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Abstract
N-methyl-D-aspartate receptor (NMDAR) mediated excitotoxicity is a probable proximate
mechanism of neurodegeneration in Huntington disease (HD). Striatal neurons express the NR2B-
NMDAR subunit at high levels, and this subunit is thought to be instrumental in causing excitotoxic
striatal neuron injury. We evaluated the efficacy of 3 NR2B-selective antagonists in the R6/2
transgenic fragment model of HD. We evaluated ifenprodil (10 mg/kg; 100 mg/kg), RO25,6981 (10
mg/kg), and CP101,606 (30 mg/kg). Doses were chosen on the basis of pilot acute maximally
tolerated dose studies. Mice were treated with twice daily subcutaneous injections. Outcomes
included survival, motor performance declines assessed with the rotarod, balance beam task, and
activity measurements, and post-mortem striatal volumes. No outcome measure demonstrated any
benefit of treatments. Lack of efficacy of NR2B antagonists in the R6/2 model has several possible
explanations including blockade of beneficial NMDAR mediated effects, inadequacy of the R6/2
model, and the existence of multiple proximate mechanisms of neurodegeneration in HD.
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Huntington disease (HD) is an incurable, autosomal dominant neurodegenerative disorder
characterized by involuntary movements, psychiatric problems, and dementia (Warby et al.,
2007). The median onset of HD is around age 40 with inexorable progression to death over a
period of approximately 15–20 years. HD is uncommon with an approximate prevalence of 5–
10/100000 among populations of European descent but its onset in midlife and prolonged
course causes costs disproportionate to prevalence. The pathologic hallmark of HD is striatal
degeneration though recent neuroimaging data indicates early neocortical atrophy as well
(Vonsattel and DiFiglia, 1998; Rosas et al., 2008).

HD and 7 other neurodegenerative disorders are caused by increased CAG repeats within
coding portions of their respective genes. Neurodegeneration results primarily from “gain of
function” neurotoxicity of expanded polyglutamine (polyQ) repeats. While expanded polyQ
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domains are the primary agents of neurotoxicity, the surrounding protein sequences are thought
to modulate expanded polyQ domain interactions with other cellular constituents, suggesting
that the precise neurotoxic effects of different expanded polyQ proteins will vary from disease
to disease (Imarisio et al., 2007; Orr and Zoghbi, 2007; Lim et al., 2008).

Excitotoxicity is the oldest creditable proposed proximate mechanism of neurodegeneration
for HD (Coyle and Schwarcz, 1976; McGeer and McGeer, 1976). The excitotoxic hypothesis
of neurodegeneration in HD is supported by several strong lines of evidence. Histopathologic
features of lesions produced by acute intrastriatal administration of N-methyl-D-aspartate
receptor (NMDAR) agonists resemble the striatal pathology of HD (Bazzett and Albin,
2001; Fan and Raymond, 2007). Increased NMDAR mediated currents and enhanced
susceptibility to exogenous NMDAR agonists is described in murine genetic HD models
(Levine et al., 1999; Chen et al., 1999; Cepeda et al., 2001; Zeron et al., 2001; 2002; 2004; Li et
al., 2003; 2004; Shehadeh et al., 2006; Fan and Raymond, 2007; Milnerwood et al., 2010). The
open channel NMDAR antagonist remacemide ameliorates the phenotype of the R6/2
transgenic fragment model of HD and other interventions that reduce excitotoxicity have
beneficial effects in the R6/2 model (Ferrante et al., 2002, Stack et al., 2007).

