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ABSTRACT

Objective: To determine the proton magnetic resonance spectroscopy (1H MRS) changes in carri-
ers of microtubule-associated protein (MAPT) mutations in a case-control study.

Methods: Patients with MAPT mutations (N279K, V337M, R406W, IVS9-10G�T, P301L) from
5 different families (n � 24) underwent MRI and single voxel 1H MRS from the posterior cingulate
gyrus inferior precuneus at 3 T. Ten of the patients were symptomatic with median Clinical De-
mentia Rating sum of boxes score (CDR-SOB) of 6.5 and 14 patients were presymptomatic with
CDR-SOB of 0. Age- and sex-matched controls (n � 24) were recruited.

Results: Symptomatic MAPT mutation carriers were characterized by decreased N-acetylaspartate/
creatine (NAA/Cr) ratio, an index of neuronal integrity, increased myoinositol (mI)/Cr ratio, a possible
marker for glial activity, decreased NAA/mI, and hippocampal atrophy (p � 0.001). Whereas presymp-
tomatic MAPT mutation carriers had elevated mI/Cr and decreased NAA/mI (p � 0.001), NAA/Cr
levels and hippocampal volumes were not different from controls. Decrease in NAA/Cr (R2 � 0. 22;
p � 0.021) and hippocampal volumes (R2 � 0.46; p � 0.001) were associated with proximity to the
expected or actual age at symptom onset in MAPT mutation carriers.

Conclusion: 1H MRS metabolite abnormalities characterized by an elevated mI/Cr and decreased
NAA/mI are present several years before the onset of symptoms in MAPT mutation carriers. The
data suggest an ordered sequencing of the 1H MRS and MRI biomarkers. MI/Cr, a possible index
of glial proliferation, precedes the decrease in neuronal integrity marker NAA/Cr and hippocampal
atrophy. 1H MRS may be a useful inclusion biomarker for preventive trials in presymptomatic
carriers of MAPT mutations and possibly other proteinopathies. Neurology® 2010;75:771–778

GLOSSARY
AAL � automated anatomic labeling; AD � Alzheimer disease; CDR-SOB � Clinical Dementia Rating sum of boxes score;
Cr � creatine; FTD � frontotemporal dementia; FTLD � frontotemporal lobar degeneration; GM � gray matter; mI � myoi-
nositol; MNI � Montreal Neurological Institute; MR � magnetic resonance; MRS � magnetic resonance spectroscopy; NAA �
N-acetylaspartate; ROI � region of interest; SPM � statistical parametric mapping; SV � single voxel; WM � white matter.

Frontotemporal dementia with parkinsonism linked to chromosome 17 is an autosomal dom-
inant tauopathy that is linked to mutations in the gene encoding for the microtubule-
associated protein tau (MAPT) on chromosome 17.1-4 Mutations in MAPT result in
filamentous accumulation of hyperphosphorylated tau in neurons and glia leading to neurode-
generation and atrophy.5-7 Progressive accumulation of filamentous tau and subsequent neuro-
nal death is central to the pathogenesis of many neurodegenerative diseases including
Alzheimer disease (AD), and may begin years before the onset of clinical symptoms. Noninva-
sive biomarkers of this pathologic cascade would be valuable tools for early diagnosis and
tracking disease progression in tauopathies.8

1H magnetic resonance spectroscopy (1H MRS) is a quantitative biochemical imaging technique
and a sensitive marker for neurodegenerative pathology in AD9 and frontotemporal lobar degenera-
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tion (FTLD).10,11 The decrease in the neuronal
integrity marker N-acetylaspartate (NAA) or
NAA to creatine (NAA/Cr) ratio and the in-
crease in the glial marker myoinositol (mI) or
mI to creatine (mI/Cr) in a living person is asso-
ciated with the clinical diagnosis of AD and
FTLD,11 the likelihood of having AD pathol-
ogy, the severity of the neurofibrillary pathol-
ogy, and fibrillary tau density at autopsy.9,12

Symptomatic MAPT mutation carriers
typically have severe anterior and medial tem-
poral lobe atrophy.6,13 Our objective was to
characterize the 1H MRS abnormalities in
both symptomatic and presymptomatic carri-
ers of the MAPT mutations. We hypothesized
that 1H MRS abnormalities in MAPT muta-
tion carriers precede the clinical symptoms
and medial temporal lobe atrophy on MRI,
and that the severity of 1H MRS abnormali-
ties is associated with the proximity to the es-
timated age at disease onset in carriers of the
MAPT mutations.

