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Abstract
Primary hyperparathyroidism (HPT) results from the excessive secretion of parathyroid hormone
from parathyroid tumors. While most HPT is sporadic, it is associated with a familial syndrome in
a minority of cases. Study of these syndromes has helped define the pathophysiology of both familial
and sporadic parathyroid neoplasms. Investigation of kindreds with multiple endocrine neoplasia
type 1 (MEN1) and the hyperparathyroidism-jaw tumor syndrome led to the discovery of the tumor
suppressor genes MEN1 and HRPT2. We now recognize that somatic mutations in MEN1 and
HRPT2 tumor suppressor genes are frequent events in sporadic parathyroid adenomas and
carcinomas, respectively. Parathyroid tumors in the MEN2A syndrome result from mutational
activation of the RET oncogene. The CCND1/PRAD1 oncogene was discovered by analysis of
sporadic parathyroid tumors. Studies of familial isolated hyperparathyroidism and analysis of
chromosomal loss and gain in parathyroid tumors suggest that other genes relevant to parathyroid
neoplasia await identification.
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Introduction
Primary hyperparathyroidism (HPT) is associated with a familial syndrome in a significant
subset of patients [1]. Studies that have sought to define the molecular genetics behind these
syndromes have led to a number of insights into the pathophysiology of parathyroid neoplasms.
Germline inactivating mutations in the MEN1 and HRPT2 tumor suppressor genes have been
strongly associated with familial parathyroid tumors [2-6]. Somatic mutations in these genes
have also been demonstrated in sporadic parathyroid adenomas and carcinomas, respectively.
Gain-of-function mutations affecting two oncogenes have also been implicated in the etiology
of some benign parathyroid tumors. Although signaling mediated via the calcium-sensing
receptor (CaSR) and vitamin D receptor (VDR) impact the hormonal function of normal and
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neoplastic parathyroid tissue, mutations in the genes encoding these receptors have not yet
been linked to the development of sporadic parathyroid tumors. This article will review what
is currently known regarding the molecular pathogenesis of parathyroid tumors.

Primary hyperparathyroidism: General concepts
Regulation of ionized calcium is achieved by secretion of parathyroid hormone (1-84) in
response to changes in the ionized calcium within a relatively narrow physiologic range.
Secretion of PTH is negatively regulated by the CaSR located on the surface of the parathyroid
chief cells [7,8]. PTH maintains the serum ionized calcium primarily by three mechanisms:
stimulation of calcium reabsorption in the distal tubule of the kidney, stimulation of osteoclast
resorption in the bone, and activation 25-hydroxyvitamin D 1-alpha hydroxylase in the
proximal renal tubule, leading to synthesis of 1,25 dihydroxyvitamin D which in turn promotes
increased calcium absorption in the small bowel.

Primary hyperparathyroidism is defined by elevation of serum ionized calcium in the setting
of an inappropriate elevation of PTH [1]. Serum phosphorus is typically in the lower end of
the normal range in HPT as a result of the phosphaturic action of PTH at the proximal renal
tubule. Alkaline phosphatase and markers of bone formation and resorption are frequently
elevated. Elevated serum chloride and decreased bicarbonate are also sometimes seen. The
condition is asymptomatic in 70-80% of patients, and is frequently detected incidentally on
routine chemistry panels. Common symptomatic manifestations include hypercalciuria,
nephrolithiasis, osteoporosis and neuromuscular changes, such as fatigue, weakness and
cognitive changes. Advanced disease is classically characterized by osteitis fibrosa cystica, a
severe syndrome of skeletal demineralization [1,2,9]. Primary hyperparathyroidism occurs at
all ages, but peaks in the sixth decade, with a female-to-male ratio between 2 and 3:1.
Parathyroid adenomas have been associated with prior exposure to ionizing radiation.
Increased incidence of adenomas is documented with doses as low as 0.5 Gy, especially when
the exposure occurs in childhood.[10]

Parathyroid carcinoma is a rare cause of primary hyperparathyroidism, seen in less than 1% of
cases [11,12]. Parathyroid carcinoma can be difficult to diagnose, as many of the pathologic
features are neither sensitive nor specific. Clinical findings suggestive of carcinoma may
include a palpable neck mass, hoarseness, serum calcium greater than 3.5 mmol/L (14 mg/dL),
and overt bone or kidney disease. Pathologic findings include fibrosis, increased mitotic
activity, nuclear atypia, pleomorphism, invasion of surrounding tissues, distant metastases, and
angio-lymphatic or perineural invasion.