NMDARs are heterotetrameric structures consisting of 2 NR1 subunits and varying
combinations of NR2A-D or NR3A-C subunits (Kew and Kemp, 2005; Waxman and Lynch,
2005). NR2 subunit composition modulates the functional properties of NMDARs. NMDAR
activation has both excitotoxic and neuronal survival promoting effects (Hardingham, 2009).
Both NR2 subunit composition and receptor location are suggested to influence the neurotoxic
versus survival promoting effects of NMDAR activation. Considerable literature suggests that
activation of extrasynaptic NMDARs promotes neuronal death with activation of intrasynaptic
NMDARs promoting neuronal survival (Hardingham et al., 2002; Papadia et al., 2008; Leveille
et al., 2008; 2010; Martel et al., 2009). Other recent literature suggests that NR2B containing
NMDARs are excitotoxic mediators while NR2A containing NMDARs promote neuronal
survival (Liu et al., 2007). Striatal neurons express both NR2A and NR2B containing NMDARs
(Standaert et al., 1999; Kuppenbender et al., 2000). Work by Raymond and colleagues indicates
selective potentiation of striatal NR2B containing NMDAR effects in murine genetic HD
models with an early increase in extrasynaptic NMDAR signaling in a transgenic HD mouse
model (Zeron et al., 2002; 2004; Li et al., 2004; Milnerwood et al., 2010). We showed recently
that enhancing NR2B containing NMDAR neurotransmission in vivo exacerbates selective
striatal neuron degeneration in a knockin murine genetic model of HD (Heng et al., 2009).
Targeting NR2B containing NMDARs is a rational approach to neuroprotection in HD.
Selective antagonists exist for NR2B containing NMDARs, and at least one of these
compounds, ifenprodil, is marketed for use in humans (Loftis and Janowsky, 2003; Kew and
Kemp, 2005). We evaluated the efficacy of three selective NR2B antagonists – ifenprodil,
RO25,6981 and CP101,606 - in the R6/2 fragment transgenic model of HD.

Methods
Animals

All experiments were performed with the R6/2 murine model of HD maintained on a CBA ×
C57BL/6 genetic background. Founder mice were purchased from Jackson Labs (Bar Harbor,
ME). We maintained a breeding colony by crossing R6/2 males to F1 CBA × C57BL/6 females.
Every mouse was genotyped and assayed for repeat length of the CAG expansion (Laragen,
Los Angeles, CA). Repeat length was maintained between 110–120 (mean = 115 ± 2.1). For
all experiments, both male and female R6/2 mice were used. Animals were housed in Specific
Pathogen Free (SPF) conditions with a 12-h light/dark cycle maintained at 23°C. Mice were
grouped by gender in large cages enriched with an igloo and a horizontal running wheel, no
more than 7 mice per cage, and provided with food and water ad libitum. Supplemental wet
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chow mixed with organic peanut butter was provided daily. All procedures were conducted in
strict compliance with the Guide for the Care and Use of Laboratory Animals as adopted by
the NIH and approved by the Committee on Use and Care of Animals (UCUCA), University
of Michigan, and the Veterinary Medical Unit (VMU) at the Ann Arbor Veterans Affairs
Medical Center.

Drug Injections
Three NR2B selective antagonists were tested; ifenprodil (10 mg/kg and 100 mg/kg in10%
hydroxypropyl-β-cyclodextrin [HPβCD]), RO25,6981 (10 mg/kg in1% N-methyl pyrrolidone
[NMP] in 50 mM citrate, pH 4.5), and CP101,606 (30 mg/kg in 10% HPβCD/3% DMSO).
Perzinfotel (EAA-090; 10mg/kg in 10% PEG400 in 50mM Phosphate, pH 8), a selective NR2A
antagonist, was evaluated as well. Drug doses and routes of administration for ifenprodil and
RO25,6981were chosen on the basis of maximally tolerated (MTD) dose studies sponsored by
the High Q Foundation (New York, NY) and performed by Psychogenics (Tarrytown, NY).
Formulation and pharmacokinetic studies were performed by Pharmatek (San Diego, CA) and
Melior Discovery (Malvern, PA), respectively. For ifenprodil, the elimination T1/2 was 4.4
hours with a Tmax of 0.5 hours. Bioavailability was 47% and brain penetrance was 420%. For
RO25,6981, the elimination T1/2 was 5.1 hours with a Tmax of 0.5 hours. Bioavailability was
137% and brain penetrance was 53%. Doses selected were consistent with prior published
literature studying in vivo effects of these compounds (Boyce et al., 1999; Mennitti et al., 2000;
Murray et al., 2000). For CP101,606, doses were chosen on the basis of prior published reports
(Boyce et al., 1999; Mennitti et al., 2000; Murray et al., 2000). . In preliminary testing,
perzinfotel had undetectable blood levels with all routes of administration but was evaluated
because of prior reports suggesting efficacy in models of ischemia and pain (Kinney et al.,
1998; Sun et al., 2004; Brandt et al., 2005). Dose was chosen on the basis of prior literature.
Ten to 22 R6/2 mice (of either sex) were allocated to each treatment or control group. Control
groups were run with each treatment group for a total of 47 control animals. Drug or vehicle
control animals were given subcutaneous injections twice daily at rotating sites from 6 weeks
of age until death. Animals were treated between 6 am and 8 am for the first injection and
between 5 pm and 7 pm for the second injection.

