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Abstract
We present and evaluate a new method for automatically labeling the subfields of the hippocampal
formation in focal 0.4×0.5×2.0mm3 resolution T2-weighted magnetic resonance images that can be
acquired in the routine clinical setting with under 5 min scan time. The method combines multi-atlas
segmentation, similarity-weighted voting, and a novel learning-based bias correction technique to
achieve excellent agreement with manual segmentation. Initial partitioning of MRI slices into
hippocampal ‘head’, ‘body’ and ‘tail’ slices is the only input required from the user, necessitated by
the nature of the underlying segmentation protocol. Dice overlap between manual and automatic
segmentation is above 0.87 for the larger subfields, CA1 and dentate gyrus, and is competitive with
the best results for whole-hippocampus segmentation in the literature. Intraclass correlation of
volume measurements in CA1 and dentate gyrus is above 0.89. Overlap in smaller hippocampal
subfields is lower in magnitude (0.54 for CA2, 0.62 for CA3, 0.77 for subiculum and 0.79 for
entorhinal cortex) but comparable to overlap between manual segmentations by trained human raters.
These results support the feasibility of subfield-specific hippocampal morphometry in clinical studies
of memory and neurodegenerative disease.

Introduction
The hippocampal formation (HF) is a complex brain region with a primary role in memory
function and a peculiar vulnerability to neurodegenerative diseases, most notably, Alzheimer's
disease (AD). Volumetry and morphometry of the HF are of great importance in AD diagnosis,
progression monitoring, and disease-modifying treatment evaluation (Jack et al., 2000; Scahill
et al., 2002; Jack et al., 2005; Dickerson and Sperling, 2005; de Leon et al., 2006; Schuff et
al., 2009). Despite the complexity and heterogeneity of the HF, it is usually modeled as a single
homogeneous structure. Over the last decade, several groups have adopted specialized MRI
sequences that allow details of the internal structure of the HF to be depicted ((Malykhin et al.,
2010) provides a comprehensive review). These sequences led to the development of manual
segmentation protocols that can reliably subdivide the HF into subregions corresponding to its
anatomical subfields (Small et al., 1999; Zeineh et al., 2003; Van Leemput et al., 2009; Mueller
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and Weiner, 2009; Malykhin et al., 2010). Given the extensive pathological evidence of
heterogeneity in the way AD and other diseases affect the HF (Braak and Braak, 1991; Arnold
et al., 1995; Bobinski et al., 1997; West et al., 2004; Duvernoy, 2005; Amaral and Lavenex,
2007), there is great interest in a robust HF subfield segmentation method that could be used
for diagnosis, prognosis, and research.

Manual segmentation of HF subfields is very labor-intensive, and progress towards robust
automatic segmentation has been limited. Segmentation of a single HF takes two to four hours
for a highly trained expert, and extensive training is required to ensure high repeatability and
reliability across raters. These difficulties limit the applicability of hippocampus-focused MRI
to large studies, particularly to clinical trials for disease-modifying treatments of
neurodegenerative diseases, where such detailed biomarkers can have the greatest potential
impact.

To address this challenge, we present a nearly automatic technique for segmenting
hippocampal subfields. Our technique uses focal 0.4×0.5×2.0mm3 resolution T2-weighted
MRI that can be acquired in under 5 min on a clinical scanner. Our approach leverages existing
techniques, such as multi-atlas segmentation, which was successfully used for whole-HF
segmentation by (Collins and Pruessner, 2009), and local similarity-weighted voting
(Artaechevarria et al., 2009). We combine these techniques with a novel learning-based
algorithm that improves the accuracy of atlas-based segmentation by learning its consistent
patterns of missegmentation and correcting them. The only manual input required by the
method is to identify a pair of coronal MRI slices separating the body of the HF from its head
and tail. Our results show excellent agreement between automatic and manual segmentation,
especially for larger subfields CA1 and DG, where agreement is on par with published results
for whole-hippocampus segmentation. These results lend support to potential future use of
subfield-specific HF biomarkers in clinical trials of AD and other neurodegenerative disorders.

