
Identification of CD8+ T Cell Epitopes in the West Nile
Virus Polyprotein by Reverse-Immunology Using NetCTL
Mette Voldby Larsen1*, Alina Lelic2, Robin Parsons2, Morten Nielsen1, Ilka Hoof1, Kasper Lamberth3,

Mark B. Loeb2, Søren Buus3, Jonathan Bramson2, Ole Lund1

1 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark, 2 Department of Pathology and Molecular

Medicine, Institute for Molecular Medicine and Health, McMaster University, Hamilton, Ontario, Canada, 3 Division of Experimental Immunology, Institute of Medical

Microbiology and Immunology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark

Abstract

Background: West Nile virus (WNV) is a growing threat to public health and a greater understanding of the immune
response raised against WNV is important for the development of prophylactic and therapeutic strategies.

Methodology/Principal Findings: In a reverse-immunology approach, we used bioinformatics methods to predict WNV-
specific CD8+ T cell epitopes and selected a set of peptides that constitutes maximum coverage of 20 fully-sequenced WNV
strains. We then tested these putative epitopes for cellular reactivity in a cohort of WNV-infected patients. We identified 26
new CD8+ T cell epitopes, which we propose are restricted by 11 different HLA class I alleles. Aiming for optimal coverage of
human populations, we suggest that 11 of these new WNV epitopes would be sufficient to cover from 48% to 93% of ethnic
populations in various areas of the World.

Conclusions/Significance: The 26 identified CD8+ T cell epitopes contribute to our knowledge of the immune response
against WNV infection and greatly extend the list of known WNV CD8+ T cell epitopes. A polytope incorporating these and
other epitopes could possibly serve as the basis for a WNV vaccine.
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Introduction

West Nile virus belongs to the family Flaviviridae, along with other

human pathogens like Yellow fever virus and Dengue fever virus. It is an

enveloped, spherical virus containing a single strand of RNA that

is translated into a continuous polypeptide of approximately 3,400

amino acids. The polypeptide is post-translationally cleaved into

ten distinct proteins including three structural proteins; capsid (C)

protein, envelope (E) protein, and pre-membrane (prM) protein,

and seven non-structural (NS) proteins; NS1, NS2A, NS2B, NS3,

NS4A, NS4B, and NS5 [1]. The virus is transmitted to humans by

infected mosquitoes and causes West Nile fever in about 20% of

infected people. The symptoms of West Nile fever are fever,

headache, tiredness, and body aches that can last for a few days to

several weeks. Less than one in 100 infected people will develop

severe West Nile disease that may lead to fatal encephalitis [2].

The first incidents of WNV infection in the western hemisphere

were detected in 1999 during an outbreak of encephalitis in New

York City. Since then, the virus has spread across North America

and is now a serious threat for public health in the United States,

especially for immunocompromised recipients of transplanted

organs [1]. Currently, no specific therapy is available for treatment

and no vaccine has been approved for prevention of WNV

infection in humans [3].

CD8+ Cytotoxic T Lymphocytes (CTLs) of the immune system

have the capacity to eradicate virus-infected host cells. CTL

activation is achieved when peptides originating from virus

proteins are presented at the surface of infected cells in complex

with Human Leukocyte Antigen (HLA) class I molecules. Several

studies have shown that CTLs indeed play a role in the cellular

antiviral response against WNV infection in mice and humans

[4–7].

Although the important role of CTLs in combating WNV is

well-established, only a limited number of WNV CD8+ T cell

epitopes have so far been identified in humans. De Groot et al.

applied a bioinformatics approach for predicting HLA-B*07

restricted WNV CD8+ T cell epitopes [8]: Out of 16 predicted

epitopes, 12 were confirmed to bind HLA-B*07 in vitro, but the

peptides’ ability to induce T-cell responses was not tested. Recent

reports from our group and collaborators have described two

different strategies for identifying CD8+ T cell epitopes in WNV.

In the first case, a mass spectroscopy method developed by the

Hildebrand laboratory successfully identified four HLA-A*0201

restricted WNV CD8+ T cell epitopes [9]. In a second study, we
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used a shotgun approach, employing overlapping peptides

spanning the entire WNV polyprotein and identified additional

epitopes restricted by HLA-A*01 and HLA-B*35, as well as

several epitopes for which the HLA restriction was not ascertained

[10]. In a study by Lanteri et al., overlapping peptides spanning all

WNV proteins were likewise tested for their ability to induce T cell

responses and led to the discovery of eight frequently recognised

WNV peptides [5]. Three of the responses were associated with

particular HLA class I types (A*0101, A*0201, and Cw*0303/

Cw*0304). In the current study, our objective is to extend the

discovery of WNV CD8+ T cell epitopes to additional HLA class I

alleles, while also considering the sequence variability of WNV

proteins. Koo et al. have recently identified regions of the WNV

polyprotein that are fully conserved across all analysed WNV

sequences and examined whether these regions contain experi-

mentally confirmed or predicted CD8+ T cell epitopes [11]. The

variability of the WNV proteome is, however, unevenly distributed

across the proteome with the structural proteins being most

variably. At the amino acid level, the C protein has up to 23%

differences across examined sequences, while the NS4b protein has

the lowest diversity with at most 8% differences [11]. Accordingly,

the majority of the conserved regions identified by Koo et al. were

found in the non-structural proteins, while the C protein had

none, and the two other structural proteins, prM and E, had the

third and fourth least number of conserved regions [11]. It is likely

that the structural proteins contain highly immunogenic epitopes

that are missed when focusing solely on fully conserved regions.

Previous studies have even suggested that the E protein is one of

the most immunogenic proteins [5,10]. It is also possible that the

structural proteins experience high variability precisely because it

is a selective advantage for the virus to modify these proteins in

response to the host immune system. The aim of the present study

was therefore to discover novel WNV CD8+ T cell epitopes that

give a broad coverage of different WNV strains without necessarily

being fully conserved across all strains. We employed a two-step

bioinformatics reverse-immunology approach: First we used the

NetCTL method [12,13] for predicting WNV CD8+ T cell

epitopes. The NetCTL method has previously proven successful

in identification of CD8+ T cell epitopes in Influenza [14,15], HIV

[16], and Orthopoxvirus [17]. We then selected a subset of the

predicted epitopes with a broad coverage of 20 fully-sequenced

WNV strains. We were able to confirm that 26 of the predicted

epitopes were indeed WNV CD8+ T cell epitopes, when tested

with a cohort of WNV-infected patients.