Behavioral Tests
Motor function was assessed by balance beam and rotarod performance, and activity
monitoring. Animals were filmed crossing 41 cm suspended balance beams (20, 11 and 5 mm
diameter) and scored for time to traverse beams and number of hindlimb slips (Heng et al.,
2009). Films were analyzed blinded to treatment conditions with time to traverse beam and
foot slips measured from films. Animals failing to cross the beam in 30 seconds or halting on
the beam were scored at 30 seconds. Hindlimb slips in animals halting on the beam were scored
at 30 hindlimb slips. The rotarod (Model 7650; Ugo Basile) task was accelerated rotation from
4–40 rpm over 4 min, measuring latency to fall. Activity cages (Advanced Concepts, Ann
Arbor, MI) with photosensors recorded the number of small movements (beam breaks) and
cage traversals (crosses) animals made over a 2 hr period. Baseline behavioral evaluation was
performed at 5 weeks of age. Baseline balance beam and rotarod tasks were done daily for five
days, then twice a week from 6 weeks of age until death. Activity cage measurements and
weights were taken weekly from 5 weeks until death. Behavioral evaluations were performed
between 10 am and Noon.

Pathologic Examination
Brains were harvested from mice after natural death and immersion fixed in a 4%
paraformaldehyde solution at 4C for 24 hours, then cryoprotected in 20% sucrose. Consecutive
40µm sections were cut on a sliding microtome in the parasagittal plane. A 1 in 5 series of
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sections was selected, mounted, and stained with cresyl violet. Total striatal area was
determined using NIS-Elements Software (Nikon Instruments, Inc.). Striatal volumes were
calculated with the Cavalieri principle. A second set of sections was used to determine the
accumulation of neuronal intranuclear inclusions (NIIs). Tissue was incubated with an antibody
directed at the htt N-terminus (Santa Cruz Biotechnology, Santa Cruz, CA; dilution 1:250) and
immunostaining was visualized with Vector ABC Elite kits (Vector Laboratories, Burlingame,
CA) using DAB as the chromagen.

Statistical Analysis
Twice weekly behavioral data were averaged for each animal to produce weekly values.
Statistical analysis of mortality and behavioral data was done using a Linear Mixed Model
within SPSS. Gender effects were evaluated within the Linear Mixed Model and no effect of
gender on any outcome variable, other than weight, or interaction of gender with outcome was
found. With the exception of weight data, both genders were combined for final analysis and
presentation. Preliminary analysis showed that all vehicle controls were essentially identical
and all vehicle animals were aggregated for comparison with treatments. Striatal volumes were
compared with t-tests and Bonferroni corrected for multiple comparisons. Data variation is
represented as standard error of the mean in all figures.

Results
Mortality and Weight

In the aggregate control group, there was 50% mortality by approximately 13 weeks of age
and all control mice were deceased by 23 weeks of age (Figure 1). These results are similar to
the prior work of Stack et al. (2005) and Menalled et al. (2009) with this model of HD. There
was no effect of any treatment on mortality (Figure 1). Control male weights peaked at
approximately 10 weeks and then gradually declined. Female weights peaked somewhat later,
around 13 weeks, and then declined. Similar to mortality data, there was no effect of any
treatment on weight trajectories (Figure 2).

Motor Behavior
Motor performance declined steadily from baseline in all treatment groups and the control
group. From approximately 7 weeks of age onward, rotarod performance declined linearly
(Figure 3). Control animal rotarod performance data is similar to the prior results of Stack et
al. (2005) and Menalled et al. (2009). There was no effect of any treatment on the rate or
magnitude of decline in rotarod performance (Figure 3). Similar results were found with the
balance beam task. After about 7 weeks of age, balance beam performance, as measured either
by time to cross the beam or by hindlimb slips, deteriorated progressively. By approximately
14–15 weeks, mice were severely impaired on the balance beam task. Our control balance
beam data is similar to that of Carter et al. (1999). There was no effect of any treatment on
declining performance in thebalance beam task (Figure 4; Supplemental Figures 1 and 2).
Similar results were obtained with activity cage measurements, a measure of spontaneous
activity. Total beam breaks, a measure of all movements, declined from 5 weeks onward and
appeared to plateau by 10 weeks (Figure 5). Cage traversals (crosses) declined from 5 weeks
onwards and continued to decline up to 15 weeks (Figure 5). Again, there was no effect of any
treatment on activity measurements (Figure 5).