METHODS Subjects. We identified 24 MAPT mutation
carriers who were recruited to the Mayo Clinic Alzheimer’s Dis-
ease Research Center and participated in the 1H MRS study
from 2007 through 2009. All subjects underwent a clinical ex-
amination at the time of magnetic resonance (MR) examination.
The behavioral neurologist (B.F.B.) who examined all of the sub-
jects was blinded to the MAPT mutation status and to the MRI
and 1H MRS findings. None of the subjects had structural le-
sions that could cause cognitive impairment or dementia, such as
cortical infarctions, tumor, or subdural hematoma, or had con-

current illnesses that would interfere with cognitive function at
the time of the MR examination.

Table 1 lists characteristics of each of the MAPT mutation
carriers. Ten patients explicitly declined to be informed about
the results of the genetic testing. For this reason, demo-
graphic data of each of the individual patients are not pre-
sented to protect patient confidentiality. Of the 24 subjects,
14 had no clinical symptoms and had a Clinical Dementia
Rating sum of boxes score of 0 (5 with N279K, 4 with
V337M, 3 with R406W, and 2 with P301L mutations),
which we refer to as presymptomatic patients. Ten patients
were symptomatic: 8 patients were diagnosed with frontotem-
poral dementia (FTD) (4 with V337M, 3 with P301L, and 1
with IVS9-10G�T mutations), 1 patient was diagnosed with
FTD with parkinsonism (R406W mutation), and 1 patient
was diagnosed with pallidopontonigral degeneration (N279K
mutation). Each of the N279K, V337M, R406W, P301L,
and IVS9-10G�T mutation carriers were coming from 5 in-
dividual families. Median age at disease onset in each family/
mutation type was estimated from the date of symptom onset
in symptomatic patients of the family based on the clinical
history and previous publications on these families.8,14,15

We recruited 24 cognitively normal controls to the 1H
MRS/MRI study, who did not have any neurologic or psychiat-
ric disorders and who were matched to the mutation carriers on
age and gender. This study was approved by the Institutional
Review Board, and informed consent for participation was ob-
tained from every subject or an appropriate surrogate.

1H MRS and MRI. All subjects underwent 1H MRS and
MRI studies within a week of the clinical evaluation. Single voxel
(SV) 1H MRS and MRI studies were performed on a 3-Tesla
scanner using an 8-channel phased array head coil (General Elec-
tric Medical Systems, Milwaukee, WI). A 3-dimensional high-
resolution magnetization-prepared rapid gradient echo
acquisition with repetition time/echo time/inversion time �

7/3/900 msec, flip angle 8 degrees, in-plane resolution of 1.0
mm, and a slice thickness of 1.2 mm was performed in sagittal
plane for voxel positioning, anatomic segmentation, and label-
ing. 1H MRS studies were performed using the automated MRS
package: Proton Brain Examination/SV.16 Point resolved spec-
troscopy sequence with repetition time � 2,000 msec, echo
time � 30 msec, 2,048 data points, and 128 excitations was used
for the examinations.

An 8 cm3 (2 � 2 � 2 cm) voxel, prescribed on a midsagittal
T1-weighted image, included right and left posterior cingulate
gyri and inferior precuneate gyri. The anterior border of sple-
nium, the superior border of corpus callosum, and the cingulate
sulcus were used as the anatomic landmarks to define the voxel.9

Metabolite intensity ratios calculated at the end of each
PROBE/SV acquisition were analyzed. Quantifying metabolite
intensities by referencing to an internal standard is preferred in
clinical 1H MRS, because internal referencing does not require
correction for coil loading, atrophy, and relaxation times and can
readily be used in clinical practice with standard equipment and
vendor-provided processing software.

