
A Formal Analysis of Cytokine Networks in Chronic Fatigue
Syndrome

Gordon Brodericka,1, Jim Fuiteb, Andrea Kreitzc, Suzanne D Vernond, Nancy Klimase, and
Mary Ann Fletcherf
Gordon Broderick: gordon.broderick@ualberta.ca; Jim Fuite: jfuite@phys.ualberta.ca; Andrea Kreitz: akreitz@ualberta.ca;
Suzanne D Vernon: sdvernon@cfids.org; Nancy Klimas: Nancy.Klimas@va.gov; Mary Ann Fletcher:
MFletche@med.miami.edu
a Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, Ph: +1-780-492-1633
b Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, Ph: +1-780-721-2721
c Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, Ph: +1-780-760-4898
d The CFIDS Association of America, Charlotte, NC, USA, Ph: + 1-719- 539-4842
e Miami Veterans Affairs Medical Center, Miami, FL, USA, Ph: +1-305-243-3291
f Department of Medicine, University of Miami, Miami, FL, USA, Ph: +1-305-243-6288

Abstract
Chronic Fatigue Syndrome (CFS) is a complex illness affecting 4 million Americans for which no
characteristic lesion has been identified. Instead of searching for a deficiency in any single marker,
we propose that CFS is associated with a profound imbalance in the regulation of immune function
forcing a departure from standard preprogrammed responses. To identify these imbalances we apply
network analysis to the co-expression of 16 cytokines in CFS subjects and healthy controls.
Concentrations of IL-1a, 1b, 2, 4, 5, 6, 8, 10, 12, 13, 15, 17 and 23, IFN-γ, lymphotoxin-α (LT-α)
and TNF-α were measured in the plasma of 40 female CFS and 59 case-matched controls. Cytokine
co-expression networks were constructed from the pair-wise mutual information (MI) patterns found
within each subject group. These networks differed in topology significantly more than expected by
chance with the CFS network being more hub-like in design. Analysis of local modularity isolated
statistically distinct cytokine communities recognizable as pre-programmed immune functional
components. These showed highly attenuated Th1 and Th17 immune responses in CFS. High Th2
marker expression but weak interaction patterns pointed to an established Th2 inflammatory milieu.
Similarly, altered associations in CFS provided indirect evidence of diminished NK cell
responsiveness to IL-12 and LTα stimulus. These observations are consistent with several processes
active in latent viral infection and would not have been uncovered by assessing marker expression
alone. Furthermore this analysis identifies key subnetworks such as IL-2:IFNγ:TNFα that might be
targeted in restoring normal immune function.
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1. Background
Chronic Fatigue Syndrome (CFS) is characterized by persistent and unexplained fatigue
resulting in severe impairment in daily function and is defined by symptoms, disability, and
exclusion of medical and psychiatric conditions that could explain the fatigue (Fukuda et al.,
1994; Reeves et al., 2003; Prins et al., 2006). The US Centers for Disease Control and
Prevention (CDC) estimates that as many as 4 million people are affected with CFS in the US
alone (Reeves et al. 2007; Chandler et al., 2008). Costs to the US economy are estimated at
$9.1 billion in lost productivity (Reynolds et al., 2004) and up to $24 billion dollars in health
care expenditures annually (Jason et al., 2008). Furthermore complications and co-morbidity
can be severe. For example, CFS is associated with chronic and episodic cardiovascular and
autonomic dysfunction (Gerrity et al., 2003). Therefore this illness has far-reaching
consequences and constitutes a significant public health concern.

