RNRspBs is very surprising
because strand invasion caused by probe 8 binding to nucleotides
6-10 in RNRspBs is predicted to be unfavorable with aΔG�37 of
2.6 kcal/mol. Examination of the RNRspBs sequence for poten-
tial alternative binding sites, however, reveals that binding of
probe 8 can become favorable in two situations: (1) binding to
nucleotides 33-38with aΔG�37 of-5.6 kcal/mol and (2) binding
to nucleotides 6-10 and 23-26, which is possible when probes
are densely immobilized on the microarray and cause the break-
ing of P8.

The intermediate binding of probes 114 and 130 to stem P12 is
surprising because in each case five intramolecular Watson-
Crick pairs are likely broken. This binding could also induce
structural rearrangements (Figure S7 of the Supporting Infor-
mation). Moreover, the modifications in the probes are likely to
make the probe-RNA base pairing more stable by at least 4 kcal/
mol relative to completelyWatson-Crick RNA-RNA base pair-
ing (Figure S7) (39).

The intermediate binding of probes 50 and 52 probably requi-
res breaking of four intramolecular base pairs. In these cases, a
dramatic structural rearrangement may not be involved. Binding
of probe 50 or 52 has the potential to break the 2 bp stem of P10
and thus merge the three-way and four-way junctions into a single
five-way junction. On the basis of available parameters for junc-
tions (71), the five-way junction is ∼1 kcal/mol less destabilizing

FIGURE 7: Unambiguous binding sites of RNRspBs by isoenergetic
probesonamicroarrayexplored in threebuffer conditions.Redsquares
indicate strong binding in 140Na/80HEPES/10Mg and 135K/25Na/
50HEPES/10Mg buffers. Red circles indicate intermediate binding
in 140Na/80HEPES/10Mg and 135K/25Na/50HEPES/10Mg buf-
fers. Purple circles indicate intermediate binding in 135K/25Na/
50HEPES/10Mg buffer. The red diamond indicates intermediate
binding in 140Na/80HEPES/10Mg buffer and strong binding in
135K/25Na/50HEPES/10Mg buffer. Green circles indicate inter-
mediate binding in 140Na/80HEPES/10Mg buffer. S indicates strong
binding in 135K/25Na/50HEPES/1MNa buffer. M indicates inter-
mediate binding in 135K/25Na/50HEPES/1MNa. Question marks
indicate ambiguous binding sites. Adapted from ref 22.
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than the combination of a three-way junction and a four-way
junction. Probes 50 and 52 form five and sixWatson-Crick base
pairs, respectively, and their modifications add at least another
three and four kcal/mol, respectively, of favorable free energy
relative to the four broken RNA-RNA Watson-Crick pairs.
SaltConditionsAffectProbeBinding.As shown in Figure 6,

probe binding relative to that of probe 17 depends somewhat on
salt conditions.When compared to 135K/25Na/50HEPES/10Mg,
probe 33(67) binds much less tightly in 140Na/80HEPES/10Mg,
but more tightly in 135K/25Na/50HEPES/1MNa. If a cutoff
of 0.2 is used to indicate significance, then binding in 140Na/
80HEPES/10Mg is also weakened for probes 5, 6(60), 12, 16, and
32(112) but strengthened for probes 3, 7(61), and 88. Binding in
135K/25Na/50HEPES/1MNa is weakened for probes 12 and 114
but strengthened for probes 4, 5, 9, 34, 38, 39, 52, 59, 102, 128,
and 130 in addition to 33(67). The ambiguity in binding sites of
many of the probes (Table 2 and Figure 7) prohibits detailed
interpretation.Nevertheless, it appears that binding toP7 andP8,
which abut a multibranch loop, to the loop region of P9 and to
P10.1 may depend on salt conditions. These are the regions with
the densest clusters of probe binding. It is known that Naþ, Kþ,
and Mg2þ can affect the thermodynamic stabilities of various
motifs (52, 72-75).
Implications for the Design of Therapeutics. Many app-

roaches are being developed to target RNA with oligonucleotide
mimics as therapeutics (14, 15). It would be advantageous to
develop approaches that use short oligonucleotides (76, 77). The
results reported here suggest that the design of such oligonucleo-
tides may not follow expected rules. For example, on the basis of
known secondary structure, J11/12 and J12/11 are expected to be
good targets. Only probes 102 and 110(14) potentially bind to
J11/12, however, and both may bind elsewhere (Table 2). In
contrast, probes are not expected to bind to double-helical
regions but do bind to P7, P8, P10.1, and P12. While the limited
knowledge of loop thermodynamics does not allow prediction of
such binding, microarray experiments provide a rapid way to
reveal them. The results suggest that short oligonucleotides may
induce refolding of an RNA into an alternate conformation that
could abrogate function.

CONCLUSIONS

Unexpected binding to an isoenergetic oligonucleotide micro-
array is observed for a target RNA composed of many short
double-helical regions, large internal loops, and extensive ter-
tiary interactions. Because of their enhanced binding free ener-
gies, isoenergetic probes can break short duplexes, merge
adjacent loops, and/or induce refolding. This suggests new
approaches to the rational design of short oligonucleotide
therapeutics. For example, rational design can consider tar-
geting short helical regions to induce refolding to an inactive
conformation. Given the current limited knowledge of the
energetics of RNA loops and tertiary interactions, however,
microarray binding data do not provide a reliable check on
secondary structures deduced from free energy minimization
coupled with chemical modification constraints when the
RNA has short helices and large loops. Results from chemical
modification experiments, however, provide useful constraints
on folding space. Results from chemical modification, micro-
array binding, and native PAGE indicate that the folding of
the B. subtilis RNase P RNA specificity domain is similar in
the presence of 1 M Naþ or 10 mM Mg2þ.
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SUPPORTING INFORMATION AVAILABLE

Sources of materials used in the study; comparison of free
energies between 20-O-methyl RNA probes at 37 and 4 �C and
corresponding isoenergetic probes at 37 �Caswell as free energies
of isoenergetic probes at alternative binding sites (Table S1);
RNase H cleavages and intensities induced by oligodeoxyribo-
nucleotides (Table S2); RNRspBs folded in buffers containing
different metal ions resolved by native PAGE (Figure S1); com-
parison of predicted ΔG�37 values of isoenergetic probes, 20-O-
methyl probes, and 6-merDNAprobes bound to an unstructured
RNAtarget (Figure S2);NMIAandkethoxal footprinting at 22 �C
of RNRspBs binding sites for probe 3, 50CULCGLCGL, and
probe 9, 50GCLUDLGGL (Figure S3); RNase H cleavage indu-
ced by antisense oligodeoxyribonucleotides (Figure S4); alterna-
tive binding of probe 3 toRNRspBs (Figure S5); strand invasion of
probe 9 into P8 of RNRspBs (Figure S6); and possible local
structural rearrangement of RNRspBs caused by binding of
probe 114, 50ULGDLGDLGL, or of probe 130, 50CUCLUCLGL

(Figure S7). This material is available free of charge via the
Internet at http://pubs.acs.org.
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