Materials and Methods

Bioinformatics search strategy for prediction and
selection of HLA class I restricted WNV CD8+ T cell
epitopes

In 2006 when the study was initiated, only 20 WNV polyproteins

were available in the GenBank [18] and RefSeq [19] databases

(GenBank acc. no. AAM81752.1, AAM81753.1, AAP22088.1,

AAP22089.1, AAP22086.1, AAP22087.1, AAQ55854.1, AAR-

84614.1, AAT02759.1, AAU00153.1, AAV68177.1, AAT95390.1,

AAV52687.1, AAV52688.1, AAV52689.1, AAV52690.1, AAW-

81711.1, AAX09982.1, AAW28871.1, and RefSeq ID NC_001563).

Each genome corresponds to a single long polyprotein of approx-

imately 3,400 amino acids. The 20 polyproteins have an average

%identity of 96.2% (range 87.0%–99.9%). Using the NetCTL method

[12,13] (available at www.cbs.dtu.dk/services/NetCTL), CD8+ T cell

epitopes were predicted for each of the 12 HLA class I supertypes

defined by Lund et al. in [20] (A1, A2, A3, A24, A26, B7, B8, B27,

B39, B44, B58, B62). In practice, putative epitopes for a given HLA

class I supertype were identified by predicting which peptides are

presented by a specific HLA class I allele that represents the entire

supertype (for example, HLA-A*0201 represents the A2 supertype,

while HLA-A*0101 represents the A1 supertype). In the NetCTL

method, each nonameric peptide in a protein is assigned a score based

on a combination of predictions of proteasomal cleavage, Transporter

Associated with antigen Processing (TAP) transport efficiency, and

HLA class I affinity. The reliability of NetCTL has previously been

shown to be as high as or higher than other publicly available methods

for CD8+ T cell epitope predictions [12,13]. For predictions of HLA

class I affinity, NetCTL employs the NetMHC method [21,22], which

has been judged to be one of the two best methods in a comparative

study of the performance of 30 methods for HLA class I affinity

prediction [23]. For each of the 12 HLA class I supertypes and each of

the 20 WNV polyproteins, we selected the 17 nonameric peptides with

the highest NetCTL score (the top 0.5%) as the predicted epitopes. This

resulted in a total of 4,080 predicted epitopes of which 484 were

unique. To reduce this set, we used the EpiSelect algorithm (previously

described in [16]). In short, the EpiSelect algorithm aims, in an iterative

procedure, at selecting a given number of predicted epitopes in a way

that maximises the coverage of the viral strain with the smallest number

of epitopes. Using this algorithm, 16 predicted epitopes were selected

for each of the 12 HLA class I supertypes, resulting in a total of 192

peptides. The selected peptides are listed in Supplementary Figure S1

under the reference sequence with RefSeq ID: NC_001563. Note that

17 of the peptides are predicted to be restricted by more than one HLA

class I allele, resulting in a total of 175 unique peptides. We are aware

that when selecting only a relatively small fraction of the peptides with

the highest NetCTL scores as the predicted epitopes, we will risk missing

some important WNV epitopes. However, due to limited resources, we

were not able to test all possible epitopes.

Bioinformatics methods for identifying possible HLA class
I restriction

We investigated to what extent the recognised epitopes could be

explained directly in terms of restriction by one of the patient’s six

HLA class I alleles. For this analysis, the pan-specific NetMHCpan

prediction method [24,25] was used. Note that we here use

NetMHCpan, and not the previously used NetCTL method, since the

NetCTL version that was available when this analysis was

performed, only allowed predictions for the 12 HLA class I alleles

that represent the 12 HLA supertypes.

It has become apparent that HLA molecules do not present

peptides at the same binding threshold [26,27]. Using a fixed

binding affinity threshold would hence result in a bias in the

predictions towards HLA molecules with low binding affinity

thresholds. Instead, we use the NetMHCpan %rank score

(previously described in Hoof et al. [28]). The NetMHCpan %rank

score aims at removing the bias caused by the diverging binding

affinity thresholds and placing binding scores for all HLA

molecules on an equal scale. In practice, for a given HLA class I

molecule, the predicted binding affinity of the identified epitope

was ranked along with the predicted binding affinities of a

common set of 1,000,000 random, natural, 9meric peptides for the

same HLA molecule. A %rank score of, e.g., 5% thus means that

only 5% of random peptides are predicted to bind the HLA

molecule with an affinity stronger than the identified epitope. The

%rank score is calculated for each of the six possible epitope:HLA

class I pairs of a patient, and if the lowest %rank score was below

5%, we assigned this HLA class I allele as the restricting HLA, and

say that we can successfully explain the epitope restriction. A study

by Rao et al. [27] justifies the %rank score threshold of 5%: Rao et

al. found that the binding fraction of 9mers among all possible

9mers in the human proteome is ,5% for HLA-A alleles and
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,2% for HLA-B alleles. Among viral and bacterial proteoms, the

binding fraction of peptides is even higher.

Calculating the epitope conservation
Since initiating the study, additional fully sequenced WNV

genomes have become available. For calculating the epitope

conservation of the identified epitopes, we examined their

frequency in 140 fully sequenced WNV genomes from [11].

Calculating the epitope coverage
HLA population coverage data was obtained from dbMHC

(http://www.ncbi.nlm.nih.gov/gv/mhc/). For each of the 11

epitope:HLA pairs, we first calculated their individual coverage

based on the genotype frequency (also called the allele frequency)

of the HLA allele and the conservation of the epitope in the 140

examined WNV strains:

f i~gi � ci

where fi is the coverage of epitopei:HLAi, gi is the genotype

frequency of HLAi, and ci is the conservation of epitopei.

For each of the three HLA loci (A, B, and C), the coverage can

be calculated separately as follows:

FA~1{ 1{f i{f j{fk

� �2

FB~1{ 1{f l{fmð Þ2

FC~1{ 1{fn{foð Þ2

where FA, is the coverage of epitope:HLA-A pairs and fi, fj, and fk
are the coverage of the individual epitope:HLA-A pairs.

Where FB, is the coverage of epitope:HLA-B pairs and fl and fm
are the coverage of the individual epitope:HLA-B pairs.

Where FC, is the coverage of epitope:HLA-C pairs and fn and fo
are the coverage of the individual epitope:HLA-C pairs.