Evidence of chronic immune dysfunction in CFS has been reported by several groups (Klimas
et al., 1990; Straus et al., 1993; Hilgers et al., 1994; Keller et al., 1994; Tirelli et al., 1996;
Gupta et al., 1997; Patarca et al., 1997; Patarca-Montero et al., 2001; Seigel et al. 2006) though
the exact nature of this dysfunction remains unclear (Maher et al., 2003). A principal avenue
of investigation has been the measurement in blood of immune signals conducted by cytokines.
Many of the symptoms experienced by CFS patients strongly resemble the “sickness behavior”
that can be induced by the administration of pro-inflammatory cytokines. In particular
decreased motor activity, altered food and water intake, sleep and cognition have been linked
to increases in the levels of IL-1b, IL-6 and TNFα in the brain (Dantzer et al. 2008). Individual
cytokines however are pleiotropic and their biological activities are known to be context
specific. This becomes evident when considering the current body of work focused on immune
dysfunction in CFS. While some studies have reported increased levels of anti-inflammatory
cytokines such as IL-10 (ter Wolbeek et al., 2007) and IL-4 (Skowera et al., 2004), others have
shown a correlation with pro-inflammatory signals TNF-α and IL-6 (Gaab et al., 2005; Carlo-
Stella et al., 2006). Admittedly the heterogeneity of the CFS population (Vollmer-Conna et
al., 2006; Aspler et al., 2008; Kerr et al. 2008b) has been an issue. However a major failing
remains analytical. In particular immunological markers continue to be analyzed individually
even though their expression is articulated as part of an integrated network. In addition to the
numerical advantages of a combinatorial approach, for example the control of excessive
measurement noise (Szymanska et al., 2007), it is becoming apparent that understanding
complex disease will require more than a list of defective cells or genes. Because cellular and
molecular components are highly inter-dependent it is necessary to understand the “wiring”
via which they interact (Barabasi, 2007). Immune cells form a distributed network of diverse
elements that exchange information through a complex web of interactions (Orosz, 2001). The
architecture of such a networked system profoundly impacts its behavior (Klemm and
Bornholdt, 2005) and the strategies that are available for adapting to change and maintaining
homeostasis. Nonetheless, the formal analysis of biological networks in defining disease
phenotypes has received relatively little attention. Recent attempts have focused on the visual
comparison of relatively sparse collections of known pathway elements (Kerr et al., 2008a) or
a broad description of shifts in overall structure (Emmert-Streib, 2007). We have extended this
work in several important ways, introducing continuous metrics that quantify not only the
degree of change but the type of change occurring in global and more importantly in local
network structure. These metrics have allowed us to identify functional communities of
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markers within these networks as well as key elements driving disease-related changes in
network structure (Fuite et al., 2008).

Here we use network constructs such as these to examine how patterns in the coordinated
expression of cytokines might differ in CFS subjects. In a recent publication we introduced the
multiplex method to simultaneously measure a broad spectrum of 16 cytokines in order to
assess their use as biomarkers for_CFS (Fletcher et al., 2009). Using this same experimental
data we have now constructed separate networks describing co-expression of these 16
cytokines in a group of CFS subjects and in a group of healthy controls respectively. Pair-wise
mutual information (MI), estimated from the biological variability within each group, was used
as a robust measure of association between cytokines. These networks were then analyzed
using quantitative metrics rooted in graph theory to assess the importance and nature of
architectural changes related to illness. In particular we assessed local changes in the degree
of connectivity at cytokine nodes and the redistribution of these connections as they form
distinct and more locally centered communities. Consistent with our previous work (Fuite et
al., 2008) we found that these cytokine networks differed significantly in architecture between
diagnostic groups emphasizing that the organizational attributes of the immune response in
addition to the activation level of individual markers constitute a unique characteristic of CFS.
Of note distinct modules emerged in both healthy control and CFS networks that were
recognizable as components of Th1, Th2 and Th17 responses. In CFS we found consistent but
significantly attenuated patterns of Th1 and Th17 response occurring in the context of a well-
established Th2 inflammatory environment. These patterns would have escaped detection had
the analysis focused solely on differential expression of individual cytokines. Interestingly the
cytokine co-expression patterns described in this study, though not uniquely assignable to a
viral pathology, were at least consistent with the disruptive effects of latent viral infection by
pathogens such as Epstein-Barr virus (EBV) (Samanta and Takada, 2009; Tsuge et al., 2001).

2. Materials and Methods
2.1. Sample collection and processing

2.1.1 Subject cohort—Female CFS patients (n=40; mean age 50) were from the CFS and
Related Disorders Clinic at the University of Miami. A diagnosis of CFS was made using the
International Case Definition (Fukuda et al., 1994; Reeves et al., 2003). Healthy female controls
(n=59; mean age 53) were from a NIH funded study. All CFS study subjects had a SF-36
summary physical score (PCS) below the 50th percentile, based on population norms.
Exclusion criteria for CFS included all of those listed in the current Centers for Disease Control
(CDC) CFS case definition, including the listed psychiatric exclusions, as clarified in the
International CFS Working Group (Reeves et al., 2003). All CFS subjects were assessed for
psychiatric diagnosis at the time of recruitment with the Composite International Diagnostic
Instrument (World Health Organization, 1997). Based on this assessment, we excluded subjects
with DSM IV diagnoses for psychotic or melancholic depression, panic attacks, substance
dependency, or psychoses as well as any subjects currently suicidal. We also excluded subjects
with Borderline or Antisocial Personality Disorder. Subjects had no history of heart disease,
COPD, malignancy, or other systemic disorders that would be exclusionary, as clarified by
Reeves et al. (2003). Subjects were excluded for the following reasons: less than 18 yrs of age,
active smoking or alcohol history, history of significant inability to keep scheduled clinic
appointments in past.