Approximately 5 % of cases of primary hyperparathyroidism are associated with familial
syndromes, but study of this group has provided great insight into the genetic and molecular
changes that underlie the neoplastic transformation of parathyroid tissue (Table 1). The most
common genetic syndromes associated with primary hyperparathyroidism are multiple
endocrine neoplasia types 1 and 2A (MEN1, MEN-2A), the hyperparathyroidism-jaw tumor
syndrome (HPT-JT), and familial isolated hyperparathyroidism (FIHP)[1-3,9]. Familial
hypocalciuric hypercalcemia (FHH) is a related, clinically benign syndrome resulting from
heterozygous loss of function of the CaSR that does not correct with partial or subtotal
parathyroidectomy (PTX) [7,8]. These syndromes, their relation to parathyroid tumors and the
molecular and genetic alterations that underlie them will be discussed in detail below (Table
1).

Tumor suppressors and the two-hit hypothesis
An important model for tumor development was proposed by Alfred Knudson from his
epidemiologic analysis of retinoblastoma nearly 40 years ago [13]. Sporadic retinoblastoma is
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much more common than familial cases, yet the latter has a much earlier age of onset and more
frequently affects both eyes. The “two-hit” hypothesis of neoplasia as proposed by Knudson
suggests that two events (or “hits”) in an affected cell confer a selective growth advantage
resulting in clonal expansion of its progeny. Knudson’s concept can be updated in accordance
with current data. In many hereditary tumor syndromes the first event or “hit” is an inherited
mutation in one allele of a tumor suppressor gene in the germline DNA that is therefore present
in all the cells of the affected offspring. The earlier age of onset and tendency for bilateral or
multifocal disease in familial tumor syndromes is explained by the greater likelihood of an
individual cell acquiring a “second hit”, i.e. a somatic second mutation in the same gene. The
second-hit, that inactivates the wild-type allele, most often results from DNA rearrangement
or large, subchromosomal or even chromosomal, deletion. Such DNA loss can be recognized
by loss-of heterozygosity (LOH) of DNA markers (such as polymorphic microsatellite repeats
or single nucleotide polymorphisms) in the vicinity of the pertinent tumor suppressor gene.
Parathyroid tumors in the context of the familial syndromes MEN1 and HPT-JT have been
associated with bi-allelic loss of function of the MEN1 and HRPT2 tumor suppressor genes,
respectively. In the majority of patients, an inactivating germline mutation of the implicated
gene can be demonstrated.

Multiple endocrine neoplasia type 1 and the MEN1 gene
Multiple endocrine neoplasia type 1 is the most common familial cause of primary
hyperparathyroidism, accounting for approximately 2% of all cases [14]. Overall, the syndrome
is rare, with a prevalence of 2-3 per 100,000. It is characterized by a predisposition to develop
endocrine tumors in pituitary, parathyroid and enteropancreatic endocrine cells, although
tumors in several other endocrine and non-endocrine tissues are also associated with the
syndrome [15].

Primary hyperparathyroidism is the most common endocrine component of MEN1,
demonstrating greater than 90% penetrance by age 50 years. In contrast to sporadic disease,
there is no female preponderance, and it typically presents in the second to fourth decade of
life. Disease is usually multiglandular and has a high rate of recurrence following apparent
surgical cure [16,17].