The total coverage, F, of all 11 epitope:HLA pairs can be

calculated as:

F~1{ 1{f i{f j{fk

� �2� 1{f l{fmð Þ2� 1{fn{foð Þ2

The total coverage was calculated separately for all populations in

the following areas: Australia, Europe, North Africa, North

America, North-East Asia, Oceania, South America, South-East

Asia, South-West Asia, and Sub-Saharan Africa.

Biochemical peptide-HLA class I binding assay
The biochemical assay for peptide-HLA class I binding was

performed as previously described [29,30]. Briefly, denatured and

purified recombinant HLA heavy chains were diluted into a

renaturation buffer containing HLA heavy chain, b2-microglobu-

lin and graded concentrations of the test peptide, and incubated at

18uC for 48 h allowing equilibrium to be reached. The

concentration of generated peptide–HLA complexes was mea-

sured in a quantitative enzyme-linked immunosorbent assay and

plotted against the concentration of peptide offered [29]. Because

the effective concentration of HLA (3–5 nM) used in these assays is

below the equilibrium dissociation constant (KD) of most high-

affinity peptide–HLA interactions, the peptide concentration

leading to half-saturation of the HLA is a reasonable approxima-

tion of the affinity of the interaction. An initial screening

procedure was employed whereby a single high concentration

(20,000 nM) of peptide was tested. If no complex formation was

found, the peptide was assigned as a non-binder to the HLA

molecule in question; conversely, if complex formation was found

in the initial screening, a full titration of the peptide was performed

to determine the affinity of binding.

Peptides
Peptides were synthesised as previously described [15]. Briefly,

the peptides were synthesised by standard 9-fluorenylmethylox-

ycarbonyl (FMOC) chemistry, purified by reversed-phase high-

performance liquid chromatography (at least 80%, usually .95%

purity) and validated by mass spectrometry (Shafer-N, Copenha-

gen, Denmark). Peptides were distributed at 20 mg/vial and stored

lyophilised at 220uC until use. Peptides were dissolved just before

use.

WNV patient study subjects
Thirteen patients infected with WNV were recruited into our

study cohort over three seasons (2003–2005) (Table 1). We

specifically selected patients who carried HLA-A*0101 or HLA-

A*0201 to examine the immunogenicity of the peptides predicted

to be restricted by these alleles, since we in our previous report

have identified dominant HLA-A*0101 and HLA-A*0201 epi-

topes [10]. The patients were enrolled following detection of

serum WNV IgM (IgM-MAC) by public health laboratories after

presenting symptoms of WNV infection. This trial was reviewed

and approved by the Research Ethics Board at McMaster

University. Written informed consent was obtained from all

participants. Serology for WNV and dengue virus was assessed by

PRNT as described previously [31]. HLA genotypes were

determined using DNA sequence analysis at the Hamilton Health

Sciences Histocompatibility Laboratory (Hamilton, ON) and Pure

Transplant Solutions (Austin, TX). Blood samples were drawn into

heparanised tubes, Peripheral Blood Monocytes (PBMC) were

isolated from the blood samples by centrifugation on Ficoll

(Amersham Pharmacia) and cryopreserved in RPMI 1640

containing 12.5% human serum albumin (Sigma) and 10%

DMSO.

IFN-c enzyme-linked immunosorbent spot (ELISPOT)
assay

PBMCs were screened in an initial IFN-c ELISPOT assay to

demonstrate peptide reactivity without a priori knowledge of

patient HLA types. 112 putative epitopes with measured

KD,500 nM were assembled into 20 peptide pools according to

a 2-D grid, where each peptide was present in only two pools.

Coincident reactivity between two pools identified candidate

peptides containing putative T cell epitopes. T cell reactivity was

subsequently validated by restimulation of PBMCs from the same

patient with individual peptides. IFN-c ELISPOTs were per-

formed using kits purchased from BD Biosciences and carried out

according to the manufacturer’s instructions. PBMCs were thawed

and placed immediately into cRPMI pre-warmed to 37uC. The

cells were aliquoted into the ELISPOT plate at 1–26105 cells/well

and peptides were added at a final concentration of 2 mg/ml per

peptide. The plates were incubated for 18 to 20 hours at 37uC in a

humidified incubator with 5% CO2, and the assay was completed

according to the manufacturer’s directions. Spots were enumer-

ated using an ImmunoSpot 3B analyser (Cellular Technology Ltd,

Cleveland, OH). Positive reactivity was defined as responses that

were at least two-fold above background and a minimum of 50

SFC/106 PBMCs. As a positive control for CD8+ T cell reactivity,

all samples were stimulated with a collection of WNV-specific

CD8+ T cell epitopes that was previously found to be frequently

Epitopes in West Nile Virus
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recognised in any given patient [10]. This pool of peptides is

termed ‘‘pool of dominant WNV epitopes’’ in the text and consists

of the following sequences: SGATWVDLV, SVGGVFTSV,

WMDSTKATRY, SLFGQRIEV, MPNGLIAQFY, GTKTFL-

VHREWFMDL, FLVHREWFMDLNLPW, LGLQKLGYIL-

REV, DTAGWDTRITRADL. Note that we here use the term

dominant to describe epitopes that are frequently recognised in any

given patient (as opposed to epitopes that elicit a strong immune

response). None of the peptides in the WNV peptide pool were

also in the set of predicted, selected epitopes described in the

subsection Bioinformatics search strategy for prediction and selection of HLA

class I restricted WNV CD8+ T cell epitopes.

ICS validations
Intracellular cytokine staining (ICS) was employed to confirm

that IFN-c secreting cells identified by ELISPOT were actually

CD8+ T cells. Given the limiting amount of patient material

available to our group, we chose to employ a recently described

method for unbiased amplification of CD8+ T cells to expand our

frozen PBMCs prior to analysis [32]. Briefly, K64-4-1BBL cells

were loaded with anti-CD3 and anti-CD28 and irradiated at

10,000 rads. Freshly thawed PBMCs were incubated with the

loaded, irradiated K64-4-1BBL cells at a ratio of 2:1. We routinely

observed 5 to 10 fold expansion in CD8+ T cell numbers in the

period of 10 to 12 days. The cultures were subsequently collected,

washed, and used immediately for ICS. This initial, unbiased

expansion step greatly increases the number of CD8+ T cell

effectors capable of recognising specific epitopes. Most important-

ly, this method does not alter the hierarchy of epitope reactivity

(Supplementary Figure S2). Therefore, this method allowed us to

both confirm the specificity of the epitope and define the reactivity

as dominant or subdominant in terms of magnitude of response.