We used the anatomic atlas labels from the in-house modi-
fied automated anatomic labeling (AAL) atlas template17,18 in or-
der to derive the gray matter (GM) volumes from specific brain
regions in statistical parametric mapping 5 (SPM5).19 For the
current study, we analyzed the hippocampal volumes in both
hemispheres. The hippocampal regions of interest (ROI) were
chosen based on previous reports from our group showing signif-
icant medial temporal lobe atrophy in many symptomatic pa-

Table 1 Patient characteristics

Characteristic or variable
Presymptomatic
(n � 14)

Symptomatic
(n � 10) p

No. (%) of women 9 (64) 4 (40) 0.24a

Age at 1H MRS, y, mean (SD) 36.4 � 7.9 58.2 � 9 �0.001b

CDR sum of boxes, median (range) 0 (0–0) 8 (1.5–18)

Total UPDRS, median (range) 0 (0–0) 7.5 (0–22)c

Age at symptom onset in the family,
median (range)

N279K 44 (32–65)

V337M 41 (35–50)

R406W 38 (38–38)

P301L 52 (50–53)

IVS9-10G>T 43 (43–43)

Abbreviations: CDR � Clinical Dementia Rating; MRS � magnetic resonance spectroscopy;
UPDRS � Unified Parkinson’s Disease Rating Scale.
a Based on �2 test.
b Based on Wilcoxon rank-sum test.
c One patient refused testing.
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tients with MAPT mutations.6,13 Each subject’s T1 MRI scan was
spatially normalized and segmented into GM, white matter
(WM), and CSF using the unified segmentation model of
SPM5, giving a discrete cosine transformation, which normalizes
each subject’s MRI to the Montreal Neurological Institute
(MNI) template space. Then for each subject, the inverse trans-
formation was applied to the in-house modified AAL atlas in the
MNI template space in order to warp the atlas labels to the
subject’s native anatomic space. The resulting subject-specific
atlas was used to parcellate GM images into the ROI in the
subject’s T1 image space. The normalized volume of the hip-
pocampus was computed by averaging the right and left hip-
pocampal volumes and dividing by the total intracranial volume.
Hippocampal volumes could not be analyzed in one of the
symptomatic cases due to motion artifacts and poor scan quality.

Genetic analysis. Analysis of MAPT exons 1, 7, and 9 –13
was performed using primers and conditions that were previ-
ously described.2 PCR amplicons were purified using the
Multiscreen system (Millipore, Billerica, MA) and then se-
quenced in both directions using Big Dye chemistry follow-
ing the manufacturer’s protocol (Applied Biosystems, Foster
City, CA). Sequence products were purified using the Mon-
tage system (Millipore) before being run on an Applied Bio-

systems 3730 DNA Analyzer. Sequence data were analyzed

using either SeqScape (Applied Biosystems) or Sequencher

software (Gene Codes, Ann Arbor, MI).

Statistical analysis. We compared the demographic aspects in

presymptomatic and symptomatic MAPT mutation carriers to

the controls using Wilcoxon rank sum test and �2 tests.

Between-group comparisons of 1H MRS metabolite ratios and

hippocampal volumes were performed using Wilcoxon rank sum

test. Symptomatic patients were older than the presymptomatic

subjects (p � 0.001). Because age may influence metabolite ra-

tios, we used the data from the control group to estimate the age

effects on metabolite ratios and adjusted the metabolite ratios in

the MAPT mutation carriers for age. Therefore, between-group

comparisons of MR markers were performed after adjusting for

age. The association between 1H MRS data and time to expected

age at onset was tested using linear regression analysis after ad-

justing for age.

RESULTS The 1H MRS metabolite and hippocam-
pal volume differences among the control, presymp-
tomatic, and symptomatic patients are listed in table
2. Representative spectra from the 3 clinical groups

Figure 1 Representative 1H magnetic resonance spectra from the posterior cingulate gyrus and inferior
precuneus region

Control subject (A), presymptomatic patient (B), and a patient with frontotemporal dementia (FTD) (C) with MAPT mutations.
The spectra are scaled to the creatine (Cr) peak as indicated with the dotted red line. The myoinositol (mI) peak is elevated in
the presymptomatic patient (B) and the patient with FTD (C). The N-acetylaspartate (NAA) peak is decreased only in the
patient with FTD (C).