Ethics statement: All subjects signed an informed consent approved by the Institutional
Review Board of the University of Miami. Ethics review and approval for data analysis was
also obtained by the IRB of the University of Alberta.
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2.1.2. Cytokine profiles—Morning blood samples were collected into ethylene diamine
tetra acetic acid. Plasma was separated within 2 hours of collection and stored at −80°C until
assayed. We measured 16 cytokines in plasma using Quansys reagents and instrument
(Quansys Biosciences, Logan, Utah). The Quansys Imager, driven by an 8.4 megapixel Canon
20D digital SLR camera, supports 96 well plate based chemiluminescent imaging. The Q-
Plex™ Human Cytokine - Screen (16-plex) is a quantitative enzyme-linked immunoabsorbent
assay (ELISA)-based test where sixteen distinct capture antibodies have been absorbed to each
well of a 96-well plate in a defined array. Manipulation of the range of the standard curves and
exposure time allowed reliable comparisons between CFS patients and controls of both low
and high level cytokine concentrations in plasma. For the standard curves, we used the second
order (k=2) polynomial regression model (parabolic curve): Yp=b0+b1X1+b2X2....+bkXk,
where Yp is the predicted outcome value for the polynomial model with regression coefficients
b1 to k for each degree and y intercept b0. Quadruplicate determinations were made, i.e., each
sample was run in duplicate in two separate assays. Statistics reported in Table S3 show an
average coefficient of variability (CV) of 0.20 for inter-assay and 0.09 for intra-assay
repeatability. Also reported in Table S3 are the lower limits of detection (LLD) for each
cytokine estimated from the standard calibration curve. In many cases the standard curve
yielded a negative intercept value indicating that the modified assay produced a background
optical signal at zero concentration. In the case of cytokines with positive intercept values very
few samples produced results below the LLD with the exception of IL-17. While the LLD for
IL-17 was lower with the modified protocol roughly one quarter of the CFS patients, and 1 in
10 control subjects, registered average expression values below detection.

2.2 Statistical Analysis
Association networks were constructed using mutual information criteria (MI) implemented
in the ARACNe software (Margolin et al., 2006a, b). The mutual information MI(X; Y) shared
by X and Y corresponds to the total entropy H(X) and H(Y) of these variables minus their joint
entropy H(X, Y) (Eq. 1–3). In order to use this metric the continuous scale for the concentration
of each cytokine was divided into bins defined by a set of Gaussian kernels. The optimal choice
of kernel width is dependent on the sample size and the distribution statistics of the data. The
algorithm used by the ARACNe platform is based on a computationally efficient estimation
algorithm (Beirlant et al., 1997) and described in detail in Margolin et al. (2006a) and the
Supplementary Technical Report in Margolin et al. (2006b). The null probability of each MI
value was computed by sub-sampling with replacement. Subsets of 30 observations were
repeatedly constructed by sampling each subject group separately. Samples were not removed
from the candidate list if selected thereby making them available again for the next iteration.
The final aggregate networks for each diagnostic group were generated from a consensus of
300 sub-sampled networks. Networks were stable in size over a wide range of MI significance
thresholds (supplementary Figure S1) and p≤0.001 was used in all subsequent computations.
This was used as the threshold for MI confidence in all subsequent computations. This
consensus averaging across sub-sampled data sets and the fact that MI assigns equal influence
to each measured value makes this approach quite robust to outliers (Craddock et al., 2006;
Butte and Kohane, 2000). Nonetheless for additional detail we have included the values for
conventional Spearman rank-based cross-correlation of cytokines in Tables S4 and S5 for the
healthy controls (HC) and CFS patient groups respectively.

(1)
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(2)

(3)

Indirect associations were removed using data processing inequality (DPI) (Cover and Thomas,
2006). DPI states that if X and Z interact only through a third variable Y then Eq. 4 applies.
Thus the smallest MI value can only come from indirect interaction. ARACNe removes this
edge.

(4)

Topological differences in networks were evaluated using a weighted graph edit distance
(Bunke, 2000) corresponding to the minimum summed “cost” associated with the removal and
insertion of edges transforming one graph into the other (Dickinson et al., 2004; Harper et al.,
2004). Herein we make the costs of these edit operations directly proportional to the changes
in edge MI. The weighted graph edit distance, dGED, between two undirected networks of order
N with adjacency matrices, A and B, is computed as follows where aij=MIij if P(MIij>0) ≥
0.001, else aij=0 and similarly for bij:

(5)

Significance of this edit distance was estimated (i) using reference networks generated by
random sub-sampling of HC subjects, (ii) from equal-sized random networks conserving edge
weight distribution (Milo et al., 2004) and (iii) through multi-graphs conserving node degree
distribution (Newman, 2004b).

