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Abstract
Purpose—To evaluate the effect of tumor hypoxia on the expected cell killing by clinically used
regimens of stereotactic ablative radiotherapy (SABR), and to determine the extent to which the
negative effect of hypoxia could be prevented using a clinically available hypoxic cell radiosensitizer.

Materials and Methods—We have calculated the expected level of tumor cell kill from clinically
used regimens of SABR both with and without the assumption of 20% of the tumor cells being
hypoxic using the standard LQ model and the universal survival curve (USC) modification. We
compare the results obtained with our own clinical data on lung tumors of different sizes and with
the published data of others. We also have calculated the expected effect on cell survival of adding
the hypoxic cell sensitizer etanidazole at clinically achievable drug concentrations.

Results—Modeling tumor cell killing with any of the currently used regimens of SABR produces
results that are inconsistent with the majority of the clinical findings if tumor hypoxia is not
considered. However, with the assumption of tumor hypoxia the expected level of cell killing is
consistent with the clinical data. For only some of the smallest tumors are the clinical data consistent
with no tumor hypoxia, but there could be other reasons for the sensitivity of these tumors. The
addition of etanidazole at clinically achievable tumor concentrations produces a large increase in the
expected tumor cell kill from the large radiation doses used in SABR.

Conclusions—The presence of tumor hypoxia is a major negative factor in limiting the curability
of tumors by SABR at radiation doses that are tolerable to surrounding normal tissues. However, this
negative effect of hypoxia could be overcome by the addition of clinically tolerable doses of the
hypoxic cell radiosensitizer etanidazole.
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A century of clinical experience as well as numerous preclinical studies have demonstrated the
superiority of multiple small doses of irradiation over large single doses or a few large fractions
in achieving local tumor control for acceptable normal tissue toxicity. A major reason for this
is that hypoxic cells are universally resistant to killing by radiation and so their prevalence in
tumors results in low levels of tumor cell killing for single doses of radiation. The decreased
oxygenation of tumor cells is a result of structural and functional disturbances of the tumor
vasculature that inhibit the normal delivery of oxygen (1,2). Fractionation of radiation however
greatly mitigates the protection afforded by tumor hypoxia because of the phenomenon of
reoxygenation (3,4), the process by which the hypoxic cells surviving a given radiation dose
become oxygenated prior to the next radiation dose most likely as a result of fluctuating tumor
blood flow (5). While hypoxia has been shown to be associated with increased metastasis (6,
7), treatment failure even with conventionally fractionated radiotherapy in head and neck and
cervix tumors with high levels of hypoxia can be attributed primarily to the decreased
sensitivity of hypoxic tumor cells to ionizing radiation (8,9).

So, with the overwhelming evidence for the superiority of conventionally fractionated
irradiation over large single doses why is there growing interest in the use of stereotactic
ablative radiotherapy (SABR), also known as stereotactic body radiation therapy (SBRT) or
in the brain stereotactic radiosurgery (SRS)? The answer lies in technological advances that
have created the ability to conform and intensify the radiation dose to relatively small tumors
while minimizing the volume of normal tissue irradiated, originally in the brain and
subsequently in other anatomic sites. Besides the obvious convenience to the patient of one or
a few doses vs. 6 weeks or more of daily treatments, emerging clinical results of SABR appear
highly promising compared to more conventional radiotherapy techniques. Do these results
contradict the radiobiological principles learned in the preceding decades? As we will argue,
quite the opposite is true.

A few simple calculations illustrate the discrepancy between clinical results and radiobiological
modeling when hypoxia is not considered, as well as the magnitude of the potential impact of
hypoxic cells on SABR. If we assume standard linear-quadratic (LQ) modeling parameters for
the sensitivity of tumor cells to radiation (10), i.e., α = 0.35 and α/β = 10, the predicted tumor
cell kill for several currently used SABR regimens (11–14) is shown in Table 1. Note that the
prediction of 27.4 logs of cells kill for 60 Gy/3 fractions would be sufficient to control a
spherical tumor of 4 km diameter with 99% probability assuming complete packing with 109

clonogenic cells/mL! It has been argued that LQ modeling overestimates the killing from large
doses per fraction, and indeed modeling with a “universal survival curve” (USC) that becomes
log-linear with large fraction size predicts a substantial decrement in biologically effective
dose (BED) from 180 Gy to 132 Gy for the same regimen (15). This corresponds to 19 logs of
kill, still sufficient to control a tumor of 6 meter diameter with 99% probability!

