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Abstract
OBJECTIVE—Menarche and menopause mark lower and upper limits of the female reproductive
period. Timing of these events influences female’s health in later life. The onsets of menarche and
menopause have a strong genetic basis. We tested two genes, TNFRSF11A (RANK) and TNFSF11
(RANKL), for their association with age at menarche (AM) and age at natural menopause (ANM).

METHODS—Nineteen SNPs of TNFRSF11A and 12 SNPs of TNFSF11 were genotyped in a
random sample of 306 unrelated white women. This sample was analyzed for association of the SNPs
and common haplotypes with AM. Then a subsample of 211 females with natural menopause was
analyzed for association of both genes with ANM. Smoking, alcohol intake and duration of lactation
were applied as covariates in the association analyses.

RESULTS—Three polymorphisms of TNFSF11 were associated with AM: rs2200287 (P = 0.005),
rs9525641 (P = 0.039), and rs1054016 (P = 0.047). Two SNPs of this gene, rs346578 and rs9525641,
showed association with ANM (P = 0.007 and P = 0.011, respectively). Two SNPs of
TNFRSF11A, were associated with AM (rs3826620, P = 0.022) and ANM (rs8086340, P = 0.015).
Multiple SNP/SNP and SNP/environment interaction effects on AM and ANM were detected for
both genes. One polymorphism of TNFRSF11A, rs4436867, was not directly associated with either
trait, but indicated significant interactions with four TNFSF11 polymorphisms on ANM. Two other
TNFRSF11A polymorphisms, rs4941125 and rs7235803, showed interaction effects with several
TNFSF11 polymorphisms on AM. Both genes manifested significant interaction with the duration
of breastfeeding in their effect on ANM.

CONCLUSIONS—The TNFRSF11A and TNFSF11 genes are associated with the onset of AM and
ANM in white women.
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Summary
The article reports for the first time possible association of two genes, TNFRSF11A (RANK) and its ligand, TNFSF11 (RANKL), with
age at menarche and natural menopause in white females.
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Introduction
The reproductive period of a woman's life is limited by two key physiological events, menarche
and menopause. Although these events per se are experienced by virtually all women, their
timing is quite variable. The onset of menarche and menopause was implicated in many
consequences for female health in later life. Early age at menarche (AM) was shown to increase
the risk for various cancers, including ovarian 1;2, endometrial 3, and breast 4;5 ones, to
promote obesity 6;7, and to cause psychological discomfort 8. Women with the later menarche
are at higher risk of getting osteoporosis 9;10 and preeclampsia 11. In turn, age at natural
menopause (ANM) is also associated with many postmenopausal health complications, such
as osteoporosis 12;13, cardiovascular disease 14, dementia 15, and various cancers of
reproductive organs 16–19. The postmenopausal health problems are thought to be related to
the overall exposure of a female organism to estrogen, i.e., duration of the reproductive period.
Therefore, knowing the factors underlying AM and ANM may help to forecast potential health
problems and to improve overall female well-being.

Because both AM and ANM are complex traits, multiple environmental and genetic factors
contribute to them 20–22. A genetic component of AM variance is estimated to be about 45–
74% 23–25, whereas that of ANM ranges between 63–74% 23;26.

During the last few years, several genomic regions and candidate genes, which may potentially
contribute to AM and ANM, have been determined 27–33. However, this list is probably
incomplete. Tumor necrosis factor receptor superfamily, member 11a (TNFRSF11A), also
known as receptor activator of nuclear factor-κB (RANK) and its ligand (TNFSF11 or
RANKL) participate in a wide variety of processes controlling cell death and proliferation,
immunity, and development of the lymphoid tissue 34;35. The TNFRSF11A/TNFSF11 system
is widely acknowledged as one of the key players in some primary postmenopausal disorders,
such as osteoporosis 36;37 and atherosclerosis 38. In addition, these genes are expressed in
mammalian gland cells and were shown to control the development of a lactating mammary
gland during pregnancy 39, i.e., play a role in the reproductive system. Collectively, the above
data suggest that TNFRSF11A and TNFSF11 may contribute to AM and ANM.