Node degree centrality or direct connectivity of each node i to its immediate neighborhood

Ni was computed as . Eigenvector centrality xi was also computed for each node i as a
measure of that node’s connectivity to its remote neighbors. For the ith node the eigenvector
centrality score xi is proportional to the sum of xj for all nodes connected to it such that:

(6)

where Ni is the neighborhood of i, λ is some constant and N is the order of the network.
Constraining all ai,j and xi to real positive values implies, by the Perron-Frobenius theorem,
that only the largest principal eigenvalue solution to Eq. 6 is accepted (Kleinberg, 1999). Finally
we have also scaled the principal eigenvector X to adjust for network size as follows:
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(7)

where X̂ is the normalized principal eigenvector and ||X|| is the norm. This scaling is based on
a maximum of xi = 1 for the center node of a star network (Ruhnau, 2000). The two node
centralities, degree and eigenvector, are among the common numerical values that measure
network connectedness to imply node reach, control, and influence within groups.

The overall degree of centralization for any network of order N and normalized principal
eigenvector X̂ is the centrality index C:

(8)

Modularity, Q, is a measure of community structure within a network (Girvan and Newman,
2002; Newman, 2004a), Q = (fraction of edges within modules) − (fraction of edges expected
within modules), such that (Newman and Girvan, 2004),

(9)

where m is the graph size,

(10)

n is the graph order, Ai,j is a component of the symmetric weighted adjacency matrix describing
the network, and gi is the community to which node i is a member. The expected probability
an edge randomly falls between two nodes is

(11)

where  is the degree of node i.

To split any network or sub-network on the basis of maximizing modularity, a modularity
matrix, B, is established having elements (Newman, 2006a),
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(12)

Elements of the leading eigenvector of the modularity matrix are used to direct a splitting of
the network into two modules and to assign corresponding node membership based on sign (+/
−) and magnitude (Newman, 2006b). This process was iterated and modules sequentially
identified until a maximum modularity for the overall network was reached or until further
cuts increased modularity insignificantly (p > 0.05).

Graphical rendering was performed using a “spring-electrical” embedding (Pemmaraju and
Skiena, 2003) where nodes are idealized as similarly charged objects that repel each other.
Edges are imagined as springs adhering to Hooke’s law with spring-constants proportional to
their MI weights. The network is relaxed iteratively to a minimum energy embedding, which
naturally reveals modular structure.

3. Results
3.1. Cytokines undergo widespread differential expression in CFS

Results of the nonparametric Wilcoxon rank-sum test comparing the difference in median
expression for each cytokine in CFS versus healthy control (HC) have been presented
previously (Fletcher et al., 2009) and are summarized in supplemental Table S1. Briefly these
show that 10 of the 16 of the cytokines surveyed had significantly different median expression
levels (p ≤ 0.05) across groups. Circulating concentrations of interleukins (IL) IL-1a, 1b (p ≤
0.05) as well as 4, 5, 6, 12 and lymphotoxin-alpha (LTα) (p ≤ 0.01) were markedly higher.
Conversely, CFS patients exhibited lower expression of IL-8, 13, and 15 (p ≤ 0.01). Levels of
IL-2, 10, 17, and 23, interferon-gamma (IFNγ), and tumor necrosis factor-alpha (TNFα)
showed little difference in expression between groups. Increased levels of IL-1b and IL-6 in
CFS align with experimental results showing the induction of “sickness behavior” from
increased levels of pro-inflammatory cytokines (Dantzer et al., 2008) in the brain.

3.2 Altered associations are pervasive among cytokines in CFS
In order to verify the relative homogeneity of subject groups with regard to their cytokine
signatures we first used a transpose of the experimental data to construct an analogous MI
association network where each subject was represented by a node. The topology of the
resulting network, when viewed as a low energy embedding, showed a natural separation of
subjects into two non-overlapping regions consistent with the diagnostic assignment (Figure
1 inset). As a result all subjects in each group were used in the construction of the cytokine co-
expression networks for CFS and HC respectively. Individual networks were then constructed
for HC and CFS subjects using the within-group variability to estimate the pair-wise MI or
shared information linking the expression of these 16 cytokines (Figure 1). Random sub-
sampling of the subject groups was conducted to establish confidence intervals for the graph
edit distance between phenotypes (Figure S1). The narrow distribution of edit distance values
separating within-group networks further supported the assessment that each diagnostic group
was relative homogeneous in composition.