The ICS protocol was conducted as previously described [10]

with some modifications. Briefly, cells were aliquoted (1–26106

cells/well) into 96-well U-bottomed plates. Peptides were added to

a final concentration of 2 mg/ml and the cells were incubated for

2 hours. Brefeldin A was then added to a final concentration of

5 mM and the cells were incubated 4 hours further. At the end of

this period, cells were pelleted and washed in 10 mM EDTA. The

cells were subsequently surface stained with either anti-CD8-PE-

Cy7 or anti-CD3-PE-Cy5, permeabilised with Cytofix/Cytoperm

and intracellular cytokines were identified using anti-TNF-a-PE

and anti-IFN-c-APC (Note: All flow cytometry reagents were

obtained from BD Pharmingen). Fluorescence data were acquired

using a FACSCanto or an LSRII and 200,000 events based on the

live lymphocyte gate were collected per sample.

Results

Prediction and selection of HLA class I restricted CD8+ T
cell epitopes

To identify WNV CD8+ T cell epitopes with a broad coverage

of WNV strains, we first used the NetCTL method [12,13] to

predict HLA class I supertype restricted epitopes. We then selected

a subset of 175 predicted epitopes that constitutes broad coverage

of 20 WNV strains as described in Materials and Methods. Of the 175

predicted epitopes, 14 could not be synthesised. To determine

whether the remaining 161 peptides were indeed binders to the

relevant HLA class I molecules, they were tested in a biochemical

in vitro binding assay. Overall, 112 peptides (70%) had a binding

affinity (KD) of 500 nM or less for the relevant HLA class I

molecule (Supplementary Table S1). It has previously been shown

that the vast majority of HLA class I restricted epitopes bind their

relevant HLA molecule with a KD of 500 nM or less [33].

Immunogenicity of the predicted epitopes
In the first round of analysis, the 112 peptides identified as

binding with a KD of 500 nM or less for the relevant HLA class I

molecule, were tested for their ability to stimulate CD8+ T cells

from a study population of 11 WNV-infected patients. As shown in

Figure 1, we were able to confirm that 18 predicted epitopes were

recognised by CD8+ T cells from these naturally-infected patients.

As a positive control, we used a pool of WNV epitopes that we

have previously found to be recognised frequently in any given

patient [10]. We denote this peptide collection the ‘‘pool of

dominant WNV epitopes’’. Figure 1 shows that the positive

control generally evoked a higher T cell response than the

individual epitopes, which is not surprising, since the positive

Table 1. Characteristics of WNV-infected patients.

Patient ID Age; sex
Time from onset of symptoms
to PBMC collection (days) HLA-A HLA-B HLA-Cw

44401 54; F 29 0101 0201 0702 1517 0701 0702

44405 65; F 22 0101 0201 0702 1501 0303 0702

55302 65; M 32 01 02 57 40 ND ND

55307 55; F 40 0101 0301 3701 4429 0501 0602

55308 33; F 55 0101 0301 0801 4701 0602 0701

55309 64; F 120 0201 0301 3503 4403 0401 0401

55310 64; F 31 0101 0101 0801 0801 0701 0701

55405 47; F 73 0101 0301 0702 0801 0701 0702

55407 63; M 66 0101 0301 1302 3503 0401 0602

55410 51; M 93 0201 0201 4001 4402 0304 0501

55413 51; M 120 0101 0201 0801 4402 0701 0501

55414 57; M 135 0201 3101 0702 5601 0102 0702

55415 43; F 136 0201 0201 2702 5601 0102 0202

Note that the HLA-A and -B alleles of patient #55302 were only determined by low-resolution serological typing. ND: Not Determined.
doi:10.1371/journal.pone.0012697.t001
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control contained nine previously identified WNV epitopes. Eight

of the eleven patients exhibited reactivity to at least one of the

predicted epitopes. These responses were typically subdominant in

terms of magnitude of response, with the exception of RYLVK-

TESW and GLYKSAPRR in patient #55415. Three epitopes

(Figure 1; star shaped) were recognised by more than one patient.

It is possible that technical complications resulting from the

peptide pooling method may have obscured reactivity towards

some putative epitopes. To address this possibility, we carried out

a second round of analysis. This time we used only the peptides

predicted to bind HLA-A*0101 or HLA-A*0201 because our

previous study [10] had revealed that both of these alleles present

epitopes (WMD10 = WMDSTKATRY restricted by HLA-

A*0101 and SVG9 = SVGGVFTSV restricted by HLA-A*0201)

that are both dominant with regards to frequency of recognition

(they were recognised in all HLA-matched patients) and

magnitude of response. Accordingly, the seven patients carrying

either HLA*0101, HLA*0201, or both provided us with a robust

method of characterising the predicted epitopes relative to

previously defined epitopes. Two of the seven patients (patient

#44401 and #44405) had not been tested in the first round of

analysis. As seen in Figure 2, all patients possessed CD8+ T cell

reactivity to the pool of dominant WNV epitopes. Furthermore, all

patients carrying the HLA-A*0101 allele exhibited robust

reactivity to WMD10 (WMDSTKATRY) and all patients carrying

HLA-A*0201 exhibited reactivity to SVG9 (SVGGVFTSV).

The analysis did unveil some reactivities that were not identified

in the first round of analysis. Five of the nine HLA-A*0201

peptides and four of the seven HLA-A*0101 peptides evoked some

degree of reactivity in the patient cohort. For the most part,

responses to these peptides were subdominant both in terms of

magnitude of response and in frequency of recognition (none of

the peptides were recognised uniformly by all of the patients in our

cohort). Two HLA-A*0101-binding peptides, MTKEEFTRY and

KGDTTTGVY, were recognised at levels comparable to the

known epitope WMD10 (WMDSTKATRY). Surprisingly though,

peptide KGDTTTGVY only stimulated responses in patients who

were HLA-A*0101-negative.

Compiling the results presented in Figure 1 and 2, three patients

(#55310, #55407, and #55414) had no response to any of the

tested peptides. Two patients (#55307 and #55308) each only

responded against one of the tested peptides, while the highest

number of responses was found using PBMC from patient

#55410: Here, responses against seven different epitopes were

detected. The average number of responses per patient was 3.6.

For clarity, Supplementary Table S2 compiles the results from

Figure 1 and 2 and lists them per identified epitope. In total, 26

epitopes were identified. They gave rise to 36 responses in ten

WNV infected patients.