Striatal Pathology
There was no effect of any treatment on post-mortem striatal volume (Figure 6). Neither was
there a qualitative effect of any treatment on striatal NII deposition. Specifically, there was no
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qualitative effect of NR2B antagonist treatment on NII areal density or size (Supplemental
Figure 3).

Discussion
We found little evidence for efficacy of these selective NR2B antagonists in the R6/2 model
of HD. There were no effects on motor behavior measures, mortality, or striatal volumes. Our
results are discordant with a large body of data indicating that NMDAR mediated excitotoxicity
is a proximate mechanism of neurodegeneration in HD. NMDAR mediated excitotoxicity is
one of the best supported proposed proximate mechanisms for neurodegeneration in HD.
Recent work with murine genetic models of HD, including transgenic fragment models, full
length transgenic models, and knockin models supports a role for NMDAR mediated
excitotoxicity. Some of this data implicates NR2B containing NMDARs specifically as
mediators of excitotoxic injury in HD murine genetic models (Zeron et al., 2002; 2004; Li et
al., 2004; Heng et al., 2009; Milnerwood et al., 2010).

NMDAR activation produces both excitotoxic and pro-survival effects in neurons. Most data
suggests that activation of extrasynaptic NMDARs is neurotoxic while activation of synaptic
NMDARs promotes neuronal survival (Hardingham et al., 2002; Leveille et al., 2008; 2010;
Papadia et al., 2008; Martel et al., 2009; Hardingham, 2009). Some data also suggests that NR2
subunit composition is salient (Liu et al., 2007). Some data suggests that mature neuronal
synaptic NMDARs preferentially express NR2A subunits while NR2B containing NMDARs
tend to be extrasynaptic (Tovar and Westbrook, 1999). Other results, however, suggest that
neurons express NR2A and NR2B subunit containing NMDARs in both synaptic and
extrasynaptic locations (Stanika et al., 2009). Mature medium spiny striatal neurons express
both NR2A and NR2B subunits and it is likely that medium spiny extrasynaptic NMDARs
preferentially contain NR2B subunits (Standaert et al., 1999; Kuppenbender et al., 2000;
Milnerwood et al., 2010).

Okamoto et al. (2009) demonstrated preferential activation of extrasynaptic NMDARs and
consequent neurotoxicity in neurons transfected with mhtt constructs. Similar data were
presented by Milnerwood et al. (2010) in studies of striatal slice preparations from the YAC128
full length murine transgenic model of HD. Milnerwood et al. (2010) and Okamoto et al.
(2009) document beneficial effects of relatively low doses of the open channel NMDAR
antagonist memantine in YAC128 mice in vivo. These doses of memantine selectively
antagonize pathologically activated extrasynaptic NMDARs in vitro. At higher doses,
memantine treatment exacerbated striatal degeneration in YAC128 mice. Higher doses
probably inhibit both extra- and intrasynaptic NMDARs, obviating the benefits of inhibiting
extrasynaptic NMDARs and possibly exacerbating mutant huntingtin toxicity by inhibiting the
neuroprotective effects of synaptic NMDAR activation. We used high doses of NR2B
antagonists in an effort to obtain maximal effects. It is plausible that this approach resulted in
blockade of pro-survival signaling effects of synaptic NMDARs, counteracting any beneficial
effects of reducing the excitotoxic effects of extrasynaptic NMDAR activation.