Summary statistics describing basic properties of the CFS and HC networks are shown in Table
1. Interestingly while the average number of links per node differed between networks the
overall mutual information supported by these connections did not. An average node was
connected to its neighbors by one additional link in the HC network, namely 5.9 versus 5.1
links in the CFS network (p<0.01). Nonetheless the mutual information carried to the average
node by these connections was essentially the same if we compare the cumulated link weight
of 0.236 in HC to that of 0.240 in CFS (p ≫ 0.05). Although these networks were similar in
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terms of their overall mutual information (cumulated edge weight) or network size, they
differed significantly in how this mutual information was distributed. The CFS network had a
significantly higher centrality index, 0.448 versus 0.331 in HC (p ≪ 0.01), suggesting a greater
reliance on a minority of highly connected hubs. Accordingly a quantitative comparison of
overall network topology showed that HC and CFS networks were separated by a weighted
edit distance of ~1.96 (Eq. 5) as a result of this re-structuring (Figure S1). This corresponded
to more than 10 standard deviations (0.13) above the expected distance between two networks
constructed from randomly sampled HC subjects (dedit ~0.18) and 3 standard deviations (~0.50)
above the expected separation between two randomly assembled multi-graphs (dedit ~0.88)
conserving node degree (data not shown).

The spring-mass representations shown in Figure 1 confirm that these networks were visibly
different in topology. This increase in overall network centrality in CFS was driven primarily
by a few interacting markers. Local restructuring was described by changes in node degree
centrality, a measure of direct connectivity, and eigenvector centrality, a combined measure
of direct and indirect connectivity. Results presented in Figure 2 indicate that nodes
representing IL-1b, 2, 4, IFNγ and TNFα concentrations became better integrated into the core
network of CFS, both in terms of their association with direct and remote neighbors. Despite
maintaining similar eigenvector centrality in both networks, the strength of direct connections
from neighboring nodes to IL-10 substantially increased (degree centrality) in CFS. In addition,
IL-10 shifted from having a weak association to a core node (IFNγ) in HC to having stronger
associations to an opposite group of nodes in CFS (IL-6, 13, 17, 23) (Figures 2, 3). Markers
that were much less strongly connected in CFS were IL-5, 6, 12, 13, and 17 (Table S1). By the
same token cytokines IL-8, 15, and 23 remained unchanged in their degree of overall integration
in the CFS and HC networks.

3.3. Mid-scale shifts in network structure
The distribution of connections in each network among sets of nodes suggested that both the
HC and CFS networks were made up of sub-networks. To analyze the extent of community
structure within each network we iteratively divided the set of cytokine nodes into subsets and
calculated increase in overall network modularity. Results indicated that the extent of
community structure in the HC and CFS networks was about the same with maximal modularity
values of 0.398 and 0.394 respectively. These values were achieved when the networks were
broken down into two component modules, labeled I+ and II− (Table 1, Figure 3). Separation
into additional modules either lead to a decrease in modularity, or did not significantly increase
the modularity index at p < 0.05 confidence.

Results in Table 1 show that although both HC and CFS networks were made up of two mid-
scale communities; these constituent modules possessed important differences in internal
structure. Cluster I+ became less densely linked in among CFS patients as measured by a
significant decline in number and strength of internal node associations. In cluster I+ of the
CFS network the mean number of links per node fell from 5.3 to 2.6 (p<0.01) and the mean
node degree fell from 0.217 to 0.088 (p<0.01). In addition cluster I+ became structurally more
hub-like in CFS with an increase in centrality index to 0.609 from 0.187 in HC (p<0.001).
Conversely cluster II− became structurally less focused in CFS dropping in centrality index
from 0.562 to 0.112 (p<0.001). More evenly connected, cluster II− was also more densely
linked in CFS patients with significant increases in the number and strength of internal node
associations. The mean number of links per node rose from 2.8 to 5.0 (p< 0.01) in cluster II−,
and the mean node degree increased from 0.121 to 0.332 (p<0.01) in the CFS network.

In addition to changes in structure we also observed changes in the composition of modules.
The membership of an individual node to its respective module was measured by its centrality
within the modularity matrix. This shifted significantly in CFS as a result of changing pair-
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wise associations (Table 2). In CFS the markers IL-10, IL-23 and LT-α shifted from cluster II
− to cluster I+. While IL-6 strengthened its position in cluster I+ of the CFS network it shed
the direct and strong association it held with IL-1b in HC. Conversely the markers, IL-2 and
IL-15 moved in the opposite direction, significantly shifting centrality away from cluster I+
and towards cluster II− in CFS. These changes in centrality were significant at p<0.001. In
contrast IL-8 maintained marginal association with either of these node communities in both
CFS and HC.

