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Abstract

Mutations in PKD1, the gene encoding for the receptor Polycystin-1 (PC-1), cause autosomal dominant polycystic kidney
disease (ADPKD). The cytoplasmic C-terminus of PC-1 contains a coiled-coil domain that mediates an interaction with the
PKD2 gene product, Polycystin-2 (PC-2). Here we identify a novel domain in the PC-1 C-terminal tail, a polyproline motif
mediating an interaction with Src homology domain 3 (SH3). A screen for interactions using the PC-1 C-terminal tail
identified the SH3 domain of nephrocystin-1 (NPHP1) as a potential binding partner of PC-1. NPHP1 is the product of a gene
that is mutated in a different form of renal cystic disease, nephronophthisis (NPHP). We show that in vitro pull-down assays
and NMR structural studies confirmed the interaction between the PC-1 polyproline motif and the NPHP1 SH3 domain.
Furthermore, the two full-length proteins interact through these domains; using a recently generated model system
allowing us to track endogenous PC-1, we confirm the interaction between the endogenous proteins. Finally, we show that
NPHP1 trafficking to cilia does not require PC-1 and that PC-1 may require NPHP1 to regulate resistance to apoptosis, but
not to regulate cell cycle progression. In line with this, we find high levels of apoptosis in renal specimens of NPHP patients.
Our data uncover a link between two different ciliopathies, ADPKD and NPHP, supporting the notion that common
pathogenetic defects, possibly involving de-regulated apoptosis, underlie renal cyst formation.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is a

frequent genetic disease affecting 1/1000 people characterized by

renal cyst formation. Mutations in two genes can cause ADPKD:

PKD1 and PKD2 [1]. The first is mutated in the majority of the

cases (85%), and it encodes a large (,520 kDa) plasma membrane

receptor, Polycystin-1 (PC-1).

PC-1 has a very large extracellular domain comprised of a novel

combination of protein-protein interaction domains, 11 trans-

membrane domains and a short intracellular C-terminus contain-

ing a coiled-coil motif that mediates an interaction with the PKD2

gene product, Polycystin-2 (PC-2) [2] [3]. The precise function of

the PC-1/2 complex is largely unclear [4]. The complex localizes

to cell-cell junctions [5], focal adhesions [6] and the primary cilia

in renal epithelial cells [7].

Here, we report that the C-terminus of PC-1 contains at least

one polyproline domain that is able to mediate an interaction with

Src-homology 3 domains (SH3). We show that PC-1 interacts with

the SH3 domain of Nephrocystin-1 (NPHP1), the product of the

NPHP1 gene mutated in nephronophthisis, an autosomal recessive

disease characterized by a small cyst formation at the corticome-

dullary junction of the kidney [8], [9] [10].

NPHP1 is a cytoplasmic adaptor molecule containing a putative

coiled-coil domain and an SH3 domain whose function is still

unknown. Similar to PC-1, NPHP1 localizes to cell-cell junctions, cilia

and cell-matrix adhesion sites [11] [12] [13]. We provide evidence of a

physical and functional interaction between the products of these two

genes, which are mutated in two distinct renal ciliopathies, polycystic

kidney disease and nephronophthisis, supporting the notion that the

molecular mechanism underlying cyst formation shares common

pathogenetic dysfunctions in different diseases.
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Results

A polyproline motif in the PC-1 C-tail interacts with the
SH3 domain of NPHP1

Bioinformatic analysis of the PC-1 sequence, using two public

web sites (2009) (http://scansite.mit.edu and http://cbm.bio.

uniroma2.it/SH3-Hunter), identified two putative SH3-interacting

polyproline domains in its C-terminus, PP1 (K4169VSPDVP4175)

and PP2 (P4267ALPSR4272). The last had been previously noted in

the murine sequence, but its role was never investigated [14]. PP1,

corresponding to the classical type I consensus sequence (R/

KxxPxxP), had a very low prediction score (,0.3), whereas PP2,

corresponding to the type II (PxxPxR/K) consensus, (Figure 1A),

had a high prediction score (0.97) [15].

To test if the C-terminus of PC-1 (aa 4132-4302) is able to

interact with SH3 domains, we performed a screen using an

overlay assay system (TranSignalTM SH3 Domains, Panomics)

that allows for the simultaneous screening of 152 SH3 domains for

Figure 1. The PC-1 C-terminus contains polyproline motifs that interact with the SH3 domain of NPHP1. A. Sequence alignment of the
two putative polyproline domains (PP1 and PP2) in the C-terminus of PC1 from different species. Asterisks indicate the conserved residues. The
residues of the polyproline consensus motif are in red. B. The C-terminal tail of PC-1 fused to poly-HIS tag (HIS-PC-1-CT) and expressed in bacteria was
incubated in the presence of membranes containing several SH3-domains fused to GST and spotted in duplicate (TranSignalTM SH3 Domains,
Panomics). a-HIS antibodies were used to detect HIS-PC-1-CT that interacted with GST-SH3 domains. Quantification of the intensities (bottom
histograms) showed an association with NPHP1, Nck2 and cSrc, but not with NCF1 nor GST. C. Full-length Myc-NPHP1 was co-expressed in HEK293
cells with full-length PC-1-HA or full-length PC-1-Myc. Immunoprecipitation using a-HA antibodies resulted in the co-immunoprecipitation of NPHP1-
Myc specifically in the presence of PC-1 immunoprecipitation. D. MEFs derived from a recently described mouse model expressing tagged-
endogenous PC-1 [16] were used to immunoprecipitate endogenous HA-tagged PC-1. Cells expressing the wild-type untagged PC-1 (Pkd1+/+) served
as a negative control for the immunoprecipitation. Cell lysates from parental MDCK cells (+Ctrl) or NPHP1–silenced cells (-Ctrl) [32] served as a control
for NPHP1 western blot. Endogenous NPHP1 and PC-1 co-immunoprecipitated.
doi:10.1371/journal.pone.0012719.g001