This paper is organized as follows. In the Background section, we review relevant work on
imaging and segmentation of hippocampal subfields. The Materials and Methods section
describes our imaging protocol, the segmentation protocol and the proposed automatic
segmentation approach. Segmentation results are given in the Results section. The Discussion
section discusses the benefits and limitations of our approach, as well as possibilities for future
improvements.

Background
Prior Work in Automatic HF Subfield Segmentation

Most previous work on automatic HF subfield segmentation and morphometry uses routine,
≈1mm3 resolution T1-weighted MRI, which offers very limited contrast between HF layers
(see Fig. 1b). One class of methods is shape-based: the boundary of the HF is partitioned into
regions designated as subfields, and shape analysis is performed on these boundary patches
(Hogan et al., 2004;Apostolova et al., 2006;Wang et al., 2006;Thompson and Apostolova,
2007). However, because the structure of the HF resembles a “swiss roll,” boundary-based
partitioning cannot make the very important differentiation between the dentate gyrus (DG),
which forms the center of the swiss roll, and subfields of the cornu Ammonis (CA1-3) and
subiculum, which form the outer layers of the roll. Another approach involves normalizing T1-
weighted images to a template, and labeling hippocampal subfields in template space (Yassa
et al., 2010). While this approach may be suitable for localizing subfields for subsequent fMRI
analysis, it has not been shown to produce reliable segmentation results. Given the lack of
contrast between subfields in routine T1-weighted MRI, it is unlikely that the normalization
of such images to a template can match HF subfields accurately.
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Perhaps the greatest advance towards automatic HF subfield segmentation was made recently
by (Van Leemput et al., 2009), who used a statistical model with Markov random field priors
to label HF subfields in “ultra-high resolution” T1-weighted MR images acquired with >35min
acquisition time. Although this method clearly demonstrated the feasibility of automatic in
vivo HF subfield segmentation, it has not yet been applied to MRI data that can be acquired
with a short scan time.

HF Subfield Morphometry in Focal MRI: Manual Approaches
Some of the most exciting HF morphometry work uses what we call focal MRI sequences,
which acquire a small number of thick slices with high in-plane resolution, slices that are
oriented along the long axis of the HF, and relatively short scan time (see Figs. 1d and 2 for
examples of such MRI). (Small et al., 2000) use a focal T2-weighted sequence to obtain high-
resolution functional MRI of the HF and detect, based on manual delineation, subfield-level
differences in MR signal between AD patients and controls. More recent functional MRI
studies by (Zeineh et al., 2003;Suthana et al., 2009) use T2-weighted focal structural MRI to
delineate boundaries between subfields and to study differences in functional activation across
the HF; these authors unfold the HF, allowing effective visualization and more anatomically
sensible processing of fMRI data. (Mueller and Weiner, 2009;Mueller et al., 2009;Wang et al.,
2010;Malykhin et al., 2010) use focal T2-weighted MRI to estimate the volumes of
hippocampal subfields based on a manual delineation protocol. In particular, (Mueller and
Weiner, 2009) report cross-sectional volume differences between AD patients, MCI patients
and controls that agree with patterns of atrophy known from pathology, i.e., significant
reduction in CA1, subiculum and entorhinal cortex volume, and not in dentate gyrus or CA2
subfields.

Despite the great promise of focal MRI for HF subfield morphometry and functional data
analysis, we are not aware of any previous efforts to automate HF subfield segmentation in
this kind of images.

Materials and Methods
Subjects

The imaging data for this study was collected by the Center for Imaging of Neurodegenerative
Diseases (CIND) at the San Francisco Veterans Administration Medical Center. Our
experiments use imaging data from 32 subjects, who participated in imaging studies at CIND.
These subjects fall into three categories: control, mild cognitive impairment (MCI) of the AD
type, and “cognitively impaired, non-demented (CIND).” Control (n=21) means cognitively
intact control subject. Subjects in the MCI group (n=4) meet the diagnostic criteria in (Petersen
et al., 1999) and also have a clinical diagnosis of MCI based on the consensus opinion of
experienced neurologists. Subjects in the CIND group (n=7) have memory or executive deficits
that are severe enough so that the referring clinicians suspected these subjects to be at risk for
developing AD, but they do not fulfill the Research Criteria for MCI of the AD type or executive
MCI. The subjects were between 38 and 82 years of age at the time of the scan, with average
age 64.8±11.8 years. 18 subjects are male and 14 are female.