MEN1 has an autosomal dominant inheritance pattern. The tumor susceptibility results from
germline inactivation of one allele of the MEN1 gene on chromosome 11q13, a 9.8 kb gene
consisting of 10 exons, that encodes the 610 amino acid protein, menin [18]. More than 400
different germline mutations have been discovered in patients and families with MEN1.
Mutations are scattered throughout the coding region, but no definite genotype-phenotype
correlation has been described. The majority of germline MEN1 mutations are either nonsense
or missense point mutations or insertions or deletions that cause frameshift. Most known
mutations would be expected to inactivate the menin protein. About 20-30% of patients with
MEN1 do not have an identified germline mutation. It is hypothesized that these patients have
either a mutation in a non-coding region of MEN1 that is not detected by current mutation
screening techniques, or mutations in as yet unrecognized genes that affect the transcription
or action of menin. The vast majority of tumors in MEN1 patients have been shown to have a
somatic mutation of the second wild-type allele [4,5].

Mouse models of MEN1 have been generated with inactivating mutations of Men1, the mouse
homolog of MEN1, resulting in parathyroid tumors or hyperplasia, pancreatic tumors (most
commonly insulinoma), and anterior pituitary tumors. In the mouse models, thyroid and adrenal
medullary tumors are also commonly seen. Loss of heterozygosity at the Men1 locus is
demonstrated in the majority of tumors [19-21].

Sharretts and Simonds Page 3

Best Pract Res Clin Endocrinol Metab. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Somatic MEN1 mutation has been demonstrated in various series of sporadic parathyroid
adenomas, with frequencies ranging from 3-35% for a mutation in at least one allele [22-25].
In studies that looked at loss of heterozygosity at 11q13 in sporadic adenomas, the frequency
ranged from 26-37%. A small percentage of patients with apparently sporadic parathyroid
adenomas are demonstrated to harbor a germline mutation of MEN1 [26-32]. Since HPT is
usually the earliest and most penetrant feature of MEN1, kindreds may rarely be assigned a
provisional diagnosis of familial isolated primary hyperparathyroidism if only younger
MEN1 mutation carriers are considered at the time of family ascertainment (see below).

Although the association of MEN1 mutation with both sporadic and familial parathyroid
adenomas has been well documented, association with parathyroid carcinoma is rare. At least
two cases of parathyroid carcinoma have been reported in MEN1 patients, one with concurrent
parathyroid adenoma, and the other with bilateral carcinoma [33,34].

Molecular functions of menin
Menin, the protein encoded by the MEN1 gene, is a predominantly nuclear protein that
expressed throughout the body. It lacks homology to other proteins that might provide insight
into its mechanism as a tumor suppressor. Based on its associations with other proteins, it
appears that menin has roles in cellular proliferation, regulation of gene transcription, DNA
replication and repair, and control of the cell cycle. The pathways and interactions described
below involving menin, however, remain to be proven clinically important or relevant to
parathyroid tumorigenesis.

Menin can function as a suppressor of transcription through its interaction with the AP-1/Jun-
Fos family of transcription factors [35]. Menin binds JunD, and when menin binding is
disrupted, JunD changes from a growth suppressor to a growth promoter [36]. Menin’s action
as a JunD corepressor involves recruitment of a histone deacetylase complex [37].

Menin also associates with a histone methyltransferase (HMT) complex containing homologs
of the yeast Set1 assembly [38]. Menin’s HMT activity increases expression of the cyclin-
dependent kinase inhibitors (CDKI) p27(Kip1) and p18(Ink4c), to suppress cell growth (cf.
Fig. 1) [39,40]. Interestingly, germline mutation of p27 or other CDKI including p15(Ink4b),
p18, and p21(WAF1) can be a rare cause of tumor syndromes with similarities to MEN1 [41,
42].

Distinct from its role as a tumor suppressor in multiple endocrine tissues, menin is an essential
co-factor in the pathogenesis of leukemia in which it promotes homeobox (Hox) gene
expression through its interactions with lens epithelium-derived growth factor [43] and
oncogenic fusion proteins containing mixed-lineage leukemia HMT activity [44,45].
Deregulation of Hox genes has been demonstrated in both MEN1-associated and sporadic
parathyroid adenomas [46].