PC-1 Interacts with NPHP1
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possible interactions. We identified several potential binding

partners (Figure 1B) suggesting that the C-terminal tail of PC-1

is able to interact with SH3 domains. Notably, the SH3 domain of

NPHP1 (NPHP1-SH3) was identified.

PC-1 and NPHP1 localize to identical subcellular compart-

ments and cause diseases that share common features. However,

these two proteins were never reported to associate in a complex.

We used a series of novel tools generated in our lab to investigate

their possible interaction.

First, vectors expressing Myc-tagged NPHP1 and HA-tagged

full-length PC-1 were transiently co-transfected into HEK293

cells. Co-immunoprecipitation with a-HA antibodies revealed a

specific association of the two proteins when overexpressed in cells

(Figure 1C). Furthermore, immunofluorescence analysis revealed a

partial co-localization of the two molecules in intracellular patches

(Figure S1A).

Because overexpression of molecules might force interactions

that do not typically exist, we next tested if the endogenous PC-1

and NPHP1 are indeed able to form a complex in physiological

conditions. To this end, we used mouse embryonic fibroblasts

(MEFs) derived from a recently described mouse model in which a

tag was inserted into the Pkd1 gene resulting in the expression of a

tagged endogenous PC-1 (Pkd1HA/HA) [16]. These cells express

normal levels of fully-functional PC-1, of which detection is greatly

enhanced by the addition of a tag. This feature allowed us to use

wild-type (Pkd1+/+) cells as an optimal control. Immunoprecipita-

tion of the endogenous tagged PC-1 from two independent cell

lines resulted in the co-immunoprecipitation of the endogenous

NPHP1 (Figure 1D), while no NPHP1 pull-down could be

detected in wild-type (Pkd1+/+) MEFs, demonstrating its specificity.

Similar results were generated by using a cell line derived from

mice carrying a different tag (Pkd1Myc/Myc, Figure S1B).

Collectively, these data demonstrate the existence of a complex

containing both PC-1 and NPHP1.

The second polyproline motif (PP2) interacts with
NPHP1-SH3 domain

To test if complex formation is directly mediated by the putative

PC-1 polyproline motifs and NPHP1-SH3 domain, we performed

glutathione s-transferase (GST) pull-down assays. Using the GST-

fused SH3 domain of NPHP1 (GST-NPHP1-SH3) and the

histidine tagged C-terminus of PC-1, we found that these two

domains are indeed able to interact in vitro (Figure 2A and Figure

S1C), suggesting that the C-tail of PC-1 contains motifs able to

mediate an interaction with the SH3 domain of NPHP1.

Next, we performed binding assays of synthetic peptides

corresponding to stretches of aminoacids derived from PC-1 C-tail,

containing either PP1 (peptPP1) or PP2 (peptPP2) (Table S1), to

NPHP1-SH3 using two-dimensional 1H-15N NMR. A discrete set of

chemical shift changes was observed only in titrations of peptPP2

into 15N NPHP1-SH3 (Figure 2B and C). We estimated a

dissociation constant of 0.3 +/- 0.02 mM (Figure 2D). Similar

values were obtained by isothermal titration calorimetry (ITC)

(Figure S3A). Importantly, a peptide corresponding to aminoacids

4264-4277 in which P4270 was substituted with a leucine (peptPL2,

Table S1) completely abolished complex formation as assessed by the

lack of peak displacements in 15N HSQC titrations (Figure 3A and

B), demonstrating the specificity of the interaction. No shifts were

observed upon addition of peptPP1 or peptPL1 (in which the central

proline of PP1 was mutated into leucine), implying that PP1 is not

able to interact with NPHP1-SH3 domain (Figure 3B and S2A). In

line with the NMR data, GST pull-down experiments between the

NPHP1-SH3 domain and the PC-1 C-tail revealed that the in vitro

binding between the two molecules was completely abrogated when

a proline to leucine substitution was inserted into P4270 of PC-1

(Figure 3C). Most importantly, co-immunoprecipitation assays in

HEK293 cells of wt-NPHP1 with the P4270L mutant full-length PC-

1 showed that this single amino acid change completely abrogates

the interaction between the two full-length molecules (Figure 3D).