This is clearly not the clinical experience, as 60 Gy/3 fractions does not control 99% of even
small, peripheral lung lesions. While single fraction SRS of brain metastases is commonly
perceived to result in very high tumor control rates, this was not the case in the recently reported
EORTC 22952–26001 trial, in which treatment of brain metastases with a median diameter of
2 cm (maximum 4 cm) with SRS alone to a dose of 20 Gy to the 80% isodose line resulted in
an in-field progression rate of 31% (16), a result quite consistent with radiosurgery series of
relatively larger brain metastases (in the size range often treated elsewhere in the body) with
adequate follow up by MR imaging. In fact, several analyses of local control of lung tumors
after SABR demonstrate a marked dose-response relationship, with poor local control when
the BED is less than 100 Gy (17,18), a dose predicted by modeling to be easily tumor sterilizing.
In particular the Indiana University and University of Colorado experiences demonstrated that
doses of 54–66 Gy/3 fractions were needed to reach 88–90% 3-year local control of stage I
lung cancer and limited pulmonary and hepatic metastases (14,19,20). Thus, far higher doses
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than predicted by standard modeling based on in vitro data for fully oxygenated cells are needed
to achieve the promising results reported clinically, indicating the presence of a universal
resistance mechanism in vivo.

In addition, there appears to be an important influence of tumor size. The Stanford dose
escalation experience using single fraction SABR of 15–30 Gy for treatment of limited
pulmonary tumors demonstrates a critical dependence of local control on gross tumor volume
(GTV), with a Kaplan-Meier estimate of local control at 11 months of 100% for tumors < 6
mL, 93% for tumors 6–12 mL, and 47% for tumors > 12 mL (Figure 1), with the majority of
patients receiving 25 or 30 Gy (11,12). This is very similar to the findings from the University
of Heidelberg (21). It seems unlikely that the large difference seen in Figure 1 in tumor control
with size could be the result of different numbers of tumor cells, as the difference in average
volume between the largest and smallest groups of tumors in the series was only 1 log, a small
difference compared to the predicted killing by these doses based on standard modeling. Thus,
assuming these differences hold up with longer follow up, there must be a resistance mechanism
present in larger tumors that is not apparent in smaller tumors.

Is hypoxia a plausible explanation for these findings? We know that approximately 90% of all
solid tumors have median oxygen concentrations less than those typically found in normal
tissues (22,23). A study of resectable lung cancer in particular found that 10 of 20 tumors had
radiobiologically significant hypoxia with a median pO2 of less than 15 mmHg (7 with a median
< 5 mmHg) by intraoperative oxygen histography, and 10 of 16 had immunohistochemical
evidence of hypoxic gene induction by CA-IX staining (24). Interestingly, an analysis of 518
brain metastases treated with SRS found one year local control rates of 90%, 76%, and 57%
for lesions with homogeneous, heterogeneous, and ring-like patterns of contrast enhancement,
respectively, suggesting an effect of differing levels of necrosis and hypoxia (25). Table 1 also
shows the result of modeling considering hypoxia, using standard parameters of a hypoxic
fraction of 20%, an oxygen enhancement radio (OER) of 2.8, and reoxygenation between
fractions (10). Accounting for hypoxia, even the intensive 60 Gy/3 fractions regimen is
predicted to be barely sufficient to control a small tumor, indicating that hypoxia is more than
sufficient to bridge the gap between simple radiobiological modeling and the clinical results.

It should also be mentioned that the relatively high rates of local control of some tumors after
even single fraction SABR of 20–25 Gy (at least with short-term follow-up), for example in
series of lung (Figure 1), pancreas, and spine tumors (12,21,26,27), fall between what would
be expected by modeling with and without hypoxia. This suggests the possible contribution of
other mitigating factors such as: 1. No hypoxia in some tumors (e.g., the smallest ones); 2.
Only a small proportion (one in 102–104) of tumor cells are clonogenic stem cells (28 and M.
Diehn unpublished observations); 3. An active immune response is sufficient to eradicate
microscopic residual tumor; 4. High single doses of radiation cause acute damage to the
endothelial cells of the tumor vasculature (29). All of these would be predicted to increase
tumor control by SABR. Thus, taking into consideration all of the clinical data the last three
potentially improve the fit to the observed results, but only after first accounting for the
dominant effect of hypoxia.