Menin also interacts with Smad3, a member of the transforming growth factor-beta (TGF-beta)
pathway, to promote gene transcription. In parathyroid tissue, TGF-beta inhibits cell
proliferation and PTH production [47]. Menin inactivation antagonizes TGF-beta mediated
growth inhibition and increases PTH levels [48].

Menin appears to have a role in DNA replication and repair. Investigators have demonstrated
menin association with proteins such as the activator of S-phase kinase (ASK), the forkhead
transcription factor CHES1 and human telomerase reverse transcriptase (hTERT) [49-51].
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More recent research has focused on a possible role for menin in regulation of transcription by
nuclear receptors, most interestingly a possible role of vitamin D receptor regulation in
parathyroid adenomas [52].

Hyperparathyroidism-jaw tumor syndrome and the HRPT2 gene
HPT-JT is a rare autosomal dominant familial cancer syndrome manifested by primary
hyperparathyroidism, ossifying tumors of the maxilla and mandible that are histologically
distinct from the osteoclastic brown tumors of primary hyperparathyroidism, and less
commonly renal cysts and/or uterine tumors [53-55]. Primary hyperparathyroidism is usually
the presenting manifestation. Parathyroid carcinoma is present in approximately 15% of those
with HPT.

A germline inactivating mutation of the HRPT2 gene can be demonstrated in more than half
of cases [56]. The HRPT2 gene encodes the protein parafibromin, which consists of 531 amino
acids and has weak homology to the yeast protein Cdc73p [56]. Mutations in HRPT2 are
scattered throughout the coding region, and most are predicted to cause inactivation of the
protein product [57]. Somatic mutation of HRPT2 is uncommon in sporadic parathyroid
adenomas [58]. In contrast, mutations of HRPT2 are frequently seen in apparently sporadic
cases of parathyroid carcinoma [59-61]. Some 20% of patients with apparently sporadic
parathyroid cancer may harbor germline HRPT2 mutations, suggesting that such cases may in
fact represent undiagnosed HPT-JT [61]. Germline HRPT2 mutation is a rare cause of familial
isolated primary hyperparathyroidism (see below).

Molecular functions of parafibromin
Parafibromin is a ubiquitously expressed protein whose function as a tumor suppressor is not
well understood. It is the human homolog of the yeast Cdc73 protein, which in both yeast and
humans is part of the RNA polymerase II-regulatory Paf1 complex. The Paf1 complex
associates with RNA polymerase II and appears to have roles in gene transcription mediated
by histone methylation in the promoter and coding regions of specific genes [62]. In human
cell lines, endogenous parafibromin represses expression of MYC that encodes the c-Myc
proto-oncogene. Interference with MYC expression blocks the proliferative effects of
parafibromin knockdown [63]. Parafibromin has a nuclear localization signal, and mutation of
this region blocks nuclear targeting. Overexpression of wild-type, but not NLS-mutant
parafibromin, can induce apoptosis in transfected cells [64]. Parafibromin is also expressed in
the cytoplasm, where it interacts with the actin binding proteins actinin-2 and actinin-3, that
are involved in organization of the cytoskeleton [65]. Recent studies suggest that dysregulation
of several microRNAs may contribute to the pathogenesis of parathyroid cancers harboring
HRPT2 mutation [66].

In Drosophila, the parafibromin analog Hyrax is a member of the Wnt/wingless pathway. It is
essential for embryonic development, with roles in proliferation, differentiation, apoptosis and
cell survival. It is involved in the movement of beta-catenin to the nucleus to drive transcription
of Wnt target genes [57]. Parafibromin also has an apparent role in mammalian embryonic
development as well. Homozygous parafibromin null mice die in utero, and conditional
knockout of parafibromin in adult mice results in cachexia and death [67].