4. Discussion
In order to explore changes in the patterns of immune activity in CFS we constructed two
distinct association networks linking the expression of 16 cytokines measured in plasma for
40 female patients and 59 case-matched healthy controls (HC). Quantitative analysis of these
two networks indicated that their topologies differed far beyond what would be expected by
chance alone. Indeed variation separating the patterns of cytokine-cytokine association from
each subject group was 10 times greater than the variability found within each group.
Interestingly the average cytokine node in either network supported the same overall exchange
of mutual information. This being said a typical CFS network node relied on one less
connection to do so. This is an important point as it suggests that despite differences in cytokine
expression between groups both networks were equally coherent overall (p=0.689, Table 1).
Even at the basal levels of cytokine expression found in the HC group the correlation linking
cytokines into a network was not only significant (all edges p<0.001) but it was virtually
equivalent to the overall strength of association supporting the CFS network. Instead the
difference between CFS and HC networks arose from a redistribution in the routing of mutual
information with the CFS network relying more strongly on a minority of highly connected
hubs. Driving these changes in structure we found that cytokines IL-1b, 2, 4, IFNγ, TNFα
became much better integrated into the core CFS network, so much so that these formed a
distinct subnetwork. Direct connections to anti-inflammatory cytokine IL-10 also increased
substantially in CFS while the reverse was true of IL-13, 17 as well as IL-5 and 6. Despite this
local restructuring these very different cytokine networks still shared a similar overall
granularity. Using a novel measure of modularity we dissected these cytokine networks and
found that two mid-scale communities could be isolated in both the CFS and HC group: clusters
I+ and II−. However a closer look at the internal structure of these communities revealed
diametrically opposite designs across illness groups. In CFS cytokine nodes in cluster I+ were
more sparsely connected and adopted a more hub-like architecture whereas cytokine nodes in
cluster II− were more strongly and more uniformly interconnected. The exact opposite is true
of these same clusters in the control network. Differences such as these reinforce the notion
that CFS manifests not only as a difference in the expression level of individual cytokines but
also as an important shift in the patterns of association linking these cytokines.

The emergence of a tight-knit cluster dominated by Th1 cytokines was perhaps the most
significant and most visible feature of the CFS network. Consisting of cytokine nodes IL-1b,
IL-4, IFN-γ and TNF-α cluster II− also saw the recruitment of cytokines IL-2 and IL-15 from
their position in cluster I+ of the HC network. This group became much more tightly associated
in CFS and less centered about any individual cytokine. Interestingly IL-2, 4 and 15 belong to
a family of cytokines that also includes IL-7, IL-9 and IL-21. Members of this family share a
receptor complex consisting of IL-2 specific IL-2 receptor alpha (CD25), IL-2 receptor beta
(CD122) and a common gamma chain (γc). It is not surprising therefore to observe a strong
association between these network nodes upon immune activation. IL-2 and IL-4 are both T
cell growth factors though the latter is a much more effective promoter of B cell proliferation
(Burke et al., 1997). In these data, the IL-4 median concentration was increased 3-fold in CFS
while IL-2, IFNγ and TNFα concentrations remained unchanged. This would support the
presence of an active Th2 component in CFS and an antagonistic role for IL-4 towards Th1
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cytokines such as IFNγ within cluster II−. Additionally new recruits, IL-2 and IL-15, both
contribute to NK cell proliferation. Though NK cell response was not assessed directly in this
work, the lower levels of IL-15 and unchanged levels of IL-2 observed here appear consistent
with reports of deficient NK cell response in CFS (Maher et al., 2005).

Contrary to cluster II−, cluster I+ was dominated by cytokines typically associated with innate
immunity and/or Th2 adaptive response namely IL-5, 6, 10, 12 and 13. For the most part
associations between cytokine nodes in cluster I+ were fewer in number and visibly weaker
than those linking their counterparts in cluster II−. Despite having weaker ties the circulating
levels of IL-5, IL- 6 and IL-1a were significantly elevated suggesting an established Th-2
inflammatory environment. Indeed in CFS the mean node degree within cluster I+ was 4-fold
lower than that of cluster II− (Table 1) and the centrality index 6-fold higher suggesting a much
sparser and more centrally directed pattern of interaction. Especially recognizable in CFS
cluster I+ is the relatively strong association of pro-inflammatory cytokine IL-6 with anti-
inflammatory counterpart IL-10. Recall that IL-10, though not differentially expressed, shifted
from having a weak association with cluster II− in the HC network to this much more central
role in cluster I+ opposite IL-6 in CFS. This altered role would have gone unnoticed in a more
conventional analysis. Also recognizable are elements of the IL-23/Th17/IL-17 response
(Boniface et al., 2008;Aggarwal et al., 2003;McGeachy et al., 2007). The direct antagonism
of IL-17 response by IL-2 (Laurence et al., 2007) observed in the HC network was absent in
CFS. Instead an alternative response emerged whereby IL-17, IL-23 and IL-6 were all separated
by IL-10. IL-6 typically enhances IL-1b–driven IL-17 production (Louten et al., 2009;Perona-
Wright et al., 2009) while IL-10 is known to effectively down-regulate Th17 cytokine
expression in macrophages and T cells (Gu et al., 2008). In these data median concentrations
of IL-17 and 23 were unchanged despite elevated levels of IL-1b and IL-6. Though Th17
activation was not measured directly these observations suggest that responsiveness of this
subset, like that of NK cells, may be altered in CFS.