Nevertheless, clinical investigation has led to SABR regimens of relatively high efficacy. So
do we still need to worry about hypoxia? The extreme ablative doses required to overcome the
radioresistance of hypoxic cells clinically come at a significant cost. Even with highly
conformal therapy, normal tissue toxicity is still a problem with SABR as demonstrated in a
phase II trial of SABR for lung tumors in which there was excessive toxicity comparing patients
with central (perihilar and central mediastinal) lesions with those with more peripheral lesions
that do not have adjacent critical normal tissues (30). Radiation pneumonitis (14), brachial
plexopathy (31), rib fracture and chest wall pain (32,33), and dermatitis (34) have all been
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reported in series of SABR for lung tumors, as have gastric and duodenal ulcers in SABR of
pancreatic cancer (26). SABR is contraindicated if significant volumes of normal tissues,
particularly those with “serial” organization, are in or adjacent to the target volume. Clearly,
there is room to improve the therapeutic ratio of SABR.

Some 30 years ago Fowler and colleagues showed that the inferiority of large single doses of
radiation in achieving cure of transplanted mouse mammary tumors for a given level of skin
reaction could be entirely overcome if the resistance of the hypoxic cells in the tumors was
eliminated by pretreatment of the mice with a large dose of the hypoxic cell radiosensitizer
misonidazole (35). In other words, the lower efficacy of single doses in effecting tumor cure
was not the result of lower repair on the tumor cells relative to the normal skin cells but by the
presence of tumor hypoxia. This raises the important question of whether a rationally designed
second generation hypoxic cell radiosensitizer such as etanidazole could improve the control
of hypoxic tumors by SABR while decreasing normal tissue toxicity by reducing the radiation
dose. Using the same radiobiological parameters as before, the benefit of such a sensitizer can
be estimated as shown in Table 2. Note that even with the modest dose of 20 Gy in a single
fraction with a sensitizer giving an enhancement ratio (SER) of 2.5, the expected cell kill (6–
8.2 logs) is comparable to that for the very large dose of 60 Gy/3 fractions (7.7 logs, Table 1)
in the presence of hypoxia without a sensitizer. In other words, with a sufficient dose of
sensitizer, the same tumor control could potentially be achieved with just one fraction of the
three fraction regimen. It should be noted that even with reduced dose SABR, we would still
expect ablation of normal tissues encompassed within the target volume, but the volume of
normal tissues receiving ablative doses in the regions surrounding the target volume would be
much lower. This would for example allow treatment of lesions closer to the proximal bronchial
tree than the relatively large 2 cm exclusion zone currently recommended (30).

How large an SER could we expect with etanidazole? Clinical studies with the well-tolerated
single dose of 12 g/m2 of etanidazole found peak tumor bed concentrations of the drug at 45
minutes after an i.v. injection, with a mean of 988 μg/ml and a median of 430 μg/ml, which
would translate into an SER for the hypoxic cells of 2.0 to 2.5 (36,37). On the other hand, it
has been shown that the SER of nitroimidazoles rapidly approaches 1 with rising oxygen
concentrations, such that their effect is negligible in the presence of oxygen even well below
physiologic levels (38). Thus no radiosensitization of normal tissues is to be expected, as
demonstrated in early preclinical studies (39) and in numerous clinical trials (40).