Methods
Study participants

The study participants were recruited from the metropolitan area of Omaha, NE as described
previously 40. The study protocol was approved by the institutional review board of Creighton
University. Each participant signed an informed consent agreement before the enrollment in
the project. To minimize an effect of the potential non-genetic confounding factors, the
following exclusion criteria, which were developed previously 41, were applied to the
recruitment: chronic diseases of vital organs (brain, lung, heart, liver, kidney), systemic
metabolic diseases (including diabetes, hypo- and hyperparathyroidism, hyperthyroidism,
etc.), malnutrition conditions (chronic diarrhea, chronic ulcerative colitis, etc.), ANM below
40 years (as an indicator of probable premature ovarian failure). The participant’s compliance
to the exclusion criteria was evaluated through nurse-administered questionnaires and/or
medical records. The recruited females provided the following information about their
reproductive history and lifestyle factors: use of hormonal contraceptives, parity, duration of
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breastfeeding, smoking habits and use of alcohol. The total study sample consisted of 306
otherwise healthy Caucasian women of European descent. For the population association and
haplotype analysis of AM and ANM, the total sample was partitioned into two subsamples of
306 and 211 participants, respectively. Women with surgical menopause were excluded from
the analysis of ANM.

AM was defined as the age at the first menstrual period minus the date of birth; ANM was
calculated as the age at the last menstrual period (years) followed by one year without menses.
The summary of the data about the participants are given in Table 1.

Genotyping
Genomic DNA was isolated from leukocytes of peripheral blood using a commercially supplied
kit (Gentra Systems, Inc. Minneapolis, MN, USA) and according to the manufacturer’s
protocol. SNPs genotyping was performed off-site using Integrated BeadArray System
(Illumina, Inc., USA). In total 19 SNPs located within and in close proximity to
TNFRSF11A and 12 SNPs for TNFSF11 were genotyped.

Statistical analyses
The concordance of the SNPs to the Hardy–Weinberg equilibrium (HWE) was checked using
the χ2-test. Consistency of genotype data with Mendelian inheritance was verified using
PedCheck 42. Some SNPs had only a few minor allele homozygotes in the sample. In order to
increase power of the analysis, those homozygotes were pooled with heterozygotes, and thus,
two groups (with or without the minor allele) instead of the three (minor allele homozygote,
heterozygote, and major allele homozygote) were analyzed. The participants of the ANM
subsample were divided into categories according to the number of pregnancies and months
of breastfeeding (Table 1).

The effects of the studied SNPs and environmental factors and their interactions on AM and
ANM were estimated by stepwise multiple regression analysis and univariate ANOVA. In the
latter case, each SNP was analyzed independently. Haplotype blocks were initially determined
using the procedure implemented in Haploview 43 and then analyzed for their association with
the traits under study. As the current population sample came from our previous studies, which
showed the significant effect of smoking, alcohol consumption, and duration of breastfeeding
on ANM 28;44, these variables were used as covariates in the subsequent association analysis
of ANM. No lifestyle factors were used as covariates for the AM association analyses, as they
all occurred presumably after menarche. The analyses were conducted using SPSS (v. 16.0.1,
SPSS, Inc., Chicago, IL) and PLINK 45, available at
http://pngu.mgh.harvard.edu/~purcell/plink/.