Surprisingly, the PC-1-HIS C-tail carrying a proline to leucine

substitution in P4172 showed a reduction in the binding capability to

NPHP1-SH3 domain (Figure 3C), despite the fact that peptPP1 is

completely unable to cause any peak displacement in two-

dimensional 1H-15N NMR assays titrations(Figure 3B, right). These

data might suggest that, although PP1 is unlikely to be directly

involved in the binding to NPHP1-SH3, its mutation might cause

changes in the tertiary structure of PC-1 C-tail able to influence the

strength of binding of PP2.

Collectively, these data demonstrate that PP2 is responsible for

the interaction with the SH3 domain of NPHP1, and that this

interaction, albeit weak when tested on isolated peptides, is specific

and essential for complex formation.

Mapping of the interaction and binding specificity
To identify the interaction surface, residues with significant

chemical shift differences (CSD .0.05 ppm) (Figure 2B) were mapped

onto the three-dimensional structure of NPHP1-SH3 (1S1N). These

residues constitute the classical polyproline binding groove, including

amino acids located on the RT loop, the n-Src loop and the 310 helix

(V160, A165, Q166, Q167, G169, D170, K185, W189, W190, I191,

V202, R204, and T205) (Figure 4A and Figure S3B).

To further characterize the specificity of the interaction, we

analyzed the effect of a previously described NPHP1-SH3 mutation

(P203L) on the binding to PC-1 [17]. Importantly, this mutation did

not affect fold stability, as assessed both by circular dichroism

thermal denaturation melting curves (Tm,80uC) and by NMR

spectroscopy (Figure S2B). However, the mutation strongly affected

its function. In fact, GST pull-down assays with the C-terminus of

PC-1 showed that P203L mutation impaired binding (Figure 4B).

Accordingly, NMR titrations with peptPP2 showed that P203L

abolished the interaction as no peak displacement was observed

upon addition of peptPP2 (Figure S2C).

Model of the interaction
We used the experimental data (chemical shift mapping and

mutagenesis) to generate a model of the interaction docking

peptPP2 on the known structure of NPHP1-SH3 using the

HADDOCK strategy [18]. The peptide interacted with the

classical SH3 binding groove adopting a type-II orientation

(Figure 4A) whereby peptPP2-P4 packed against Y206, while

peptPP2-L6 and peptPP2-P7 fit inside the hydrophobic pocket

formed by Y206, F163, W189 and P203 (Figure 4A and Figure

S3B). Importantly, the carbonyl backbone of peptPP2-P7 made a

hydrogen bond with the indole NH of W189. Binding specificity

was further conferred by a bifurcated electrostatic interaction

between the guanidinium group of peptPP2-R9 and the backbone

carbonyl of G167 and the carboxylate of D170. Finally, peptPP2-

R3 created a salt-bridge with the carboxyl group of D162 (Figure

S3B). Collectively, the model of the complex recapitulates the

classical interaction pattern observed between SH3 domains and

type II polyproline motifs, providing further evidence that PP2 is a

bona fide polyproline domain.

PC-1 and NPHP1 cooperate to regulate apoptosis, but
not proliferation

Finally, we investigated the biological significance of the PC-1/

NPHP1 interaction. Immunofluorescent staining using an a-

PC-1 Interacts with NPHP1
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NPHP1 antibody revealed that NPHP1 localized to the base of the

cilia in both Pkd1+/+ and Pkd12/2 MEFs (Figure S4A). Next, we

used a mouse model carrying a Pkd1-floxed allele [16] crossed with

a mouse harboring a kidney-specific Cre recombinase (Ksp-Cre)

[19]. This resulted in massive renal cystogenesis, as previously

reported [20], and the cystic epithelial cells showed intact cilia

formation. We subsequently analyzed the distribution of NPHP1

and found that NPHP1 still localized to cilia in the cystic kidneys,

similar to the distribution observed in normal kidneys (Figure

S4B). We conclude that trafficking of NPHP1 to cilia does not

depend on PC-1.

Previous studies have demonstrated that overexpression of PC-1

induces cell cycle arrest in the G0/G1 phase and resistance to

apoptosis [21] [22] [4]. In order to investigate the role of NPHP1

in these functions, we used MDCK cells overexpressing PC-1, and

we achieved silencing of NPHP1 by generating stable transfectants

carrying a shRNA directed against canine NPHP1 (sh1 or sh2).

Scrambled shRNAs served as a control (ct) (Figure 5A, top).

Silencing of NPHP1 had no effect on PC-1 capability to regulate

phosphorylation of ERK and cell cycle arrest in G0/G1 (Figure S5

and 5A). However, while PC-1 overexpression results in resistance

to apoptosis [21], silencing of NPHP1 resulted in reduced cell

viability in response to apoptotic stimuli such as TNFa (Figure 5A,

bottom) and increased apoptosis as assayed by TUNEL and

cleaved-caspase-3 levels (Figure 5B). Furthermore, silencing

NPHP1 per se resulted in increased sensitivity to apoptosis in

parental MDCK cells (Figure 5C). These data show that PC-1 and

NPHP1 are functionally linked to regulate apoptosis, with NPHP1

possibly acting downstream of PC-1. We conclude from these data

that PC-1 and NPHP1 cooperate to mediate apoptosis resistance,

but not to regulate the cell cycle (Figure 5D).