Imaging Protocol
All imaging was performed on a Bruker MedSpec 4 T system controlled by a Siemens Trio
TM console using a USA instruments eight channel array coil that consisted of a separate
transmit coil enclosing the eight receiver coils. The following sequences, which were part of
a larger research imaging and spectroscopy protocol, were acquired: 1. 3D T1-weighted
gradient echo MRI (MPRAGE) TR/TE/TI=2300/3/ 950 ms, 7° flip angle, 1.0×1.0×1.0 mm3
resolution, FOV 256×256×176, acquisition time 5.17 min, 2. high resolution T2 weighted fast
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spin echo sequence (TR/TE: 3990/21 ms, echo train length 15, 18.6 ms echo spacing, 149° flip
angle, 100% oversampling in ky direction, 0.4×0.5 mm in plane resolution, 2 mm slice
thickness, 24 interleaved slices without gap, acquisition time 3:23 min (adapted from (Vita et
al., 2003; Thomas et al., 2004)), angulated perpendicular to the long axis of the hippocampal
formation. Examples of T1 and T2-weighted images are shown in Figs. 1 and 2.

Manual Segmentation Protocol
The protocol for manual segmentation of the HF is derived from a published protocol (Mueller
and Weiner, 2009), and expanded to include more coronal slices and additional subfields. 1
Initially, each HF is partitioned into anterior (head), posterior (tail) and mid-region (body),
with boundaries between these regions defined by a pair of adjacent slices in the MR image
(i.e., each slice can contain only one label: head, tail, or body). The partitioning is based on
heuristic rules. The hippocampal head is defined to start at the first slice where the uncal apex
becomes visible, and extends anteriorly for approximately 6-7 slices. The hippocampal tail is
defined by first identifying the wing of the ambient cistern. The slice immediately anterior to
this was designated as tail, along with the three following slices in the posterior direction. The
slices between head and tail slices are designated as hippocampal body.

The hippocampal head and tail are segmented as single structures because the “swiss roll”
bends medially in these regions and develops additional folds (digitations of the head), causing
severe partial volume effects and making differentiation between HF layers unreliable. The
head label includes the anterior portion of the subiculum because it was not possible to separate
these structures reliably. By contrast, in the hippocampal body, the “swiss roll” is roughly
perpendicular to the slice plane, making subfield differentiation more feasible. Within slices
designated as “body,” the hippocampal formation is divided into cornu Ammonis fields 1-3
(CA1-3), dentate gyrus (DG), subiculum (SUB) and a miscellaneous label, which contains
cysts, arteries, etc. The subiculum is also traced in some of the “tail” slices because
differentiation between hippocampus proper and the subiculum is possible there.

Additionally, the parahippocampal gyrus (PHG) is labeled, although this label is not
constrained by the head/tail/body division and spans more slices than the other labels. The
portion of the PGH belonging to the two most posterior “head” slices and the most anterior
“body” slice is labeled as entorhinal cortex (ERC). The subdivision of the hippocampal slices
into head/body/tail regions is illustrated in Fig. 3. An example of the manual segmentation is
shown in Fig. 2.

Overview of the Automatic Segmentation Algorithm
We describe our approach as “nearly” automatic. This is because the partitioning of MRI slices
into “body,” “head,” and “tail” is performed manually on the basis of two anatomical
landmarks, as described in Section Manual Segmentation Protocol. Beyond this partitioning,
the algorithm is fully automatic.

The segmentation algorithm assumes a set of Ntrain training images for which manual
segmentations, which we treat as ground truth, are available, and a set of Ntest test images that
need to be segmented. Our algorithm consists of four steps.

1. An initial segmentation of the hippocampal subfields is generated for each training
subject i using a multi-atlas segmentation technique, where the remaining Ntrain−1
datasets serve as atlases. Normalization to each of the atlases produces a candidate
segmentation of subject i, and we combine these candidate segmentations into a single

1The segmentation protocol is included as supplementary material.
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consensus segmentation using a voting scheme, as detailed in Multi-Atlas
Segmentation and Voting (MASV). We call this algorithm multi-atlas segmentation
and voting (MASV).