Results
Study participants’ characteristics

In total 306 women were recruited for the study. Their mean (±SE) AM was 13.0 ± 0.1 years
and the mean ANM was 45.7 ± 0.4 years. The ANM of the total sample was relatively low due
to the inclusion of participants who had experienced surgical menopause (hysterectomy of
oophorectomy). The mean age at surgical menopause for this sample is about 40 years 46. The
ANM in the respective subsample was higher (48.9 ± 0.3 years, Table 1) but still lower than
the average ANM for the US female population (about 51 years). This difference may be
attributed to the interpopulation variation in ANM across the country.
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SNP association analyses
All studied SNPs were in agreement with the Hardy-Weinberg equilibrium (Table 2). Three
TNFSF11 polymorphisms showed association with AM: rs2200287 (P = 0.005), rs9525641
(P = 0.039), and rs1054016 (P = 0.047) (Table 3). After correction for multiple testing, only
rs2200287 showed nearly significant (P = 0.063) association. Two SNPs of this gene, rs346578
and rs9525641, were significantly associated with ANM (P = 0.007 and P = 0.011,
respectively). After correction for multiple testing, the rs346578 association became nearly
significant (P = 0.080) and another became non-significant (P = 0.130). On the other hand,
when being analyzed without the covariates, the association of rs346578 remained significant
(P = 0.032) even after the multiple testing correction.

One SNP of TNFRSF11A, rs3826620, was significantly associated with AM (P = 0.022), and
another, rs8086340, was associated with ANM (P = 0.015). Neither association remained
significant after correction for multiple testing. The effects of the TNFRSF11A and
TNFSF11 polymorphisms on the respective traits are modest (Table 3). For example,
homozygotes at the minor allele of rs3826620 have about 0.7 year later menarche (13.7 ± 0.3
yr) than the average for the sample (13.0 ± 0.1 yr). Likewise, a minor allele of rs8086340
confers about 1 yr later menopause (50.8 ± 0.6 yr) than the mean ANM for the studied sample
(48.9 ± 0.3 yr).

Several haplotypes of both genes were found to be associated with the studied traits.
Specifically, the AT haplotype of polymorphisms rs3826620 and rs12969194 of the
TNFRSF11A gene was significantly associated with AM (P = 0.022) and TA haplotype of the
same polymorphisms was significantly associated with ANM (P = 0.046). Two identified
haplotype blocks of TNFSF11 are associated with the studied traits (Table 4). Interestingly,
the haplotypes, which are associate with both AM and ANM, have an opposite effect on the
traits. For example, the ATTG haplotype confers earlier AM but later ANM, and so does the
AATAAG haplotype (Table 4). Overall, the effect of the haplotypes is modest: each of them
explains, on average, about 2% of the trait variance.

Several significant interaction effects between the TNFRSF11A and TNFSF11 polymorphisms
on the studied traits were also detected (Table 5). The rs4436867 polymorphism of
TNFRSF11A interacts with the four TNFSF11 polymorphisms in their effect on ANM. Two
TNFRSF11A polymorphisms, rs4941125 and rs7235803, manifest an interaction effect with
several TNFSF11 polymorphisms on AM. Interestingly, none of the listed SNPs manifests the
interaction effect on both AM and ANM (Table 5).

Both studied genes seem to interact with various lifestyle factors in their effect on ANM. In
terms of the number of the interactions, duration of breastfeeding has the strongest effect on
ANM: all TNFSF11 polymorphisms and 17 out of 19 studied TNFRSF11A SNPs indicated
significant (P < 0.05) interaction with this factor. The rs8086340 polymorphism of
TNFRSF11A interacts with smoking (P = 0.028) and the rs9525641 polymorphism of
TNFSF11 showed to interact with alcohol consumption (P = 0.037). In addition, many
polymorphisms of both genes showed nearly significant (P ≤ 0.07) interactions with these two
factors (data not shown).

Discussion
TNFRSF11A and TNFSF11 are two functionally linked genes and are therefore frequently
considered together as to their role in determination of various traits. However, virtually no
data exist about their probable contribution to menarche and/or menopause. Some speculations
may be made based on the known function of these genes. At the molecular level, their primary
function is the activation of the transcription factor NF-κB 47. In turn, the transcription factor