None of the identified epitopes induced a response in all patients

expressing the predicted restricting HLA class I allele. At most,

any individual epitope elicited a response in four different patients.

Figure 1. Immunogenicity of the predicted epitopes. One-hundred-and-twelve predicted epitopes were screened for reactivity by IFN-gamma
ELISPOT using samples from 11 patients. Patient ID is listed on the X-axis along with the HLA alleles of each patient. Each circle/star represents an
individual peptide. Circles correspond to peptides that displayed reactivity in only one patient. Stars correspond to peptides that displayed reactivity
in more than one patient. As a positive control for these analyses, a pool of nine dominant WNV epitope peptides (labeled W) was included in each
analysis.
doi:10.1371/journal.pone.0012697.g001
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For instance, VLNETTNWL-A*0201 was stimulatory for CD8+ T

cells from patients #44401 and #55410, but not from #55413,

#44405, or #55415, even though all five patients carry HLA-

A*0201. The lack of conservation of epitopes in different WNV

strains may explain some of these observations. For instance, the

epitope AEVEEHRTV is only found in 8% of the 140 fully

sequenced WNV strains, which might explain why patient

#55410 did not exhibit a response to this peptide, although he

carry the predicted restricting HLA class I allele, HLA-B*4001.

However, this argument cannot explain all of our observations. As

an example, the HLA-A*0301 restricted epitope LTYRHKVVK

is found in all 140 examined WNV strains, but did not evoke a

response in patient #55307, #55405, or #55407, although these

patients all express HLA-A*0301.

Distribution of the epitopes
The identified epitopes and T cell responses are distributed

across the WNV proteins as illustrated in Figure 3.

Most validated epitopes were found in the NS3 and NS5

proteins, which are indeed the two longest proteins containing the

highest number of tested predicted epitopes (34 for NS3 and 50 for

NS5). Epitopes in these proteins likewise gave rise to most T cell

responses. No epitopes were found in NS4A, which is one of the

shortest proteins with only five tested predicted epitopes. Six of the

epitopes were found in structural proteins including one in the C

protein, three in prM, and two in the E protein. Based on the

present study, we were not able to observe a particular bias

towards epitope location in certain WNV proteins, besides what

can be explained by the mere size of the protein. We were thus not

Figure 2. Immunogenicity of predicted HLA-A*0201 and HLA-A*0101 epitopes. Nine predicted epitopes confirmed to bind HLA-A*0201
and seven predicted epitopes confirmed to bind HLA-A*0101 were screened for reactivity by ICS assay using samples from seven patients that
expressed either HLA-A*0201, HLA-A*0101, or both (listed on the X-axis). Each dot represents an individual patient. Patients expressing both HLA-
A*0201 and HLA-A*0101 are represented by diamonds; patients expressing only HLA-A*0201 are represented by squares; patients expressing only
HLA-A*0101 are represented by circles. Test peptides are listed on the X-axis. As a positive control for these analyses, a pool of nine dominant WNV
epitopes (labeled W) was included in each analysis. Furthermore, SVGGFTSV is a dominant epitope restricted by HLA-A*0201, while WMDSTKATRY is a
dominant epitope restricted to HLA-A*0101. Please note that the part of the graph below the dotted line consists of donors with no response to the
indicated peptides.
doi:10.1371/journal.pone.0012697.g002
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able to confirm findings of other studies [5,10] that protein E is

more commonly targeted by T cell responses.

Suggested HLA class I restriction
Table 2 lists the 36 observed epitope responses identified in

Figure 1 and 2 and compares them with the HLA class I types of

the patients as listed in Table 1.

Almost half (16 out of 36) of the observed responses can be

explained by a direct match between the patient HLA class I type

and the HLA class I allele used for selecting the given epitope (see

Table 2). This result reflects that we started out by predicting

epitopes restricted by the 12 HLA class I alleles that represent the

major class I supertypes [20], but tested the predicted epitopes in all

patients, regardless of whether the patients carried any of these

specific 12 HLA class I supertype representative alleles or, for

example, another HLA class I allele belonging to the same

supertype. In accordance with this, the fraction of explainable

epitope responses improved to 58% (21 out of 36), when also

considering HLA class I supertype matches between HLA class I

alleles expressed by the patients and the HLA class I alleles used for

selecting the epitopes. For instance; AEVEEHRTV was selected for

binding to HLA-B*4001, which represents the B44 supertype, but

induced a response in patient #55309, who does not carry HLA-

B*4001. However, patient #55309 carry HLA-B*4403, which is

also a member of the B44 supertype. Likewise, RPAADGKTV was

selected for binding to HLA-B*0702, but induced a response in

patient #55415, who does not carry HLA-B*0702, but HLA-

B*5601, an allele belonging to the B7 supertype [20].

For some of the identified epitopes there was more often a

complete match between the HLA class I allele used for selecting

the epitope and the HLA class I type of the patient displaying the

response. For instance, nine of the epitopes that were predicted to

be presented by the representative of the A2 supertype, HLA-

A*0201, induced a response in HLA-A*0201-positive patients. In

contrast, none of the epitopes that were predicted to be presented

by the representative of the B39 supertype, HLA-B*3901, induced

a response in B*3901-positive patients for the simple reason that

none of the patients carry HLA-B*3901.

Since not all responses can be explained in terms of a direct

match between the HLA class I allele used for selecting the epitope

and the HLA class I alleles carried by the patient, nor by the

supertype association of one of the HLA class I alleles carried by

the patient, an alternative approach for identifying the most likely

restricting allele in each responding patient was applied. We used a

pan-specific peptide:HLA binding prediction algorithm called

NetMHCpan [24,25] for investigating whether the recognised

epitopes could be explained in terms of binding to one of the

patient HLA class I alleles. Note that the NetCTL method [12,13],

which was used for the initial epitope predictions, could not be

used for this analysis, since NetCTL only allows predictions for the

12 HLA class I alleles that represent the 12 HLA class I

supertypes. The summary of the analysis is shown in Table 2. The

analysis did not include the three responses detected in patient

#55302, since the HLA types of this patient were only determined

by low-resolution serotyping. In short, the analysis was performed

by calculating the NetMHCpan %rank score for each of the six

possible epitope:HLA class I pairs as described in Material and

Methods. If the lowest %rank score was below 5%, we assigned the

HLA class I allele that resulted in this score as the restricting HLA

and say that we can successfully explain the epitope restriction.

Using this definition, we assigned 82% (27 out of 33, see Table 2)

of the detected epitope specific T cell responses to a specific HLA

class I allele.