These results seem to suggest that one important common

feature between ADPKD and NPHP might be the susceptibility to

apoptosis. Previous studies have indeed described an increased

Figure 2. PC-1/NPHP1 interaction is mediated by a polyproline motif/SH3 domain. A. GST pull-down assays were performed between the
GST-NPHP1-SH3 and the HIS-PC-1-CT. NPHP1-SH3, but not GST alone, precipitated HIS-PC-1-CT. B 1H-15N HSQC spectra of NPHP1-SH3 during the
titration with peptPP2 (0, 0.5, 1, 1.5, 2, 3, 4 equivalents). The starting and ending points of the titration are represented in black and red, respectively.
The observed changes are a continuous function of the amount of added peptide, indicating that the binding is in the fast exchange limit on the
NMR time scale. Residues with chemical shift changes .0.05 ppm are explicitly labeled. C Distribution of the average backbone amide chemical shift
differences (CSD) within NPHP1-SH3 (0.3 mM) upon addition of a four-fold excess of peptPP2. Secondary structure elements are shown according to
NPHP1-SH3 structure (1S1N). D. Weighted average of 1H and 15N chemical-shift changes of selected NPHP1-SH3 residues as a function of added
peptPP2.
doi:10.1371/journal.pone.0012719.g002
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apoptosis in the cystic kidneys of ADPKD patients [23], while the

role of apoptosis in NPHP was never investigated before. We

therefore performed TUNEL assays on specimens derived from 4

patients affected by NPHP and carrying mutations in the NPHP1

gene. We found that, indeed, increased apoptosis is a feature of

tissues derived from NPHP patients (Figure 6). Collectively, these

data suggest that PC-1 and NPHP1 cooperate to regulate the

apoptotic response in renal epithelial cells and that this function is

likely relevant in the kidney, where loss of either the PKD1 or

NPHP1 gene function results in increased apoptosis.

Discussion

In this study we provide evidence for the first time of the

existence of a functional polyproline domain within the C-tail of

PC-1 able to interact with SH3 domains. In particular, we show

that this motif mediates interaction with the SH3 domain of

NPHP1 to assemble into a novel, previously unrecognized

complex. NMR and ITC experiments supplement this observa-

tion, narrowing down the identification of the binding site to the

second putative polyproline motif (PP2), which is comprised of

residues 4267-4272. The interaction shows a canonical inter-

face between a type II polyproline motif and an SH3 domain,

although this relationship is at the low-range strength of

interactions.

GST pull-down assays and co-immunoprecipitation studies,

however, show that the two proteins assemble specifically into a

complex both in vitro and in vivo. It is possible that the isolated

peptides of PC-1 have a lower affinity for the SH3 domain of

NPHP1 than they have when embedded in the whole intracellular

C-tail. One additional possibility is that other molecules assemble

in the complex and help stabilize the interaction. Both PC-1 and

NPHP1 exist in multiprotein complexes within cells [3] [8].

Therefore, we cannot exclude the possibility that additional

protein-protein interactions (with other partners of the respective

complexes) might contribute to stabilizing the complex in vivo. One

final possibility is that low affinity might be desirable under certain

circumstances. Most signaling proteins are expressed in very low

amounts in the cell. However, their concentration can be

increased when segregated into a local compartment of the cell

[24] [25]. In addition, although the interaction is relatively weak,

our data clearly demonstrate that abrogation of the polyproline

domain/SH3 domain interaction is sufficient to abolish the PC-1/

NPHP1 interaction, since mutating the central proline within the

polyproline helix (peptPL2) impairs this binding both in vitro and in

vivo. Moreover, the mutation P203L, located in the hydrophobic

Figure 3. The polyproline domain 2 (PP2) of PC-1, but not the polyproline domain 1 (PP1), interacts with the SH3 domain of NPHP1
in a canonical manner. A. 1H-15N HSQC spectra of NPHP1-SH3 with (red) and without (black) peptPL2. The addition of the peptide does not cause
any peak displacement indicating that mutation of the proline in the polyproline motif destroys the binding. B. Insets derived from the spectra in 2B,
3A or S1A relative to aminoacids T205 or W189 observed in the presence of peptPP2 (left), peptPL2 (middle) or peptPP1 (right) show that while these
amino acids are displaced in the presence of peptPP2, only minimal movement can be observed upon addition of peptPL2 and no movement is
detected with peptPP1. C. The experiment was carried out as described in 2A but using HIS-PC-1-CT or mutant forms with Proline 4172 (PP1) or
Proline 4270 (PP2) replaced with Leucine. D. Full-length Myc-tagged NPHP1 (NPHP1-Myc) was co-expressed in Hek293 cells with either the wild-type
form of PC-1-HA or a mutant form carrying a leucine instead of a proline at residue 4270 (P4270L-PC-1-HA). Immunoprecipitation using a-HA
antibodies revealed that this single amino acid change completely abolishes interaction with NPHP1-Myc.
doi:10.1371/journal.pone.0012719.g003

PC-1 Interacts with NPHP1
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interaction pocket of NPHP1 SH3 domain, does not affect the

domain folding, but totally abrogates the interaction with peptPP2.