Familial hypocalciuric hypercalcemia and the CASR gene
FHH is an autosomal dominant trait usually causing mild HPT with relative hypocalciuria;
hypercalcemia in FHH is highly penetrant at all ages, even in the perinatal period [68]. FHH
cases almost always remain hypercalcemic following partial or subtotal PTX. Most cases of
FHH result from a heterozygous loss-of-function mutation in the CASR gene on the long arm
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of chromosome 3 that encodes the CaSR [69-71]. Homozygous or compound heterozygous
inheritance of two inactive CASR alleles classically results in neonatal severe
hyperparathyroidism [69-71]. A germline missense mutation in the CaSR has recently been
described however that causes an FHH phenotype in homozygotes but normocalcemia in most
heterozygotes [72]. In addition two undiscovered genes have been implicated in rare kindreds
with FHH; 1 gene at chromosome 19p [73] and 1 gene at 19q [74]. Somatic inactivation of
CASR has not been found in sporadic parathyroid adenomas [75,76], even though significant
loss of CASR expression, not due to allelic loss, has been documented in such tumors and very
likely contributes to their altered calcium set point for PTH release [77].

Familial isolated hyperparathyroidism
Familial isolated hyperparathyroidism (FIHP) is a clinically-defined syndrome in kindreds
with HPT but lacking the specific features of MEN1, HPT-JT or FHH. The majority of FIHP
patients lack germline mutation of MEN1, HRPT2 or CASR [78,79]. A distinct genetic etiology
has not been defined, although a genomic screen of seven FIHP families has identified a
suggestive 1.7 Mb region on chromosome 2 [80].

Oncogenes in parathyroid neoplasia
Oncogenes derive from naturally occurring genes called proto-oncogenes that positively
regulate cell growth and/or proliferation. Oncogenes represent mutationally activated or
overexpressed forms of proto-oncogenes that can induce neoplasia.

Germline activating mutations in the RET (REarranged during Transfection) protooncogene
are associated with three different endocrine tumor syndromes associated with thyroid C-cells:
multiple endocrine neoplasia type 2A (MEN2A) and type 2B (MEN2B) syndromes, and
familial medullary thyroid cancer (FMTC). RET encodes c-Ret, a widely expressed
transmembrane protein tyrosine kinase. Different germline activating mutations in RET can
result in the different disease phenotypes. MEN2A, whose spectrum of disease manifestations
includes medullary thyroid carcinoma (MTC), pheochromocytoma, and HPT due to one or
multiple parathyroid adenomas, results from missense mutation of a cysteine residue at codon
634 in about 85% of cases [81]. HPT in MEN2A is usually mild, resembles sporadic HPT in
its clinical presentation, and is almost always due to benign tumors. Parathyroid tumors are
not part of the MEN2B or FMTC disease pattern. Interestingly RET/PTC gene rearrangements,
involving the tyrosine kinase domain encoded in the 3′ region of RET, are frequently found in
papillary thyroid cancer (PTC), especially those associated with radiation exposure [82].

The CCND1 or PRAD1 (parathyroid adenomatosis 1) oncogene was discovered during the
molecular characterization of several large sporadic parathyroid adenomas harboring DNA re-
arrangements that involved the PTH gene locus on chromosome 11 [83-85]. The PRAD1
oncogene in sporadic parathyroid tumor samples was identified downstream of a breakpoint
resulting from pericentromeric inversion of chromosome 11 DNA [85]. The chromosomal
rearrangement positions the 5′ PTH gene regulatory region (normally located at 11p15) just
upstream of the 11q13 region containing the PRAD1 protooncogene [83-85]. The PRAD1
oncogene was recognized to be a member of the cyclin family on the basis of sequence
homology [85] and it was later re-named cyclin D1 (CCND1).

Cyclins are key regulators of a class of kinases (cyclin-dependent kinases, CDKs) that govern
progression of cells through the cell cycle (Fig. 1). Increased expression of cyclin D1 (and
other cyclin D isoforms) enhances transcription of multiple genes required for DNA synthesis
and cell cycle progression (Fig. 1). CCND1/PRAD1 is overexpressed in some 20 to 40% of
sporadic parathyroid adenomas and in an even higher percentage of parathyroid cancers
[86-89]. Activating missense mutations in the cyclin D1 coding region have not been found in
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sporadic parathyroid adenomas [90]. No somatic chromosomal rearrangements involving
CCND1/PRAD1 have been reported in parathyroid carcinoma, nor have germline
chromosomal translocations or rearrangements involving CCND1/PRAD1 been identified in
any familial form of primary hyperparathyroidism.