As seen in Table 2, six responses remain unexplainable. For

instance, ILLWEIPDV was selected for binding to HLA-A*0201,

but induced a response in patient #55405, who does not express

HLA-A*0201. Among the HLA class I alleles of #55405, HLA-

A*0301 resulted in the lowest %rank score, 32, but this is well over

the defined threshold of 5%. However, two of these six responses

can be explained in terms of nested 8mer peptides. For instance,

the 8mer peptide GDTTTGVY nested within KGDTTTGVY is

predicted to bind within the 5% rank to the HLA-B*4402 allele.

Disregarding the six cryptic restrictions mentioned above

including the nested peptide restrictions, we suggest that the 26

identified WNV CTL epitopes are restricted by 11 different HLA

class I alleles (A*0101, A*0201, A*0301, B*0702, B*0801, B*2702,

B*4001, B*4403, B*5601, Cw*0304, Cw*0602) covering 7 of the

12 major HLA-A and HLA-B supertypes. Table 3 lists the

genotype frequency of these alleles in different areas of the world.

We are aware that the suggested restricting HLA class I alleles

represent only the most likely restricting element, and that these

assignment are merely based upon predictions.

Population coverage
Since a key objective of this study is to identify CD8+ T cell

epitopes that collectively have a broad coverage of WNV strains

and thereby are of particular interest for vaccine development, we

next examined the theoretical population coverage in different

areas of the World with a minimal epitope set consisting of the 11

epitopes marked in bold in Table 2. These 11 epitopes were

selected because they each are restricted by one or two of the 11

suggested restricting HLA class I alleles. If more than one epitope

could be selected for the same HLA class I allele, we chose the

more conserved epitope. Although additional WNV epitopes are

known from previous studies [5,9,10] and others are likely still

undiscovered, the analysis illustrates the coverage that could be

obtained by a small set of epitopes.

We hypothesise that although we could not detect a response

against all epitopes in all HLA class I matched patients even for

100% conserved epitopes, immunising with the epitopes will lead to

CD8+ T cell activation in all HLA class I matched individuals.

This hypothesis is supported by a study by Assarsson et al., where

Figure 3. Location of the identified epitopes. The figure shows
the number of validated epitopes in each of the ten WNV proteins and
the number of responses that they evoked. C: Core protein, prM:
Membrane protein, E: Envelope protein, NS1: Non-structural protein 1,
NS2A: Non-structural protein 2A, NS2B: Non-structural protein 2B, NS3:
Non-structural protein 3, NS4A: Non-structural protein 4A, NS4B: Non-
structural protein 4B, NS5: Non-structural protein 5.
doi:10.1371/journal.pone.0012697.g003
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Table 2. Predicted HLA class I restriction of the 36 observed responses.

Patient Sequence Selecting HLA Restricting HLA %Rank
Direct HLA
match

Super-type
match

Explainable
by %rank

44401 ILLWEIPDV A*0201 A*0201 0.30 X X X

44401 VLNETTNWL A*0201 A*0201 1.00 X X X

44401 SLFGGMSWI A*0201 A*0201 0.80 X X X

44401 VVEKQSGLY A*0101 A*0101 0.15 X X X

44405 MTKEEFTRY A*0101 A*0101 0.40 X X X

44405 SLVNGVVRL A*0201 A*0201 3.00 X X X

44405 ITYTDVLRY A*0101 A*0101 0.10 X X X

55302 RAWNSGYEW B*5801 B*57 NA X NA

55302 RSLFGGMSW B*5801 B*57 NA X NA

55302 RVLEMVEDW B*5801 B*57 NA X NA

55307 YRHKVVKVM B*2705 Cw*0602 1.50 X

55308 LTYRHKVVK A*0301 A*0301 0.30 X X X

55309 AEVEEHRTV B*4001 B*4403 1.50 X X

55309 HTTKGAALM A*2601 NA 6.00 *

55309 LTYRHKVVK A*0301 A*0301 0.30 X X X

55309 YTMDGEYRL B*3901 A*0201 1,00 X

55405 FVDVGVSAL B*3901 B*0702 3,00 X

55405 GPIRFVLAL B*0702 B*0702 0.30 X X X

55405 ILLWEIPDV A*0201 NA 32.00

55405 RRSRRSLTV B*2705 B*0801 4.00 X

55405 SYHDRRWCF A*2403 B*0801 3.00 X

55410 SLVNGVVRL A*0201 A*0201 3.00 X X X

55410 ILRNPGYAL B*0801 Cw*0304 1.50 X

55410 KGDTTTGVY A*0101 NA 32.00 **

55410 RYLVKTESW A*2403 NA 6.00

55410 TEVMTAVGL B*4001 B*4001 0.15 X X X

55410 VLNETTNWL A*0201 A*0201 1.00 X X X

55410 YTMDGEYRL B*3901 A*0201 1.00 X

55413 YTMDGEYRL B*3901 A*0201 1.00 X

55413 SLVNGVVRL A*0201 A*0201 3.00 X X X

55413 TLARGFPFV A*0201 A*0201 0.10 X X X

55415 KGDTTTGVY A*0101 NA 32.00

55415 SLVNGVVRL A*0201 A*0201 3.00 X X X

55415 GLYKSAPRR A*0301 NA 50.00

55415 RPAADGKTV B*0702 B*5601 0.80 X X

55415 RYLVKTESW A*2403 B*2702 0.80 X

The columns lists: Patient: Patient ID, Sequence: Epitope amino acid sequence, Selecting HLA: The HLA class I allele used for selecting the epitope, Restricting
HLA: The HLA class I allele by which the epitope is predicted to be restricted in this patient using the NetMHCpan method. NA indicate that none of the patient’s HLA
molecules were predicted to present the peptide with a %rank score less than or equal to 5. %rank: The rank of the epitope among 1,000,000 random, natural, 9meric
peptides based on the predicted binding affinities to the restricting HLA, Direct match: The patient carries the HLA class I allele for which the epitope is selected, i.e.,
the selecting and restricting HLA class I alleles are identical. Supertype match: The patient does not carry the HLA class I allele for which the epitope is selected,
however, the selecting and restricting HLA class I allele belong to the same HLA class I supertype. Explainable by %rank: The patient does not carry the HLA class I
allele for which the epitope is selected, but another HLA class I allele, which is also predicted to present the epitope (the %rank value for the restricting HLA is below
5.00).
Note that the rank-analysis was not performed for patient #55302, since the HLA-A and -B alleles of this patient was only determined by low-resolution serological
typing and the HLA-C alleles are undetermined. The three epitopes that are recognised in this patient are, however, all well presented by B*5701 (by serological typing it
is known that patient #55302 carries B57) with %rank scores between 0.1% and 0.2%.
*This peptide can be presented as an 8mer, HTTKGALL, to B*3503 with a %rank score of 5%.
**This peptide can be presented as an 8mer, GDTTTGVY, by B*4402 with a %rank score of 5%.
Epitopes marked in bold are used for the population coverage calculations.
doi:10.1371/journal.pone.0012697.t002
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CD8+ T cell responses were detected against all previously