Our studies also indicate that a proline to leucine mutation into

PP1 (P4172L) decreases the binding of PC-1 C-tail to the SH3

domain of NPHP1, although the isolated peptide containing PP1

(peptPP1) did not cause any peak displacement in 2D 1H-15N

NMR assays. Since the last is a very sensitive and reliable method,

these data might suggest that the tertiary structure of the C-tail of

PC-1 might be affected by mutations into PP1, which eventually

affects the PP2 capability to interact with the SH3 domain of

NPHP1. In line with this interpretation, the P4270L mutation is

able to completely abrogate the interaction with NPHP1-SH3

both in GST pull-down assays and in the co-immunoprecipitation

studies. These results along with the NMR studies with the isolated

PP2 and PL2 peptides, strongly suggest that PP2 is indeed the

polyproline motif responsible for the interaction. However, we

cannot exclude that PP1 can interact with other SH3 domains,

even though the low sequence conservation suggests a minor

functional role for this motif. Collectively, our results are in perfect

agreement with the HUNTER prediction, which showed a very

high score for PP2 and a low score for PP1.

Besides the identification of the molecular determinants of this

interaction, we believe that our data have important implications

for understanding the pathophysiology of renal cystic diseases. In

recent years, the ciliary hypothesis of cystogenesis has acquired

increasing attention, providing an exciting explanation for why so

many different diseases can all result in renal cyst formation [26].

However, it remains to be elucidated whether all of the ciliary

proteins, whose gene mutations are known to cause renal cystic

diseases, function in a common complex/pathway or whether they

independently influence similar cellular functions. A physical and

functional interaction was previously reported between genes

involved in the two forms of polycystic kidney disease (PKD)

(autosomal dominant and autosomal recessive) [27] [28]. Our

results show that PC-1, the product of the gene mutated in the

most common form of PKD, interacts with NPHP1, the gene

product of the NPHP1 gene, which is mutated in an unrelated

cystic kidney disease, nephronophthisis (NPHP). In agreement

with our findings, studies performed in the nematode C. elegans had

suggested that the two proteins might be functionally linked since

downregulation of the PKD1 orthologue lov-1 or of the NPHP1

orthologue nphp1 result in a similar phenotype in this invertebrate

model system [29]. However, inactivation of different genes whose

products are implicated in ciliary function are indeed expected to

generate similar phenotypes, without necessarily implying the

association of the proteins involved. Our data uncover the

possibility of the existence of a macromolecular complex

comprised of several different proteins whose genes are mutated

in cystic kidney diseases and warrant future studies on common

functions, likely important for preventing renal cystogenesis.

In this study we have shown that one such common function

might be the apoptotic response. One intriguing observation that

emerges from our data is that PC-1 and NPHP1 cooperate to

achieve apoptosis resistance, but do not jointly regulate the cell

cycle. PC-1 had been shown to be essential to prevent apoptosis in

vivo in mice carrying mutations in the Pkd1 gene [4]. Furthermore,

increased apoptosis had also been reported in the cystic kidneys of

ADPKD patients [23]. Apoptosis of photoreceptor cells occurs in

mice invalidated for Nphp1, however no kidney phenotype was

associated with the retinal degeneration in those mice [30]. In this

study we show that increased apoptosis appears to be a feature of

NPHP as well, since analysis of renal specimens from 4 different

patients carrying mutations in the NPHP1 gene revealed the

presence of apoptosis in the renal tubules of these tissues. Our data

collectively might suggest that the two proteins are functionally

linked in renal epithelial cells to protect the renal tubule from

apoptosis. How and if this common feature shared by the two

diseases might be related to renal cyst formation and/or ciliary

function remain to be investigated.

Materials and Methods

Antibodies and cell lines employed
Antibodies were obtained as follows: anti-Myc and anti-HA

from Roche (1667203 and 1867431 respectively); anti-NPHP1, a

kind gift of Dr. G. Walz, University Hospital Freiburg was

previously described [12]; anti-phospho and total ERK1/2

antibodies and anti-cleaved caspase-3 (asp 175) from Cell signaling

(9102, 9101 and 9661); anti-acetylated tubulin was from Sigma

(T6793). horseradish peroxidase-conjugated secondary antibodies

from GE Healthcare.

Figure 4. A P203L mutation in the SH3 domain of NPHP1
prevents the interaction with PC-1. A Model of NPHP1-SH3 (PDB
code: 1S1N, surface representation) in complex with peptPP2 (repre-
sented with sticks). NPHP1-SH3 residues with the highest NH chemical
shifts are highlighted in red (Dh.0.1ppm) and pink (0.05,Dh,0.1). The
surface of P203 is highlighted in yellow. B. GST pull-down assays using
either the wild-type or the mutant SH3 domain of NPHP1 (P203L) fused
to GST were performed as in Figure 1C and D. The interaction is
impaired in the presence of the mutant NPHP1.
doi:10.1371/journal.pone.0012719.g004

PC-1 Interacts with NPHP1
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MDCK cells carrying stable transfection of the full-length

PKD1 gene were previously described [21]. In brief a vector

carrying the zeocine selection cassette was transfected either alone

or in combination with the full-length PKD1 gene. Stable

transfectants were selected upon exposure to zeocine and

individual clones were isolated and characterized for PC-1

expression [21].