Lu et al. Page 4

Menopause. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



NF-κB signaling pathway controls expression of a wide variety of genes involved in cell
proliferation and survival 48. Therefore, TNFRSF11A and TNFSF11 are pleiotropic genes and
thus were implicated for various complex processes, e.g., bone remodeling, vascular diseases,
and immunity 34;35;37;38. Furthermore, there is evidence that the transcription factor NF-κB
signaling pathway is associated with cell aging and age-related diseases 49–52. Recent data
from the integrated microarray study of nine tissues reinforced the role of this pathway in
senescence 53. It seems probable that TNFRSF11A and TNFSF11 contribute to AM and ANM
by activating the transcription factor NF-κB signaling pathway and, respectively, triggering
the mechanisms of aging. The effect of these genes on timing of menarche and menopause is
likely estrogen-dependent. For example, there is ample evidence about estrogen modulation
of TNFRSF11A and TNFSF11 expression in osteogenic cell lineages that was implicated in
postmenopausal bone loss due to the cessation of the ovarian function and, respectively,
estrogen depletion 54–57. Although no data about the estrogen effect on TNFRSF11A and
TNFSF11 during puberty are available, but we can assume the opposite mechanism due to the
activation of the ovaries. This possibility should not be rejected, as the contribution of estrogen
and estrogen metabolizing genes to AM is evidenced by several studies 29;58–61. However, the
details of the estrogen effect on TNFRSF11A and TNFSF11 during menarche are yet to be
determined. Despite the fact that most of the single SNP associations determined in this study
became non-significant after correction for multiple testing, they should not be rejected. The
Bonferroni correction is conservative and tends to reject the null hypothesis and mask a real
association, especially when the effect of the given SNP is weak, which is common for
pleiotropic genes like those in the present study,

In addition to estrogen, expression of TNFRSF11A and TNFSF11 is controlled by other
hormones 62–65. Given that the hormonal status during menarche and menopause changes
drastically 66–68, this may suggest respective alterations in the genes’ activity. There are also
data about the prolactin-controlled role of TNFRSF11A and TNFSF11 in mammary gland
development during pregnancy 69;70. The strong interactions between these genes and the
duration of lactation reported here are in a good agreement with these data.

The observed interactions between TNFSF11 and smoking and alcohol consumption are
supported by available literature data, which documented the stimulating effect of these factors
on the TNFSF11 expression 71–76. We have not found any experimental evidence about effect
of these factors on TNFRSF11A and, therefore, it is difficult to hypothesize the mechanism of
this effect. One of the possible ways may be that they may influence TNFRSF11A through
TNFSF11. However, the observed significant interactions should be treated with certain
caution, as sample size is small and, respectively, statistical power to detect interactions is
limited.

Another possible problem is a recalling bias, which may be introduced when obtaining the data
through a questionnaire. According to the previous studies, the accuracy of long-term recall of
AAM and self-reported ANM varied between 70% and 84% 77–80.

The question about shared genetic basis of AM and ANM is still disputed. These traits were
reported either correlating 81;82 or not 23;83 phenotypically. However, recent genetic studies
provide more and more evidence that some genes 27;60;84 and genomic regions 30;32 may
contribute to both AM and ANM. Similar to our previous study of the
methylenetetrahydrofolate reductase gene 44, the present work gives further support to the
shared genetic basis for AM and ANM.

Despite the fairly good knowledge of the NF-κB signaling pathway per se 85, a probable
contribution of its components (including TNFRSF11A and TNFSF11) to AM and ANM

Lu et al. Page 5

Menopause. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



remains largely elusive. This study provides evidence for a possible role of this pathway in
timing of menarche and menopause.

Conclusion
This study firstly reports TNFRSF11A and TNFSF11, two important genes for various complex
traits, as probable contributors to the onset of menarche and natural menopause. This
contribution incorporates direct association, SNP/SNP and SNP/environment interactions.
However, the currently available data on these genes are limited and do not allow for making
any definite conclusions about an exact mechanism of this genes’ effect on AM and ANM.
More studies, including the functional ones, on other cohorts of women are needed to determine
this mechanism and verify the results of the present study.
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Table 1