Table 2 1H MRS metabolite ratios and hippocampal volumes in clinical groups

MR marker Control (n � 24) Presymptomatic (n � 14) Symptomatic (n � 10)

NAA/Cr, median (range) 1.71 (1.60–1.81) 1.66 (1.57–1.75) 1.57 (1.40–1.65)a,b

mI/Cr, median (range) 0.47 (0.38–0.54) 0.57 (0.45–0.62)a 0.59 (0.48–0.72)a

NAA/mI, median (range) 3.56 (3.28–4.24) 2.96 (2.85–3.24)a 2.72 (2.26–3.06)a,b

Hippocampal volume (mm3),
median (range)c

2,933 (2,138–3,290) 3,062 (1,933–3,402) 1,629 (1,080–2,725)a,b

Abbreviations: Cr � creatine; mI � myoinositol; MR � magnetic resonance; MRS � magnetic resonance spectroscopy;
NAA � N-acetylaspartate.
a Different from controls (Wilcoxon rank-sum tests adjusted for age; p � 0.001).
b Different from presymptomatic patients (Wilcoxon rank-sum tests adjusted for age; p � 0.05).
c Right and left hippocampal volumes were averaged, divided by the total intracranial volume, and multiplied by 106 for
scaling. Hippocampal volumes could not be analyzed in one of the symptomatic cases due to motion artifacts and poor scan
quality.
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are shown in figure 1. Symptomatic patients had
higher mI/Cr, lower NAA/Cr and NAA/mI ratios,
and smaller hippocampal volumes compared to the
control group after adjusting for age (p � 0.001).
Similarly, the presymptomatic patients on average
had higher mI/Cr and lower NAA/mI levels com-
pared to the controls (p � 0.001), but the neuronal
marker NAA/Cr ratio and the hippocampal volumes
were not different from normal in these patients
(p � 0.09) after adjusting for age. The decrease in
NAA/mI appeared to be mainly driven by the eleva-
tion in mI in the presymptomatic patients. Only one
presymptomatic patient had hippocampal atrophy.
This patient also had elevated mI/Cr and decreased
NAA/mI levels. Hippocampal volumes in all of the
other presymptomatic subjects were within the con-
trol range. The NAA/Cr (p � 0.003) and hippocam-
pal volumes (p � 0.002) were lower in symptomatic
patients compared to the presymptomatic patients;
however, mI/Cr levels were not different among the
symptomatic and presymptomatic cases (p � 0.22),
suggesting that while the elevation of mI/Cr is an
early marker for the tau-related pathology, elevation
in mI/Cr appears to plateau once an individual be-
comes symptomatic (figure 2).

Median age at symptom onset in the 4 families/
mutation types ranged from 38 to 52 years (table 1).
Three presymptomatic carriers of the MAPT muta-
tions were past the median age at symptom onset in
their family by 5 and 8 years. Symptomatic patients
were experiencing symptoms for 6 to 44 years. We
found a significant association between the estimated
proximity to symptom onset and the 1H MRS me-
tabolite ratios and hippocampal volumes in the entire
group of presymptomatic and symptomatic carriers
of MAPT mutations. The NAA/Cr (R2 � 0.22; p �

0.021) and hippocampal volumes (R2 � 0.46; p �
0.001) decreased as the ages of MAPT mutation car-
riers approached and passed the estimated age at
symptom onset (figure 3A). The NAA/mI ratios in
all 6 presymptomatic patients with MAPT mutations
who had 5 years to reach or who were past estimated
age at symptom onset were lower than the lowest
value in the control range (NAA/mI � 3.28). In con-
trast, the NAA/mI ratios in 3 presymptomatic pa-
tients who had more than 5 years to reach the
estimated age at symptom onset were within the nor-
mal range (figure 3B).

DISCUSSION The results of this study demonstrate
1H MRS metabolite abnormalities in presymptom-
atic carriers of mutations in the gene encoding for
MAPT on chromosome 17. The severity of 1H MRS
and MRI abnormalities were associated with the
proximity to the estimated age at symptom onset.
NAA/mI ratio was fully outside of the control range
in presymptomatic MAPT mutation carriers who
had 5 years to reach or who were past the estimated
age at symptom onset, indicating presence of bio-
chemical abnormalities related to neurodegenera-
tion, years before the onset of symptoms in MAPT
mutation carriers.