SH3-interaction screen and GST pull-down assays
TranSignalTM SH3 domain arrays by Panomics (Fremont, CA)

were screened following the manufacturer’s instruction. A HIS-

fused construct for expression in bacteria of PC-1 C-tail (aa4132-

4303) was generated and expressed in E. coli (BL21 strain).

Membranes were incubated with bacterial extract followed by

incubation with an anti-HIS antibody. Interactions were visualized

by chemiluminescence. Each spot was quantified using the

ImageQuant software. The screen was carried out in duplicate

using two different preparations of HIS-PC1-CT on two different

membrane and generated identical results.

For GST pull-down assays, the indicated GST and HIS-fused

proteins were expressed in E.coli strain BL21. Bacteria were lysed and

cleaned by centrifugation. Supernatants were mixed and incubated

for 2 to 4 h at 4uC, followed by incubation for 2 to 4 h at 4uC with

glutathione beads. The beads were centrifuged, washed and proteins

were solubilized in Laemmli buffer and analyzed by immunoblotting.

Sample Preparation for NMR and Binding Assays
The DNA region corresponding to codons 147-212 of the

human NPHP1wt and mutant P203L genes was inserted into a

GST fusion vector pGEX-2T (Amersham). The constructs were

expressed in E.Coli BL21(DE3) and purified as described in [31].

Peptides (peptPP1 = RGSKVSPDVPPPS; peptPL1 = RGSKVSP-

DVLPPS; peptPP2 = GLRPALPSRLARAS; peptPL2 = GLRPALL-

SRLARAS; peptPP2short = GLRPALPSRL whose N- and C-termini

were acetylated and amidated, were purchased from CASLO (Lyngby,

Denmark), their purity was confirmed by HPLC and mass

spectrometry. Additional Informations can be found in Materials

and Methods S1.

Figure 5. PC-1 and NPHP1 functionally interact. A. Top. MDCKII control cells (F2) and or over-expressing PC-1 (36) were stably transfected with
shRNA against NPHP1 (sh1 and 2) or control shRNA (ct). Several clones were isolated (F2ct, F2sh1, F2 sh2, 36ct, 36sh1, 36sh2) The residual level of
expression of NPHP1 after silencing in the lines carrying NPHP1-specific shRNAs is indicated in grey above each lane. Cells over-expressing PC-1
showed reduced phosphoERKs that was not affected by NPHP1 silencing. Bottom. Cell viability was evaluated by cell counting at 48 and 72 hours
after TNFa treatment as an apoptotic stimulus. While shRNA control cells over-expressing PC-1 (36ct) survive, cells that were silenced for NPHP1
become sensitive to apoptosis (36sh1 and 36sh2) to an extent comparable to the controls (F2ct and F2sh1). B. Cells were treated as in A. and
apoptosis analyzed by TUNEL assay and cleaved caspase 3, 48 hours after treatment. Cells carrying the NPHP1-silencing showed a significant increase
in the apoptotic rates. C. previously reported [32] MDCK cells control (WT, pSi-C1) or silenced for NPHP1 (KD, N1-KD-C1) show a considerable dicrease
in NPHP1 expression (left blot). Cells were treated as in B and the TUNEL assay was performed to assess the apoptotic response (right graph). D. Two
possible models derived from the results shown in this figure. PC-1 is able to inhibit both proliferation and apoptosis [21]. The regulation of
proliferation by PC-1 does not require NPHP1, whereas the regulation of apoptosis is sensitive to NPHP1 silencing, suggesting that NPHP1 might act
downstream (top) or in parallel (bottom) to PC-1 converging on a common functional effect on apoptosis. Statistical analysis was performed using
the ANOVA test (in B) or the Student’s t-Test (in C and D). **p,0.005. ***p,0.0005.
doi:10.1371/journal.pone.0012719.g005
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NMR Measurements and Isothermal Titration Calorimetry
(ITC)

Details on NMR titrations, and thermodynamic measurements

are described in the supplementary information online. Additional

Informations can be found in Materials and Methods S1.

Molecular docking calculations
Molecular docking calculations of peptPP2 on NPHP1-SH3

(PDB code 1S1N) were performed using the software HAD-

DOCK-2.1, which makes use of biochemical and biophysical

information such as chemical-shift perturbation data to drive the

Figure 6. Apoptosis in human kidney tubules of patients mutated for NPHP1 gene. Apoptosis was determined by the presence of DNA
fragmentation, detected by in situ TUNEL staining (green) in normal kidneys (A; Ct) and in renal specimens from patients carrying homozygous
mutations of NPHP1 (B–C; Pt). Co-staining with Hoechst 33342 (blue nuclei) was used to visualize all the cells present in the field (merge). Apoptosis
was present in all four patient renal specimens, either in tubular (white arrow) or intra-tubular (asterisk) cells. The total number of tubules evaluated
per kidney specimen is indicated on the graph. Controls (Ct) are shown in a linear scale, patients (Pt) in a logaritmic scale. Unpaired t-test with Welch’s
correction one-tailed was performed for statistical analysis: **p = 0.0057. Scale bar 5 mm.
doi:10.1371/journal.pone.0012719.g006
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docking [18]. Details for docking calculations are described in

supplementary informations. Additional Informations can be

found in Materials and Methods S1.