Study participants’ characteristics

Characteristics Population-based analysis subsamples

Menarche Natural menopause

No. 306 211

Age, y 61.1 ± 2.4 66.6 ± 3.4

Age at menarche, y 13.0 ± 0.1 13.1 ± 0.1

Age at menopause, y 45.7 ± 0.4 48.9 ± 0.3

Height, cm 163.2 ± 0.0 161.8 ± 0.5

Weight, kg 73.4 ± 0.9 73.1 ± 1.1

Use of oral contraceptive, % of sample 63.4 52.8

Smoking, % of sample 16.1 15.7

Alcohol consumption, % of sample 70.2 66.2

Breastfeeding, % of sample 57.1 56.5

Months of breastfeeding

 None 43.6 43.8

 1–6 23.5 23.8

 7–12 11.4 11.4

 13–24 11.7 8.6

 25 and more 9.7 12.4

No. of pregnancies 4.0 ± 0.1 4.3 ± 0.2

Pregnancies, % of sample

 None 3.6 1.4

 1 or 2 30.4 25.0

 3 or 4 39.9 37.5

 5 and more 26.1 36.1

Values are in mean ± SE, unless otherwise indicated.

Menopause. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu et al. Page 12

Ta
bl

e 
2

Su
m

m
ar

y 
in

fo
rm

at
io

n 
ab

ou
t t

he
 st

ud
ie

d 
SN

Ps
 in

 th
e 

to
ta

l s
am

pl
e

G
en

e
SN

P 
ID

A
lle

le
 v

ar
ia

nt
s

L
oc

at
io

n 
in

 th
e 

ge
ne

M
A

F
P,

 H
W

E

TN
FR

SF
11

A 
(R

AN
K

)
rs

12
95

69
25

C
/T

In
tro

n 
1

0.
18

1
0.

23
8

rs
44

36
86

7
A

/G
In

tro
n 

1
0.

22
7

0.
12

8

rs
49

41
12

5
C

/T
In

tro
n 

1
0.

34
3

0.
13

8

rs
72

35
80

3
A

/G
In

tro
n 

1
0.

36
4

0.
28

1

rs
80

86
34

0
A

/G
In

tro
n 

1
0.

43
8

0.
53

4

rs
38

26
61

9
A

/G
In

tro
n 

2
0.

10
1

0.
47

4

rs
11

66
45

94
A

/T
In

tro
n 

3
0.

34
8

0.
20

2

rs
38

26
62

0
T/

A
In

tro
n 

3
0.

26
6

0.
70

5

rs
11

66
52

60
 (r

s1
29

69
19

4)
T/

A
In

tro
n 

4
0.

28
3

0.
68

2

rs
17

06
99

04
G

/A
In

tro
n 

7
0.

09
3

0.
81

5

rs
43

03
63

7
T/

C
In

tro
n 

7
0.

33
2

0.
34

4

rs
12

95
93

96
T/

G
In

tro
n 

9
0.

48
2

0.
63

1

rs
17

06
99

06
A

/G
In

tro
n 

9
0.

02
5

0.
66

0

rs
44

26
44

9
G

/A
In

tro
n 

9
0.

35
6

0.
08

9

rs
65

67
27

4
A

/G
In

tro
n 

9
0.

35
1

0.
09

0

rs
96

46
62

9
T/

G
In

tro
n 

9
0.

35
7

0.
58

7

rs
88

42
05

G
/A

3′
-U

TR
0.

25
3

1.
00

0

rs
29

57
12

7
G

/A
3′

-U
TR

0.
43

9
0.

56
2

rs
30

17
36

5
G

/A
3′

-U
TR

0.
49

6
0.

64
7

TN
FS

F1
1 

(R
AN

K
L)

rs
12

58
50

14
G

/A
5′

-r
eg

io
n

0.
43

7
0.

71
9

rs
79

88
33

8
G

/A
5′

-r
eg

io
n

0.
17

0
0.

36
7

rs
95

25
64

1
C

/T
In

tro
n 

1
0.

45
4

0.
80

2

rs
22

77
43

8
A

/G
In

tro
n 

1
0.