2. MASV results for the training subjects are compared to the corresponding manual
segmentations, and voxels mislabeled by MASV are identified. AdaBoost classifiers
are trained to detect such voxels (called bias detection, Section Bias Detection) and
to assign the correct label to them (called bias correction, Section. Bias Correction).
These classifiers use image texture, initial segmentation results, and spatial location
as features.

3. An initial segmentation is obtained for each test subject using MASV. All Ntrain
training subjects serve as atlases.

4. Classifiers trained in Step 2 are used to improve the initial segmentation of test
subjects. Bias detection searches for mislabeled voxels in the initial segmentation,
and bias correction assigns a new label to these voxels. The resulting labeling of the
voxels is treated as the final segmentation of the test subjects.

Experiments in this paper are aimed at evaluating the accuracy of this four-step algorithm.
Since manual segmentations are available for all the subjects in our dataset, we arbitrarily
partition the dataset into training and test subsets. After obtaining the final segmentation of the
test subset in Step 4 of the algorithm, we compare this final segmentation to manual
segmentations of the test subset. As a means of cross-validation, we repeat this experiment for
multiple random partitions of the dataset into training and test subsets.

The remainder of this Section describes in detail the two main components of this approach:
the MASV framework and the bias correction/detection scheme.

Multi-Atlas Segmentation and Voting (MASV)
The multi-atlas approach to segmentation has become increasingly popular in the recent years,
thanks in part to new inexpensive parallel computing environments (Rohlfing et al., 2004;
Klein and Hirsch, 2005; Chou et al., 2008; Aljabar et al., 2009; Artaechevarria et al., 2009;
Collins and Pruessner, 2009). In this approach, registration is used to normalize a target image
to multiple template images, each of which has been segmented manually. Manual
segmentations from template images are warped into the space of the target image and
combined into a consensus segmentation using a voting scheme. The multi-atlas approach tends
to be more accurate than when a single template is used. Our “MASV” approach uses the same
idea, adapting it as is necessary to the specificities of focal T2-weighted MRI data.

In each subject, we use both T1 and focal T2-weighted MRI because these images provide
complementary information. Focal T2-weighted images have high in-plane resolution and
good contrast between subfields, but these images also have a limited field of view and large
slice spacing. On the other hand, the T1-weighted images have nearly isotropic voxels and
cover the entire brain, but lack contrast between subfields. MASV aims to normalize the
hippocampal formation between each subject and each atlas using a combination of data from
both modalities. The following steps are involved in the MASV approach:

1. Within-subject rigid alignment of T1 and T2 data. This corrects for subject motion
between T1 and T2 scans. This and the following two steps are performed for all
subjects in the study, regardless of whether they are treated as atlases or as images to
be segmented.

2. Deformable registration of the T1 images to a T1-weighted population template. This
registration factors out much of the anatomical difference between the subjects and
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brings all subjects into a common space for subsequent analysis. In each hemisphere,
a region of interest surrounding the HF is defined.

3. Cropping of the image region surrounding the hippocampal formation in T1 and T2
images and resampling to a common isotropic 0.4×0.4×0.4mm3 voxel grid. This step
makes subsequent registration more efficient and accounts for differences in voxel
size between T1 and T2 data.

4. Pairwise registration between the target subject and multiple atlases using multi-
modality (T1 and T2) image matching.

5. Consensus segmentation using similarity-weighted voting.

This pipeline is implemented using freely available tools FSL/FLIRT, ANTS, and Convert3D.
We will now describe each step in more detail.

Within-Subject Rigid Alignment
The FSL/FLIRT global image registration tool (Smith et al., 2004) is used to align each subject's
T2 image to the T1 image. The initial alignment is given by the DICOM image headers, but
subject motion between the scans can result in a slight misalignment. We use the normalized
mutual information metric (Studholme et al., 1997) to account for differences in image
modality. FLIRT is run with six degrees of freedom, allowing for rigid motion. In a few images,
strong intensity features in the skull tend to throw registration off; i.e., the skull in T2 image
is matched to the CSF in the T1 image. To prevent this from happening, we crop the T2 images
by 40% in the in-plane dimension, effectively removing the skull and part of the brain far away
from the hippocampus.