Transient transfections and immunoprecipitation studies
Transient transfections were performed using lipofecta-

mine2000 (Invitrogen). Cells were harvested and lysed for

30 min at 4uC with lysis buffer [250 mM sucrose, 20 mM

imidazole, 1 mM EDTA (pH 7.4), and 1% Triton-X100, 0.1%

SDS plus Protease Inhibitors Cocktail (Amersham) and phospha-

tase inhibitors]. Lysates were pre-cleared with the appropriate

beads and incubated with high-affinity anti-HA or anti-Myc beads,

followed by washing and solubilization in Laemmli buffer for

immunoblot analysis.

Mouse strains and breeding
All the mice used in these experiments were in a C57/Bl6

genetic background; Pkd1flox/flox homozygous mice [16] were

crossed with the Ksp Cre mice (kindly provided by Dr. P. Igarashi,

Southwestern University, TX-USA) [19] maintained on an

heterozygous background as Pkd1+/2: Ksp-Cre. After genotyping

of the pups, Pkd1flox/-: Ksp-Cre mice derived from these crosses

were used as experimental animals.

Immunofluorescence on frozen sections
Pkd1flox/-: Ksp-Cre mice were sacrificed at P 4, kidneys were

removed and fixed by overnight incubation with 4% paraformal-

dehyde at 4uC. After washing in PBS, fixed tissues were processed

through a graded series of sucrose concentrations from 10–30% in

PBS at 4uC, overnight incubation for each step. For better

preservation of the cystic structures, kidneys were processed in

30% sucrose- 10% glycerol in PBS solution at 4u for 6 h and then

rocked at room temperature for 2 h in a 1:1 preparation of 30%

sucrose in PBS and OCT. Kidneys were then embedded in OCT

(Tissue Tek) and frozen in 2- methyl-butane in dry ice.

For immunofluorescence, 10 mm sections were prepared,

mounted on slides, air dried for 1 h and washed three times in

PBS. Kidney sections were then permeabilized with 0,1% Triton

X-100 in PBS for 10 min, blocked with 3% BSA, 5% normal goat

serum in PBS for 1 h at room temperature and incubated with

primary antibody (NPHP1 1:100) overnight at 4uC followed by the

secondary antibody (Alexa Fluor 488, Molecular Probes, 1:1000)

for 1 h at room temperature; both antibodies were diluted in

blocking solution.

Images were obtained with a Perkin Elmer Confocal- Ultra-

VIEW ERS Spinning Disk Confocal.

Ethical approval of all animal work
All animal care and experimental protocols, including the

generation of chimeras, were conducted in accordance with the

guidelines provided by the Italian Ministry of Health, upon

approval of a specific protocol (IACUC-303) by the institutional

care and use ethical committee (I.A.C.U.C.) at the San Raffaele

Scientific Institute. Personnel from our own laboratory carried out

all aspects of the mouse work under strict guidelines to insure

careful, consistent and ethical handling of the mice.

NPHP1 silencing, cell cycle and apoptosis assays
Silencing of NPHP1 in cells over-expressing PC-1 (employed in

Figure 5A, B, Figure S5) were generated by transfection with a

MISSION pLKO.1 vector expressing shRNA against a region of

the human NPHP1 gene identical to the canine sequence (Sigma-

Aldrich, TRCN 0000083822) or the control vector pLKO.1-puro

(Sigma-Aldrich, SHC001) and selected with 7.5 mg/ml Puromycin

(Sigma-Aldrich, P8833). Several resistant clones were further

subcloned and tested for NPHP1 expression levels by western blot.

For cell cycle analysis, cells were stained using popidium iodide

followed by FACS analysis as previously described [22]. Parental

MDCK type II cell lines carrying stable silencing of NPHP1

(Figure 1D and Figure S1B -Ctrl; Figure 5C) were previously

described [32]. For apoptosis assays cells were treated with 2 ng/

ml recombinant human TNF-a/TNFSF1A (R&D Systems,

Minneapolis, MN) and cycloheximide 1 mM. For survival assays,

cells were counted using the Countess system (Invitrogen,

Carlsbad, CA). For apoptosis assays cells were analyzed by either

the DeadEnd Flurometric transferase-mediated dUTP nick-end

labeling (TUNEL) system kit (Promega, Madison, WT), or by

western blot analysis of cleaved caspase-3. Statistical analysis was

performed using the one-way analysis of variance (ANOVA).

Human renal specimens
Renal specimens from 4 patients with nephronophthisis (1 renal

biopsy and 3 kidneys removed at the time of transplantation) fixed

in Dubosq-Brazil or formalin had been obtained before DNA

screening. Genomic DNA was isolated from peripheral blood by

standard methods and analyzed by PCR approach as described

previously [33]. All four patients carried homozygous mutations of

NPHP1. Detection of apoptotic cells was assessed using the In Situ

cell death detection kit (Roche Applied Science). Three normal

renal specimens were used as controls.