identified epitopes after immunising transgenic mice with the

epitopes [34]. Whether or not the memory CD8+ T cells will later

recognise cells infected with WNV depends on which epitopes the

infecting WNV strain contain. The population coverage of the 11

epitope:HLA class I pairs is accordingly calculated by considering

both the HLA class I allele frequencies and the epitope

conservation as described in Material and Methods. Table 4

summarises the coverage of the 11 epitope:HLA class I allele

pairs in ten areas of the World. Considering only the 11 restricting

HLA class I alleles identified in this study, more than half of the

population is covered in nine out of the ten areas of the World. For

the North American population the coverage is 72%, while the

coverage is 93% for the European population. The smallest

coverage is found in Australia, where 48% of the population is

covered.

Discussion

Using reverse immunology and employing bioinformatics

methods, we have discovered 26 new WNV specific CD8+ T cell

epitopes, which significantly extends the repertoire of known

WNV CD8+ T cell epitopes. We suggest that the newly discovered

epitopes are restricted by 11 different HLA class I alleles.

When we initiated our study, only 20 fully-sequenced genomes

from WNV strains were publically available, and they form the

basis of our predictions. Since then, additional WNV strains have

been sequenced and the WNV variability has been analysed at a

larger scale [11]. Our approach included selecting predicted WNV

epitopes that experience broad coverage of the 20 originally

sequenced WNV strains. It is likely that we would select a different

set of broadly covering predicted epitopes, if we were to repeat the

study using data from all presently available WNV strains.

Nevertheless, our results indicate that selecting predicted epitopes

with a broad coverage of WNV strains - in contrast to 100%

conserved epitopes - enables identification of more epitopes in the

structural WNV proteins. These proteins vary the most and hence

contain the fewest fully conserved regions [11].

In the present study, we observed that the number of predicted

epitopes is a direct function of protein size. However, in our recent

study, we observed that the interindividual patterns of CD8+ T cell

dominance (the frequency of recognition) do not correlate with

protein size but rather with the individual’s HLA. As an example,

individuals expressing HLA-A*0201 were primarily reactive to an

epitope in E and an epitope in NS4b [9,10], while individuals

expressing HLA-A*0101 displayed a CD8+ T cell response

directed against prM. Thus, protein size alone is not sufficient to

explain dominance within individuals or between individuals.

Furthermore, we and our collaborators have recently reported a

direct survey of WNV peptides bound by HLA-A*0201 in infected

cells [9] and did not observe a correlation between protein size and

natural loading of HLA class I. It should be noted that we

identified a number of epitopes in the present study that evoked

more robust responses in some of the patients than were observed

with our previously identified collection of ‘‘dominant’’ epitopes.

These observations highlight the complexities of antigen process-

ing and stress the importance of using combined methodologies (in

silico, in vitro, and in vivo) for epitope discovery.

Table 3. Allele frequencies of 11 HLA class I alleles in different areas of the world.

HLA Australia Europe
North-East
Asia

North
America Oceania

South-East
Asia

South-West
Asia

South
America

Sub-Saharan
Africa

North
Africa

A*0101 0,022 0,164 0,059 0,042 0,003 0,007 0,094 0,002 0,056 0,137

A*0201 0,127 0,272 0,153 0,145 0,144 0,069 0,158 0,221 0,103 0,176

A*0301 0,014 0,141 0,037 0,037 0,005 0,006 0,048 NA 0,051 0,040

B*0702 0,011 0,139 0,054 0,038 0,003 0,007 0,026 0,006 0,044 0,029

B*0801 0,012 0,118 0,004 0,022 NA 0,003 0,043 NA 0,042 0,077

B*2702 NA 0,005 0,001 0,002 NA NA 0,001 NA NA 0,007

B*4001 0,092 0,049 0,045 0,022 0,149 0,165 0,007 0,002 0,004 0,007

B*4403 0,001 0,049 0,047 0,018 0,005 0,015 0,029 NA 0,035 0,099

B*5601 0,161 0,004 0,005 0,004 0,005 0,016 0,001 NA 0,003 NA

Cw*0304 0,009 0,065 0,098 0,218 0,108 0,173 0,009 0,238 0,048 NA

Cw*0602 0,009 0,091 0,086 0,042 0,005 0,014 0,117 0,002 0,145 NA

HLA population coverage data was obtained from dbMHC (http://www.ncbi.nlm.nih.gov/gv/mhc/).
NA: Not available.
doi:10.1371/journal.pone.0012697.t003

Table 4. Epitope coverage in ten areas of the World.

Area Coverage

Australia 0.48

Europe 0.93

North Africa 0.67

North America 0.72

North-East Asia 0.69

Oceania 0.59

South America 0.65

South-East Asia 0.62

South-West Asia 0.67

Sub-Saharan Africa 0.66

HLA class I allele frequencies were obtained from dbMHC (http://www.ncbi.nlm.
nih.gov/gv/mhc/). Coverage is calculated as described in the subsection
Calculating the epitope coverage in Materials and Methods. A Coverage of 1
corresponds to maximum (full) coverage.
doi:10.1371/journal.pone.0012697.t004
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The complex epitope recognition pattern in the WNV infected

patients showed that not all peptides that induce a CTL response

in one patient do so in all patients expressing the restricting HLA

class I allele. This is true even for epitopes that are fully conserved

across all analysed WNV strains. It is, however, inevitable that not

all patients expressing the appropriate HLA allele will respond to a

given epitope restricted by this allele due to factors like dominance,

competition, ‘‘holes’’ in the T cell repertoire etc. In fact, in a

recent work we show that only 34–50% of patients expressing an

appropriate HLA allele will respond to an epitope restricted by this

allele [35]. The fact that not all patients expressing a given allele

respond to all epitopes restricted by this allele is thus not an

indication of a faulty prediction method, but rather a result of

factors we cannot control.