Our findings in MAPT mutation carriers show
similarities to the NAA/mI abnormalities reported in
7 presymptomatic carriers of the presenilin 1 (PS1)
and amyloid precursor protein gene (APP) mutations
who are destined to develop AD,20 and the elevation
of mI/Cr in the 2 asymptomatic carriers of the
P102L mutation in the prion protein gene who are
destined to develop inherited prion disease.21 A rela-
tionship between the decrease in NAA/mI and the
proximity of expected age at onset was identified in

Figure 2 Box plots show the hippocampal volumes (corrected for the total intracranial volume) and 1H magnetic resonance spectroscopy
metabolite ratios

Controls (n � 24), presymptomatic (n � 14), and symptomatic (n � 10) MAPT mutation carriers. Cr � creatine; mI � myoinositol; NAA � N-acetylaspartate.
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the PS1 and APP mutation carriers.20 In the current
study, there was an association between the proxim-
ity to the age at symptom onset and the NAA/Cr
ratio and hippocampal volumes but not the mI/Cr
ratio in the entire cohort of presymptomatic and
symptomatic carriers of MAPT mutations. Our in-
terpretation is that the elevation of mI/Cr is an early
event that plateaus once an individual becomes
symptomatic. In contrast, NAA/Cr and hippocam-
pal volumes are later biomarkers that decrease pro-
gressively during the entire disease course, including
the clinically symptomatic period. Agreement be-
tween the metabolite abnormalities we encountered
in the MAPT mutation carriers and the abnormali-
ties in asymptomatic patients with PS1 and APP mu-
tations and P102L mutation in the prion protein
gene suggest that the 1H MRS changes in the brain
may be early markers of the neurodegenerative pa-
thology in familial neurodegenerative dementias
caused by a variety of different mutations leading to
proteinopathies.

The early increase in mI/Cr in presymptomatic
patients, followed by a decrease in the neuronal
integrity marker NAA/Cr and hippocampal atro-
phy when patients became symptomatic, implies a
temporal sequence to the 1H MRS changes in
MAPT mutation carriers. This is consistent with
the temporal sequence of 1H MRS findings in
other tauopathies such as AD and Down
syndrome.22-24 For example, mI/Cr is elevated in
patients with amnestic mild cognitive impairment,
many of whom have early AD pathology,16,25 in
patients at the intermediate stage of neurofibrillary

pathology at autopsy,9 and in patients with Down
syndrome who develop dementia in the future.22,23

These conditions are characterized by an initial el-
evation in mI/Cr without a significant decrease in
NAA/Cr in the parietal lobe regions, and later by
decreased NAA/Cr in patients with dementia and
in patients with high levels of neurofibrillary pa-
thology at autopsy.9,25

The metabolite mI is mainly located in glial
cells,26 and is regarded as a possible marker for glial
activation. mI is elevated in glial tumors27 and mI
levels are associated with glial activation in inflam-
matory CNS demyelination.28 Similarly, elevation of
mI/Cr in patients with FTLD and carriers of MAPT
mutations may be related to the microglial activation
and gliosis encountered in these patients.8,10,11,29-31

There is evidence that activated microglia may be
harmful to axons and dendrites by interfering with
neuronal transport.32,33 A mechanistic link between
early microglial activation and progression of tau pa-
thology has been demonstrated in the P301S mutant
transgenic tau mice.34 This study showed that micro-
glial activation is one of the earliest pathologic find-
ings in these transgenic tau mice, present at 6 months
of age, followed by hippocampal neuronal loss and
atrophy detected after 9 months of age.34 The in-
crease in mI/Cr earlier than the decrease in the neu-
ronal integrity marker NAA/Cr and hippocampal
atrophy on MRI in MAPT mutation carriers is con-
sistent with the temporal course of microglial activa-
tion preceding neuronal loss and hippocampal
atrophy in transgenic tau mice, and supports the hy-

Figure 3 N-acetylaspartate (NAA)/myoinositol (mI) levels and the estimated proximity to symptom onset

NAA/mI ratios in the entire group of MAPT mutation carriers (A) and in only presymptomatic carriers of MAPT mutations (B) compared to the NAA/mI levels
in the controls (C). In the horizontal axis, 0 indicates the estimated age at symptom onset based on the median age at symptom onset in symptomatic
patients from the same family in presymptomatic patients and the age at actual symptom onset in symptomatic patients. (B) All of the presymptomatic
MAPT mutation carriers who are estimated to reach the age at symptom onset in less than 5 years (subjects to the right of the black line on B) or who have
passed the estimated age at symptom onset have lower NAA/mI levels than the lowest value in the control range.
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pothesis that microglial activation is driving neuronal
damage downstream.32