Ethical approval of all work on human specimens
Approval for research on human subjects was obtained from the

French ethical committee in accordance with their recommenda-

tions (# DGS 950211 obtained in 10/13/94) and after obtaining

informed consent from the patients or/and their parents.

Supporting Information

Figure S1 (A) Hek 293 Cells were co-transfected with full-length

Myc-NPHP1 and full-length HA-PC-1. Immunofluorescence

analysis was performed using anti-Myc (green) or anti-HA (red)

antibodies and counterstained with DAPI (blue) to highlight the

nuclei. A partial co-localization in intracellular compartments

could be detected as evidenced by the yellow staining in the merge

image. Images were captured using a confocal microscope. (B)

MEFs derived from a recently described mouse model expressing

tagged-endogenous PC-1 (16) were used to immunoprecipitate

endogenous Myc-tagged PC-1. Cells expressing the wild-type

untagged PC-1 served as a negative control for the immunopre-

cipitation. Cell lysates from parental MDCK cells (+Ctrl) or

NPHP1-silenced cells (-Ctrl) (32) served as a control for NPHP1

western blot. Endogenous NPHP1 and PC-1 co-immunoprecip-

itated. (C) GST pull-down assays were performed between the

SH3 domain of NPHP1 or Abl (negative in the screen in Fig 1B,

not shown) fused to GST and the C-terminal tail of PC-1 fused to

histidine. NPHP1, but not GST alone or Abl, precipitated the C-

terminal tail of PC-1.

Found at: doi:10.1371/journal.pone.0012719.s001 (0.42 MB TIF)

Figure S2 (A) 1H-15N HSQC spectra of NPHP1-SH3 with (red)

and without peptPP1 (black). The addition of the peptide does not

cause any peak displacement indicating that no binding occurs. (B)

1H-15N HSQC spectra of NPHP1-SH3 (black) and NPHP1-SH3-

P203L (red). The spectrum of the mutant shows good peak

dispersion, indicating that the domain is well folded. (C) 1H-15N

HSQC spectra of NPHP1-SH3-P203L with (black) and without

PC-1 Interacts with NPHP1
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(red) peptPP2. The addition of the peptide does not cause any peak

displacement, indicating that no binding occurs.

Found at: doi:10.1371/journal.pone.0012719.s002 (0.10 MB TIF)

Figure S3 (A) Ribbon representation of a representative

structure of the model of NPHP1-SH3 (blue)) in complex with

peptPP2 (green sticks). NPHP1-SH3 residues with highest NH

chemical shifts are highlighted in red (_Å???.0.1ppm) and pink

(0.05,_Å???,0.1). Inter-backbone hydrogen bonds are repre-

sented with dotted lines. (B) ITC data for the binding of peptPP2

to NPHP1-SH3. The upper panel shows the sequential heat pulses

for peptide-protein binding and the lower panel shows the

integrated data, corrected for heat of dilution and fit to a single

site binding model using a non-linear least-squares method (line).

C. 1H-15N HSQC spectra of NPHP1-SH3 (black) and NPHP1-

SH3-P203L (red). The spectrum of the mutant shows good peak

dispersion, indicating that the domain is well folded. D. 1H-15N

HSQC spectra of NPHP1-SH3-P203L with (black) and without

(red) peptPP2. The addition of the peptide does not cause any peak

displacement, indicating that no binding occurs.

Found at: doi:10.1371/journal.pone.0012719.s003 (0.11 MB TIF)

Figure S4 (A) Immunofluorescence staining of endogenous

NPHP1 (green) was performed on previously described Pkd1+/+

(#11) and Pkd12/2 (#14) Mouse Embryonic Fibroblasts (MEFs)

(Distefano et al., 2009). Anti-acetylated tubulin (red) was used as a

marker of cilia, whereas DAPI staining (blue) was used to stain

the nuclei. NPHP1 can be visualized at the base of cilia both in

Pkd1+/+ and Pkd12/2 (arrowhead). (B) Kidney-specific inactivation

of PC-1 using a kidney-specific Cre (Ksp-Cre) system and a floxed

Pkd1 mouse model (Wodarczyk et al., 2009) results in polycystic

kidney disease. Immunofluorescent analysis of NPHP1 in control

(Pkd1flox/-) and cystic (Pkd1flox/-:Ksp-Cre) kidneys revealed bright

staining in the primary cilium of both normal and cystic tubules.

Bar = 10 mm.

Found at: doi:10.1371/journal.pone.0012719.s004 (0.91 MB TIF)

Figure S5 Cell cycle analysis using propidium iodide staining of

control (F2) or PC-1 over-expressing (G7/36) MDCK cells showed

the typical increase of G0/G1 in cells over-expressing PC-1, not

affected by NPHP1 silencing. Statistical analysis was performed

using the ANOVA test n.s. not significant.

Found at: doi:10.1371/journal.pone.0012719.s005 (0.13 MB TIF)

Table S1 Synthetic peptides used in NMR and ITC titrations.

Found at: doi:10.1371/journal.pone.0012719.s006 (0.02 MB

DOC)

Materials and Methods S1 Supporting materials and methods.

Found at: doi:10.1371/journal.pone.0012719.s007 (0.04 MB

DOC)
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