Unlike the results of our recent study identifying WNV CD8+ T

cell epitopes, where reactivity to four dominating epitopes were

found in almost all patients expressing the restricting HLA class I

allele [10], the CD8+ T cell epitopes identified in the present study

maximally induced response in about 25% of patients bearing the

appropriate HLA. It seems that the CD8+ T cell response against

WNV includes both a few epitopes recognised in the majority of

infected individuals - interindividually dominant epitopes - as well

as a broad response against interindividually subdominate epitopes

that each are recognised in some infected individuals, but not in

others. Similar observations are apparent for other small RNA

viruses, e.g., Influenza A virus: Almost all HLA-A*0201 positive

individuals were found to respond against the epitope M158–66 in a

study from 1995 [36], while CD8+ T cell epitopes identified in a

later study were responsive in only some patients carrying the

restricting HLA class I alleles [15,37]. CD8+ T cell responses

against HIV have also been found to contain both interindividu-

ally dominant and subdominant epitopes [16,38,39].

We tested all peptides with an in vitro determined HLA class I

binding affinity below (i.e. better than) 500 nM in all the WNV

infected patients. Half of the responses were found in patients not

expressing the predicted restricting HLA class I allele. The

concordance between predictive and actual HLA class I restriction

could be slightly improved by taking into account the supertype

association of the patient HLA class I alleles. In contrast, only 18%

(six responses) remained unexplainable when applying a pan-

specific HLA peptide binding prediction method for calculating

the %rank score of the epitope to each of the responding patient’s

six HLA class I alleles and considering the allele with a %rank

score below 5 as the restricting allele. These results confirm recent

findings that HLA class I supertypes often provide an oversimpli-

fication of the HLA class I specificity space [24,40,41]. Moreover,

and maybe more importantly, this analyses shows that the majority

of these immune responses are indeed predictable using advanced

bioinformatics methods for pan-specific HLA-peptide binding and

that cellular responses are hence directly explained in terms of

peptide binding to one of the patients HLA molecules in

accordance with earlier work by for instance Hoof et al. [28].

Despite the complex epitope recognition pattern observed, we

hypothesised that all of the newly identified WNV epitopes will

induce a CTL response in all individuals carrying the restricting

HLA class I allele, if the individuals were to be immunised with the

epitopes. This hypothesis is supported by a study concerning the

repertoire of CD8+ T cell epitopes recognised after Vaccinia Virus

infection [34]. Here it is shown that all Vaccinia Virus CD8+ T

cell epitopes identified in a previous study in the context of natural

infection [42] were able to elicit CTL responses in mice

immunised with the epitopes. Similar immunological analysis is

required to verify that the WNV epitopes identified in the present

study are able to induce a successful antiviral response in a host.

Nevertheless, we performed a theoretical analysis, in which we

assembled a minimal set of 11 epitopes suggested restricted by 11

different HLA class I alleles. We then calculated the population

coverage, if one was to use this set of epitopes for immunising

populations in different areas of the World. We found very high

population coverage. The population coverage would be even

higher, if we had also considered HLA class I alleles that bind the

epitopes as strong as or stronger than the restricting HLA class I

allele identified in the present study. Although our discovery of

WNV epitopes is based on relatively few patients and could be

strengthened by further immunological follow-up experiments, the

results indicate that very few epitopes are sufficient for covering

the majority of the human population. In the context of an epitope

based vaccine against WNV, a larger set of epitopes is, however,

preferable to prevent the virus from producing escape variants not

containing any of the epitopes. The final composition of an

epitope based WNV vaccine in terms of, e.g., subdominant contra

dominant epitopes, adjuvant and CD4+ T cell epitopes is not dealt

with in this study, but clearly these issues also need to be resolved

before a vaccine can become a reality.

In conclusion, using advanced bioinformatics methods for

CD8+ T cell epitope prediction, we have discovered 26 new

WNV epitopes that we suggest are restricted by 11 different HLA

class I alleles. These epitopes contribute to our knowledge of the

immune response against WNV infection and extend the list of

known WNV CD8+ T cell epitopes.

Supporting Information

Figure S1 Location of the selected, predicted CD8+ T cell

epitopes. The 192 selected, predicted epitopes are listed under the

reference sequence with RefSeq ID: NC_001563. The HLA class I

supertype restriction is listed in parenthesis after the sequence of

the epitope. Please note that 17 of the epitopes are predicted to be

restricted by more than one HLA class I allele, resulting in a total

of 175 unique peptides.

Found at: doi:10.1371/journal.pone.0012697.s001 (0.03 MB

PDF)

Figure S2 In vitro expansion prior to analysis increases sensitivity

and does not impact epitope hierarchy. Cryopreserved PBMC

from patient #55302 were thawed and rested overnight prior to

stimulation for ICS assay (upper panels). A portion of the thawed

cells were also subjected to a round of in vitro expansion using K64-

4-1BBL cells as described the subsection ICS validations of

Materials and Methods prior to analysis by ICS assay (lower

panels). The numbers reflect the percentage of IFN-c-positive cells

of total live lymphocytes.

Found at: doi:10.1371/journal.pone.0012697.s002 (1.28 MB TIF)

Table S1 Measured binding affinity. Of the 175 predicted CD8+

T cell epitopes, 161 were synthesised and their in vitro binding

affinity to the predicted restricting HLA class I allele was

measured. The table lists the 112 peptides that experience a KD

below 500 nM.

Found at: doi:10.1371/journal.pone.0012697.s003 (0.01 MB

PDF)

Table S2 The 26 identified WNV CD8+ T cell epitopes. The

columns lists: Sequence: Amino acid sequence of the epitope,

Selecting HLA: The HLA class I allele used for selecting the

epitope, Protein: Source protein of the epitope, Position: Starting

position of the epitope in the source protein, Conservation:

Conservation of the epitope in 140 fully sequenced WNV strains

obtained from (Koo et al., 2009), Number of responses: The

number of responses that were observed against this epitope in this
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study, Responders: The patients that responded against this

epitope. The HLA alleles of each patient are written in subscript

after patient ID number. HLA alleles marked in bold are alleles by

which the epitope is predicted to be restricted in this patient (see

the paragraph ‘‘Suggested HLA class I restriction and Table 3 for

details), Figure: The figure that illustrates the response.

Found at: doi:10.1371/journal.pone.0012697.s004 (0.01 MB

PDF)
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