While many clinical trials of etanidazole and fractionated radiation have been conducted, only
two have tested single doses of radiation with single doses of etanidazole: RTOG 89-06 was
a phase I dose escalation study of etanidazole up to 12 g/m2 with single dose intraoperative
radiation therapy (IORT) (37), and RTOG 95-02 was a phase I-B study of etanidazole 12 g/
m2 with single dose SRS of brain tumors (41). Both had primary endpoints of toxicity, and
efficacy was not reported. Both demonstrated that a single dose of etanidazole at 12 g/m2 is
well tolerated with a total of 72 patients receiving that dose. Neither study demonstrated
enhanced normal tissue sensitivity to radiation. Based on the promising tissue concentrations
of etanidazole demonstrated in RTOG 89-06 as described above, a multi-institutional phase
III trial of IORT for locally recurrent rectal cancer with or without etanidazole has been
proposed and is now actively in the planning phase. Also of particular interest is a small but
tantalizing randomized phase III trial of another 2-nitroimidazole drug, doranidazole, that was
tested with 25 Gy single fraction radiotherapy for unresectable pancreas cancer, demonstrating
a significant benefit of 23% vs. 0% overall survival at 3 years, with or without doranidazole,
respectively (42). Intraoperative radiotherapy was used as a means of delivering definitive
conformal radiation to the intact tumor without attempting resection, providing the closest
analogy to SABR with a hypoxic cell radiosensitizer yet studied. It is also of relevance that
early studies of Urtasun and colleagues with the first generation hypoxic radiosensitizer,
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metronidazole, demonstrated improved survival giving relatively large fractions (and
substandard total radiation doses) to glioblastomas combined with the sensitizer (43) but the
combination was not superior to that of standard fractionated radiotherapy without a sensitizer
(44).

In summary, a clinical trial of the addition of a high single dose of etanidazole to a single dose
of SABR is justified because: 1. There is ample clinical evidence that hypoxia is present in
human solid tumors; 2. Based on modeling considerations this hypoxia is a highly plausible
explanation for the tumor control rates seen in clinical trials of SABR; 3. Clinical trials have
demonstrated the safety of administering single doses of etanidazole sufficient to produce tissue
concentrations that pre-clinical experiments have shown should overcome most of the marked
radiation resistance conferred by tumor hypoxia; 4. There is a need to increase the therapeutic
ratio of SABR. Single dose sensitizer-enhanced SABR, if proven safe and effective for a wide
range of tumor sizes and anatomic locations, would be a substantial advance over the current
state of the art of using massive SABR doses to overcome hypoxic resistance, and would open
the possibility of additional sites for treatment, for treatments for second primary tumors and
new metastases, and salvage of local recurrences after prior radiation.
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Figure 1.
Local control of lung tumors treated with single fraction SABR (mostly 25–30 Gy) as a function
of tumor size.
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Table 1

Predicted tumor cell killing for different SABR regimens with or without 20% hypoxic fraction

Fractionation regimens currently in use

Predicted Logs of Cell Kill

Without Hypoxia With Hypoxia

LQ USC LQ USC

25 Gy/1fraction (11,12) 13.3 8.1 3.3 3.2

50 Gy/4 fractions (13) 17.1 14.9 6.7 6.7

60 Gy/3 fractions (14,15) 27.4 19.0 7.7 7.7

LQ: linear quadratic model; USC: universal survival curve model; Model parameters: α=0.35, β =0.035, D0=1.25 Gy, Dq=1.8 Gy, DT=6.4 Gy, oxygen
enhancement ratio OER=2.8, hypoxic fraction HF=0.2. With hypoxia, the difference between the LQ and USC models is trivial because scaling of
the dose-response curve by the OER for hypoxic cells results in the transition dose that differentiates them (DT) being comparable to or larger than
the dose per fraction.

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2011 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Brown et al. Page 10

Ta
bl

e 
2

Pr
ed

ic
te

d 
tu

m
or

 c
el

l k
ill

in
g 

w
ith

 d
iff

er
en

t S
ER

s f
or

 th
e 

hy
po

xi
c 

ce
lls

Fr
ac

tio
na

tio
n 

R
eg

im
en

Pr
ed

ic
te

d 
lo

gs
 o

f c
el

l k
ill

Se
ns

iti
ze

r 
E

nh
an

ce
m

en
t R

at
io

 (S
E

R
)

1.
0*

1.
7

2.
0

2.
5

25
 G

y/
1f

r
LQ

3.
3

6.
5

8.
3

11
.7

U
SC

3.
2

5.
3

6.
3

7.
7

20
 G

y/
1f

r
LQ

2.
6

4.
8

6.
0

8.
2

U
SC

2.
6

4.
3

5.
0

6.
0

* SE
R

 o
f 1

 c
or

re
sp

on
ds

 to
 n

o 
se

ns
iti

ze
r.

Int J Radiat Oncol Biol Phys. Author manuscript; available in PMC 2011 October 1.