Potential role of other genes in parathyroid neoplasia
Mutations in several candidate genes, chosen because of their known importance in the
regulation of parathyroid cell growth or hormonal secretion, have been examined for a possible
role in parathyroid tumor formation. No somatic mutations in CASR have yet been found in
studies of sporadic parathyroid adenomas and parathyroid cancers. Mutations in neither the
vitamin D receptor nor the vitamin D activating enzyme 25-hydroxyvitamin D-1alpha-
hydroxylase have so far been found in molecular analyses of sporadic parathyroid tumors
[91,92].

It is highly likely that the dysregulation of other genes, besides those discussed above, can
initiate or promote parathyroid tumor formation. As noted above, the susceptibility to
parathyroid neoplasia in the majority of FIHP kindreds appears to result from the germline
mutation of genes not currently recognized for a role in parathyroid disease: among 76 families
initially considered as FIHP in 5 clinical studies that investigated for germline MEN1,
CASR and HRPT2 gene mutation, 53 families or nearly 70% had no currently recognized
syndromic etiology [78,79,93-95].

The loss or gain of specific regions of chromosomal DNA detected by techniques such as
comparative genomic hybridization (CGH) also suggests the existence of currently
unidentified parathyroid tumor suppressors and oncogenes. Several investigators have found
recurrent loss of chromosomal DNA at the 1p, 6q, 9p, and 13q loci in benign or malignant
parathyroid tumors indicating the potential presence there of novel parathyroid tumor
suppressor genes [96-99]. The presence of currently unknown oncogenes at 9q, 16p, 19p, and
Xq is suggested by a convergence of results from several laboratories demonstrating specific
chromosomal gain at these loci in parathyroid adenomas or cancers [96,98-100].

Practice Points
• The cornerstone of treatment of primary hyperparathyroidism is surgical.

• Bilateral neck exploration with excision of adenoma is the classic approach, although
minimally invasive surgery guided by non-invasive imaging and intra-operative PTH
monitoring is gaining favor in non-familial cases.

• Subtotal parathyroidectomy is indicated in familial syndromes, such as MEN1 and
FIHP

• The surgical approach in HPT-JT is controversial because of the increased risk of
parathyroid cancer, but subtotal parathyroidectomy with close postoperative
biochemical monitoring for recurrence is currently recommended over prophylactic
total parathyroidectomy

• En bloc resection is recommended as primary treatment for parathyroid carcinoma.

• Medical therapy with calcimimetics is useful for patients with primary
hyperparathyroidism who are poor surgical candidates, or have non-localizable
tumors or inoperable disease (although approved in the European Union, such use of
the calcimimetic cinacalcet for benign primary hyperparathyroidism is currently off-
label in the United States)
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Research agenda
• Diagnostic reagents based on the expression of parafibromin need further

development to increase the ability to distinguish benign from malignant parathyroid
tumors on surgical specimens

• Additional chemo- and/or immunotherapies for inoperable parathyroid cancer
deserve further development

• Novel tumor susceptibility genes indicated by recurrent patterns of loss or gain of
DNA in parathyroid tumors or by linkage in FIHP kindreds should be identified