Another key feature of the CFS network is the central role that the hub nodes LTα and IL-12
(Figure 3b) play in linking cytokine clusters I+ and II−. In contrast this role is almost evenly
shared between IL-6, IL-15 and IL-2 in the HC network. No longer a member of cluster II− in
CFS, the LTα hub nonetheless maintains strong associations to IL-1b, TNFα and IFNγ.
Primarily a product of activated T and B-lymphocytes, LTα shares a strong homology with
TNFα and IL-1b and is a powerful inducer of both these cytokines (Kasid et al., 1990).
Moreover IFNγ has been shown to increase the number of receptors for TNFα and LTα further
promoting their action (Aggarwal et al., 1985). In opposition to this, IL-4 will inhibit IL-2
triggered production of TNFα and LTα in mixed PBMC populations (Kasid et al., 1990). The
network links identified here indicate that these known responses of IL-1b and TNFα to
LTα, and to a lesser extent IFNγ, remained consistently expressed in the data. However, while
the expression of IL-1b increased 2-fold in CFS, that of TNFα remained unchanged despite an
almost 4-fold increase in LTα. This attenuated TNFα response in CFS could in principle be
linked with the absence of IFNγ engagement and the elevated levels of IL-4 (> 3-fold) observed
in these patients. In comparison to LTα, the association of IL-12 with the nodes of cluster II−
is much weaker. Typically released by macrophages and dendritic cells, IL-12 is known to
stimulate the production of IFNγ and TNFα from NK and T cells. This effect is enhanced by
IL-2 (Wang et al., 2000) and to a lesser extent by IL-4 (Bream et al., 2003), a cytokine normally
suppressive of IFNγ production. Though elevated 2-fold in this CFS cohort, the absence of a
concordant IFNγ response further supports a dampened sensitivity of NK cells to IL-12
signaling in CFS. This may be due at least partially to inadequate IL-2 priming of IL-12 receptor
expression (Wang et al., 2000) since IL-2 concentrations remained unchanged.

Viral triggers such as EBV and human cytomegalovirus (HCMV) have long been suspected
of involvement in the onset and persistence of CFS. Recent evidence of xenotropic murine