There are other possible explanations for our results. One possibility is that the agents we
employed are insufficiently selective. The available data, however, indicates that ifenprodil,
RO25,6981, and CP101,606 are selective NR2B NMDAR antagonists and may exhibit
uncompetitive NMDAR antagonism (Mott et al., 1998; Loftis and Janowsky, 2003; Kew and
Kemp, 2005). The precise stoichiometry of striatal NMDARs is unknown but both
heterodimers (NR1 plus either NR2A or NRB) and heterotrimers (NR1 plus NR2A and NR2B)
may be present. CP101,606 is probably an antagonist of heterodimeric NR2B-NMDARs only,
and its failure could reflect excitotoxicity mediated by heterotrimeric (NR1 plus NR2A and
NR2B) NMDARs (Chazot et al, 2002). Ifenprodil and RO25,6981, however, are probable
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antagonists of heterodimeric and heterotrimeric NR2B containing receptors (Chazot et al,
2002).

Another possibility would be inadequacies of the R6/2 model. R6/2 is a transgenic fragment
model with an exon 1 containing construct with the expanded CAG repeat domain and adjacent
promoter sequence. This line has the advantage of an aggressive phenotype secondary to an
expanded polyQ protein, the core pathogenetic mechanism of this disease family. This
transgenic fragment model does not reproduce all the genetic regulatory sequences or protein
context of mutant huntingtin. The early onset, early mortality, extra-CNS features, and diffuse
expression of NII pathology in R6/2 mice is different from the phenotype of knockin or full
length transgenic mutant genetic murine models that may have better construct and face validity
(Heng et al., 2008; Morton et al., 2009; Menalled et al., 2009). Nonetheless, the R6/2 line does
reproduce crucial features of HD and the aggressive phenotype provides excellent endpoints
for evaluating interventions (Heng et al., 2008). The predictive validity of the R6/2 line and
all other HD murine models is presently unknown because of a paucity of human clinical trial
data.

Hansson et al. (1999, 2001) described resistance to acute intrastriatal administration of
NMDAR agonists in R6/2 mice and the related R6/1 line. This is an age-related phenomenon,
with NMDAR agonist resistance developing as mice matured. We began treatments at 6 weeks,
an age at which R6/2 mice exhibit considerable resistance to acute intrastriatal NMDAR agonist
administration. This raises the possibility that initiating treatment at an earlier point would
produce different results. Stack et al. (2007), however, found that 2 interventions known to
reduce excitotoxic striatal injury, decortication and 6-hydroxydopamine lesions, reduced
striatal pathology in R6/2 mice when performed at 6 weeks of age.

The accumulated datafavor a significant role for extrasynaptic-NR2B subunit containing
NMDAR mediated excitotoxicity in striatal neurodegeneration in HD. Clinically available
antagonists such as memantine or ifenprodil may be candidates for clinical trials in HD.
Selective NR2B antagonists have been studied in pilot clinical trials in depression and L-dopa
induced dyskinesias with some positive effects (Nutt et al., 2008; Preskorn et al., 2008;
Skolnick et al., 2009). Our data suggest that targeting extrasynaptic NMDARs specifically will
be difficult. The neuroprotective effects of activating synaptic NMDARs indicates the presence
of a dome- or U- shaped dose-response curve for neuroprotection via NMDAR blockade.
Determining appropriate doses of memantine or a selective NR2B antagonist for
neuroprotective trials in HD subjects will be crucial. Dose selection may require some type of
human pharmacodynamic biomarker of neuroprotective NMDAR blockade – a formidable
obstacle. Further evaluation of memantine and selective NR2B antagonists is required prior to
trials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Kaplan- Meier survival curves for treatment groups (N = 12 – 15 per group) and aggregate
control group (N = 45). There is no difference between any treatment group and control group.
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Figure 2.
Weights for all treatment and aggregate control groups. There is no difference between any
treatment group and control group.
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Figure 3.
Rotarod performance in all treatment groups. Each treatment group compared with aggregate
control group. (A) RO25,6981. (B) CP101,606. (C) Ifenprodil. (D) Perzinfotel. There is no
difference between any treatment group and control group.
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Figure 4.
Balance beam performance on a 5 mm wide beam. (A) Time to cross beam. (B) Number of
hindlimb slips. There is no difference between any treatment group and control group. See
Supplemental Data for performance on 11 mm and 20 mm beams, which also show no
difference between any treatment group and control group.
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Figure 5.
Activity cage measures at 5 weeks, 10 week, and 15 weeks of age. (A) Total number of photo
beam breaks. (B) Number of cage crossing events. There is no difference between any treatment
group and control group at any time point.
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Figure 6.
Striatal volumes measured post-mortem. There is no difference between any treatment group
and the control group.
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