Summary
The vast majority of primary hyperparathyroidism, the metabolic disease that results from
hypersecretion of hormone from parathyroid tumors, is sporadic. Study of uncommon familial
syndromes has nevertheless helped to define the pathophysiology of both familial and sporadic
parathyroid neoplasms. The tumor suppressor genes MEN1 and HRPT2 were discovered
through the genetic analysis of kindreds with multiple endocrine neoplasia type 1 and the
hyperparathyroidism-jaw tumor syndrome. Somatic mutations in MEN1 and HRPT2 are
frequent events in the clonal development of sporadic parathyroid adenomas and carcinomas,
respectively. Menin, encoded by MEN1, and parafibromin, encoded by HRPT2, are
components of distinct transcriptional regulatory and histone modifying protein complexes and
likely play roles in additional pathways that affect cell growth and proliferation. The role of
the CCND1/PRAD1 oncogene in sporadic parathyroid tumors highlights the importance of
cell cycle dysregulation in neoplastic transformation. The phenotypic expressions of RET
oncogene mutation in multiple endocrine neoplasia type 2A include benign parathyroid tumors.
The current difficulty in distinguishing benign from malignant parathyroid tumors based on
surgical pathologic analysis may be overcome by improved diagnostic reagents based on the
expression of parafibromin. Additional medical therapies for parathyroid cancer not amenable
to surgery await development. Clinical genetic analysis of kindreds with familial isolated
hyperparathyroidism and molecular genetic studies of recurrent patterns of chromosomal loss
and gain in parathyroid tumors suggest that novel genes that predispose to parathyroid
neoplasia await identification.
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Figure 1. Role of cyclin D1, product of the CCND1/PRAD1 proto-oncogene, in cell cycle regulation
Chromosomal rearrangement in a subset of sporadic parathyroid adenomas, that positions the
CCND1/PRAD1 proto-oncogene (normally activated by mitogenic signals) under the
influence of parathyroid hormone gene promoter/enhancer elements [83-85], stimulates
transcription of cyclin D1. Cyclin D expression is physiologically upregulated by mitogenic
signals. Enhanced cyclin D expression results in increased complex formation between cyclin
D and cyclin-dependent kinases 4 (CDK4) and 6 (CDK6). The retinoblastoma gene product,
pRB, in its unphosphorylated state, normally binds to and sequesters the E2F family of
transcription factors. Successive phosphorylation of pRB by CDK4 and CDK6 (bound to cyclin
D) and CDK2 (bound to cyclin E) inhibits its ability to bind and sequester E2F. Upon its release
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from pRB, E2F becomes transcriptionally active and switches on multiple genes important for
nucleotide synthesis, DNA replication and cell cycle progression from the G1 phase into the S
phase, including cyclin E. E2F-stimulated synthesis of cyclin A drives CDK2-mediated
progression from S to G2. Members of both the INK4 and Cip/Kip families of CDK inhibitors
(CDKI) inhibit the function of cyclin D/ CDK4/6 complexes while members of the Cip/Kip
family also inhibit cyclin E/ CDK2 and cyclin A/CDK2 complexes. The products of P53 and
PTEN can strongly induce the expression of certain CDKI as shown. The CDKI also function
in other phases of the cell cycle not shown here.
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Table 1

Genes implicated in syndromic and sporadic parathyroid tumorigenesis, and related syndromes

Gene Protein
encoded

Associated hyperparathyroid
syndrome: main syndromic
manifestations

Features of syndromic
parathyroid tumors

Defect in sporadic
parathyroid tumors

MEN1 Menin Multiple endocrine neoplasia
type 1: anterior pituitary,
parathyroid,
enteropancreatic, foregut
carcinoid tumors

Multiple, asymmetric
tumors typical
(> 99% benign)

Inactivation in ~25-
35% of benign
tumors; mutation
exceedingly rare in
cancer

HRPT2/CDC73 Parafibromin Hyperparathyroidism-jaw
tumor syndrome:
fibro-osseous jaw,
parathyroid, uterine tumors;
renal cysts

Single tumor common
(~15% malignant)

Inactivation in
~70% of cancers;
mutation rare in
sporadic adenomas

CASR Calcium-
sensing
receptor

Familial hypocalciuric
hypercalcemia (FHH) with
heterozygous inactivation;
neonatal severe
hyperparathyroidism
(NSHPT) with homozygous
inactivation

FHH: near-normal size
and surgical pathology;
altered serum calcium
set-point for PTH release
NSHPT: Marked
enlargement of multiple
glands

Decreased
expression common;
mutation
exceedingly rare

RET c-Ret Multiple endocrine neoplasia
type 2A: medullary thyroid
cancer, pheochromocytoma,
parathyroid tumors

Single tumor common
(> 99% benign)

Mutation
exceedingly rare

CCND1/PRAD1 Cyclin D1 NA NA Overexpression
results from DNA
rearrangement
involving PTH gene

NA, not applicable
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