Broderick et al. Page 10

Brain Behav Immun. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



leukemia virus-related virus (XMRV) involvement in CFS (Lombardi et al., 2009) further
supports this hypothesis. While other causes may underlie the cytokine expression patterns
observed in this work many of these are at least consistent with some of the disruptive effects
of chronic viral infection. In one potential model, infection with one or several viral agents
may trigger or exploit deficient responsiveness of NK cells to IL-12 and LTα, both of which
are actively produced by EBV-immortalized B cells (Airoldi et al., 2002; Thompson et al.,
2003), leading to impaired IFNγ production and Th1 activation. In this scenario increased IL-6,
also produced by EBV-infected B cells, together with depressed levels of IL-15 may interfere
with LT-α and IL-12 activation of NK cells and the resulting IFN-γ production (Wilson et al.,
2001; Saghafian-Hedengren et al., 2009). It is important to note however that while many of
the patterns found here aligned with known EBV processes others did not; for example the
lack of elevated IL-10 (Samanta et al., 2008) and IL-13 (Tsai et al., 2009). As very distinct
illnesses arise from the expression of specific subsets of the 12 known EBV induced genes
(Tsuge et al., 2001) the notion that CFS may involve a form of restricted viral latency may be
worthy of consideration. Finally from a methodological perspective we observed that several
significant shifts in network structure involved cytokines that were not differentially expressed
across subject groups. This underscores the significance of co-expression analysis in
understanding complex illnesses such as CFS. In particular such an analysis makes it possible
to detect low-grade immune processes that may operate consistently with relatively modest
changes in marker expression.
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Fig. 1.
Networks for HC and CFS have visibly different topologies. A weighted spring-electrical
embedding structurally reveals the subject-subject (inset) and cytokine-cytokine associations
based on measurements in 59 healthy control subjects (a) and 40 CFS patients (b). All edge
weights are significant at p ≤ 0.01. Separation of subjects was consistent with their assignment
to diagnostic groups supporting the use of within-group variation in the estimation of mutual
information for cytokine-cytokine associations.
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Fig. 2.
Most cytokines significantly modified their connectivity in the CFS state. Theses network
alterations were revealed by the relative change in the total weight of edges connected at each
node (node degree centrality) as well as edges acquired through first neighbors (normalized
eigenvector centrality). Interleukins (IL), 2, 4, and 1b, interferon-gamma (IFNγ), and tumor
necrosis factor-alpha (TNFα) became much better integrated into the core network in CFS,
while interleukins, 5, 6, 12, 13, and 17 became more weakly associated.
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Fig. 3.
Both HC and CFS networks are composed of two distinct communities. Visually “relaxing”
the links between identified communities of nodes and allowing them to drift apart emphasizes
community structure in both networks. Overall modularity was maximized when each network
was separated into two communities with differing compositions, labeled I+ at the top and II
−. Each community represents a clustering of nodes with a greater internal linkage than would
be expected compared to a random sampling of similar nodes.
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Table 1
Connectivity Patterns Differ Significantly between Groups

Summary of network-wide descriptive metrics with associated standard error ( ) for the HC and CFS networks
as well as for sub-networks I+ and II−.

Network Metric HC CFS p-value

Overall network Order (total number of nodes) 16 16

Mean links per node a 5.9 (0.2) 5.1 (0.2) 0.009

Mean node degree b 0.236 (0.007) 0.240 (0.007) 0.689

Centrality Index 0.331 (0.011) 0.448 (0.006) 0.000

Modularity Index 0.398 (0.019) 0.394 (0.020) 0.978

Cluster I+ Order (total number of nodes) 8 10

Mean links per node 5.3 (0.2) 2.6 (0.2) 0.000

Mean node degree 0.217 (0.008) 0.088 (0.005) 0.000

Centrality Index 0.187 (0.011) 0.609 (0.016) 0.000

Cluster II− Order (total number of nodes) 8 6

Mean links per node 2.8 (0.2) 5.0 (0.0) 0.000

Mean node degree 0.121 (0.005) 0.332 (0.002) 0.000

Centrality Index 0.562 (0.012) 0.112 (0.002) 0.000

a
Mean links per node counts all links with non-zero weight as 1 link.

b
Mean node degree uses the link weight or MI value
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Table 2
Cytokines change community membership in CFS

Membership score with standard error ( ) to either of the two modules, I+ or II− for each cytokine node in HC
and CFS networks. The magnitude of the membership score indicates the strength with which nodes are associated
to the module they belong. Change in modularity membership score tracks differences in community association
for each marker.

Module Membership Change in

Marker HC CFS Membership P-value

IL1a 0.17(0.09) 0.04 (0.06) −0.13 (0.15) 0.004

IL1b −0.34 (0.04) −0.28 (0.04) 0.06 (0.07) 0.002

IL2 0.24 (0.06) −0.36 (0.02) −0.60 (0.07) 0.000

IL4 −0.24 (0.03) −0.29 (0.04) −0.05 (0.07) 0.010

IL5 0.33 (0.04) 0.13(0.03) −0.19 (0.07) 0.000

IL6 0.11 (0.09) 0.41 (0.03) 0.30 (0.11) 0.000

IL8 −0.07 (0.09) 0.02 (0.01) 0.10 (0.10) 0.176

IL10 −0.04 (0.01) 0.41 (0.04) 0.46 (0.05) 0.000

IL12 0.13(0.06) 0.17 (0.05) 0.04 (0.11) 0.199

IL13 0.28 (0.03) 0.23 (0.05) −0.05 (0.09) 0.028

IL15 0.05 (0.04) −0.24 (0.03) −0.30 (0.07) 0.000

IL17 0.36 (0.03) 0.12(0.03) −0.24 (0.06) 0.000

IL23 −0.03 (0.04) 0.15(0.03) 0.17 (0.06) 0.000

IFNg −0.29 (0.03) −0.26 (0.03) 0.03 (0.07) 0.082

LTa −0.30 (0.04) 0.03 (0.04) 0.33 (0.08) 0.000

TNFa −0.42 (0.02) −0.29 (0.01) 0.13 (0.03) 0.000
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