Although symptomatic patients with MAPT mu-
tations have striking medial temporal lobe atrophy,
we study the posterior cingulate gyrus region with
1H MRS in our standard MRS protocol for several
important reasons relating to spectral quality. The
quality and reliability 1H MR spectra from the poste-
rior cingulate is significantly superior to the spectra
from the medial temporal lobe, owing to the close
proximity of the medial temporal lobe to the mag-
netic susceptibility artifacts at the skull base. This is
particularly true for short echo time spectra, and
quantification of mI requires a short echo time 1H
MRS acquisition.35-37 In fact, the unreliability of mI
measurements from the medial temporal lobe region
have been demonstrated in a multicenter study.38

Furthermore, the posterior cingulate voxel location
can be identified by clear anatomic landmarks by
trained technicians, which is critical for longitudinal
serial measurements. Because we found a significant
decrease in NAA/mI in patients with FTLD in the
posterior cingulate voxel in a previous study,11 we felt
confident in this acquisition for the current analysis.
However, significant abnormalities may also be
found in the frontal lobe, which is also involved in
symptomatic carriers of MAPT mutations but less
significantly than the medial temporal lobe.

The median age at symptom onset in symptom-
atic members of the family was used for estimating
the time to symptom onset in presymptomatic muta-
tion carriers. The clinical presentation of FTLD-17
is heterogenous among various mutations, within a
single mutation, and even among members of the
same family.5 The age at symptom onset may also
vary among the members of a single family.8 This
was evident in the 2 presymptomatic carriers of the
same MAPT mutation who were past the expected
age at symptom onset by 5 and 8 years but had de-
creased NAA/mI ratios suggesting preclinical
neurodegenerative changes. Interestingly, another
presymptomatic patient in this family, who was 13
years younger than the expected age at symptom on-
set, had a similarly low NAA/mI level (3.19) as the
presymptomatic MAPT mutation carrier who was
past the expected age at symptom onset by 5 years
(figure 3). Another presymptomatic patient who was
13 years younger than the estimated age at symptom
onset had NAA/mI levels as low as some of the symp-
tomatic patients (2.89). However, this decrease in
NAA/mI was mainly due to an elevated mI/Cr (0.59)
because NAA/Cr level (1.71) in this patient was
within the control range. A relatively slow progres-
sion of the neurodegenerative pathology may be re-
sponsible for the reduced variability in NAA/mI

relative to the estimated time to symptom onset in
both of these families. Longitudinal follow-up is nec-
essary to determine the actual age at symptom onset
in the presymptomatic patients.

Metabolite abnormalities detected in MAPT
mutation carriers give insights into disease patho-
genesis in tauopathies. The neurodegenerative
changes that are characterized by an elevation in
the possible glial marker mI/Cr begin years before
the onset of symptoms, and the decrease in the
neuronal marker NAA/Cr and hippocampal atro-
phy appear to follow shortly before dementia en-
sues and become progressively more abnormal as
dementia worsens. This sequence of 1H MRS and
volumetric MRI changes in MAPT mutation carri-
ers show similarities to the 1H MRS findings in
sporadic and familial AD, and is in agreement
with microglial activation observed prior to neuro-
nal loss and hippocampal atrophy in tau trans-
genic mice. 1H MRS is a noninvasive acquisition
technique that is present on all modern clinical
MR scanners and can implemented in multicenter
projects.38 These early findings suggest the possi-
bility that 1H MRS may be used as a noninvasive
imaging marker for neuroprotective interven-
tions,39,40 before there is significant loss of neuro-
nal integrity in MAPT mutation carriers as well as
in other proteinopathies such as AD. Validating
1H MRS abnormalities as biomarkers of tau-
mediated pathology will require longitudinal
follow-up.
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Apply Now for a 2011 Clinical Research Training
Fellowship in Neurology

The AAN Foundation is now accepting applications for six Clinical Research Training Fellowships
in neurology for 2011, including a new award in epilepsy research. Fellowships provide recipients
with salary and tuition stipends, allowing them protected time to complete clinical research projects
and take the next step toward a career in neurologic research. Applications are due by Friday,
October 1, 2010. Apply online at www.aan.com/fellowship by October 1, 2010. For more informa-
tion, contact Terry Heinz at theinz@aan.com or (651) 695-2746.
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