16
8

0.
30

3

rs
95

25
64

5
A

/G
In

tro
n 

2
0.

17
0

0.
36

7

rs
21

48
07

3
C

/G
In

tro
n 

2
0.

16
8

0.
32

8

rs
22

00
28

7
G

/A
In

tro
n 

2
0.

38
2

0.
65

9

rs
37

42
25

7
T/

C
In

tro
n 

2
0.

48
9

0.
48

6

rs
92

29
96

C
/T

In
tro

n 
4

0.
49

5
0.

77
4

Menopause. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu et al. Page 13

G
en

e
SN

P 
ID

A
lle

le
 v

ar
ia

nt
s

L
oc

at
io

n 
in

 th
e 

ge
ne

M
A

F
P,

 H
W

E

rs
10

54
01

6
G

/T
3′

-U
TR

0.
42

8
0.

64
1

rs
34

65
78

G
/A

3′
-U

TR
0.

06
6

1.
00

0

rs
95

67
00

4
A

/G
3′

-U
TR

0.
01

4
1.

00
0

TN
FR

SF
11

A,
 tu

m
or

 n
ec

ro
si

s f
ac

to
r r

ec
ep

to
r s

up
er

fa
m

ily
, m

em
be

r 1
1a

; T
N

FS
F1

1,
 tu

m
or

 n
ec

ro
si

s f
ac

to
r (

lig
an

d)
 su

pe
rf

am
ily

, m
em

be
r 1

1;
 th

e 
m

in
or

 a
lle

le
 is

 b
ol

d;
 H

W
E,

 H
ar

dy
-W

ei
nb

er
g 

eq
ui

lib
riu

m
.

Menopause. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lu et al. Page 14

Table 3

Significant associations for the single SNPs of the TNFRSF11A (underlined) and TNFSF11 genes with AM and
ANM (mean ± standard error) in white women

Gene/SNP 11* 12 22 P

AM

rs3826620 13.7 ± 0.3 (7.5) 13.0 ± 0.1 (38.2) 12.9 ± 0.1 (54.3) 0. 022

rs9525641 12.7 ± 0.2 (20.3) 13.0 ± 0.1 (50.3) 13.1 ± 0.1 (29.4) 0. 039

rs2200287 13.2 ± 0.2 (14.1) 13.1 ± 0.1 (48.4) 12.8 ± 0.1 (37.5) 0. 005

rs1054016 12.7 ± 0.2 (17.6) 13.0 ± 0.1 (50.3) 13.0 ± 0.1 (32.1) 0. 047

ANM

rs8086340 50.8 ± 0.6 (16.6) 49.1 ± 0.3 (54.5) 48.9 ± 0.6 (28.9) 0.015/0.034**

rs346578 48.4 ± 0.7 (12.4) 49.5 ± 0.3 (87.6) 0. 007/0.003

rs9525641 49.9 ± 0.7 (20.9) 49.5 ± 0.4 (52.6) 49.9 ± 0.7 (36.5) 0. 011/0.020

*
11, 12, 22 denote homozygote at minor allele, heterozygote and homozygote at major allele, respectively (the missed values for homozygotes at

minor allele indicate that they were combined with heterozygotes into a single group); numbers in brackets indicate percentage of the studied sample;

**
adjusted for covariates/crude
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Table 5

Results of the SNP-SNP interaction effects between polymorphisms of the TNFRSF11A and TNFSF11 genes on
AM and ANM (P value) in white women

SNP
TNFRSF11A

rs4436867 rs4941125 rs7235803

TNFSF11

rs2148073 0.028 0.009

rs2200287 0.007

rs2277438 0.032 0.011

rs3742257 0.047

rs7988338 0.028 0.009

rs9525641 0.009

rs9525645 0.028 0.009

rs12585014 0.036

rs346578 0.043

TNFRSF11A, tumor necrosis factor receptor superfamily, member 11a; TNFSF11, tumor necrosis factor (ligand) superfamily, member 11; the estimates
of interaction effects on ANM are shown in bold.
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