Deformable Registration to a Population-Specific Template
The T1 images of all subjects in the study are normalized to a population-specific template
using the open-source deformable registration tool ANTS. The Symmetric Normalization
(SyN) algorithm implemented by ANTS is described in (Avants et al., 2008). SyN was found
to be one of top two performers in a recent evaluation study of 14 open-source deformable
registration algorithms by (Klein et al., 2009). SyN uses a diffeomorphic transformation model
and supports a variety of image match metrics. ANTS provides functionality for generating
optimal templates, given a collection of images. Such optimal templates have been recognized
to offer advantages over a priori templates for image normalization (Guimond et al., 2000;
Joshi et al., 2004; Avants et al., 2009). Building a template involves iteratively registering
images to the current template estimate; computing a new shape and intensity average from
the results of these registrations; and setting the current template estimate to be that average.
This procedure is repeated until the template estimate converges. Each registration in this
procedure uses SyN with default parameters and the cross-correlation image match metric.

Resampling to a Hippocampal Reference Space
The T1 template is used to define a reference space in which all subsequent processing takes
place. A separate reference space is defined for the left and right hippocampi. The reference
space is a rectangular region of the T1 template surrounding one of the hippocampi and
resampled to have voxel size 0.4×0.4×0.4 mm3. The dimensions of the reference space are
40×55×40 mm3, with the longest dimension along the anterior-posterior axis. The reference
space includes the hippocampus formation, parahippocampal gyrus, amygdala, temporal horn
of the lateral ventricle, and other surrounding structures. The reference space is illustrated in
Fig. 4.

All T1 and T2 subject images are warped and resampled into the reference space. Subsequent
subject-to-subject registrations are performed on these resampled images. The reason for doing
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so is that the initial normalization to the T1 template removes much of the variability in the
shape of the hippocampal regions between subjects. Subsequent subject-to-subject
registrations must only account for residual misregistration and are thus more tractable and
less prone to falling into local optima than the alternative of registering subject images to each
other directly.

Within the reference space, a mask is defined by manually segmenting the hippocampus and
dilating the segmentation by a spherical structural element with the radius of 10 cm. This mask
helps further speed up subsequent registrations, and prevents the boundaries of the reference
space from influencing the registration. The shape of the mask can be seen in Fig. 5, second
row.

Subject-to-Subject Multimodality Registration
The most computationally intensive component of the initial segmentation algorithm is the
multi-modality registration between each subject and each atlas. There are (Ntrain−1) Ntrain
such registrations in the training stage of the algorithm (Step 1 in Section. Overview of the
Automatic Segmentation Algorithm) and Ntest Ntrain registrations in the testing stage (Step 3
in Section. Overview of the Automatic Segmentation Algorithm) 2. Each registration is
performed using the SyN algorithm. The image match metric is the average of the cross-
correlation between T1 images and cross-correlation between T2 images. Cross-correlation at
each voxel is computed using a 9×9×9 voxel window. 3 Registration is performed ina multi-
resolution scheme, with a maximum of 120 iterations at 4× subsampling, 120 iterations at
2×subsampling, and 40 iterations at full resolution. The mask created in the template space is
used to reduce the number of voxels where the metric is computed. Each registration ran for
under one hour on a 2.8 GHz CPU.

Consensus Segmentation using Metric-Weighted Voting
For clarity, in this subsection we call the subject for whom we wish to obtain a segmentation
the target subject. The target subject may be part of the training set or test set, depending on
the stage of the algorithm, as discussed above in Section. Overview of the Automatic
Segmentation Algorithm. By warping each of the atlas segmentations into the space of the
targets subject's T2 image, we can produce a set of m candidate segmentations of the target
subject. The challenge is to combine these different candidate segmentations into a single
consensus segmentation. Several schemes for combining segmentations have been proposed, ,
such as majority voting (Heckemann et al., 2006), similarity-weighted voting (Artaechevarria
et al., 2009; Collins and Pruessner, 2009) and STAPLE (Warfield et al., 2004), the latter
primarily intended for combining manual segmentations from raters who differ in expertise.
In our work, we adopt a weighted voting scheme, where the contribution from each training
segmentation is weighted locally by the image match between the T2 image of the target subject
and the T2 image of the training subject. The scheme is local because voting occurs
independently at each voxel. Our choice of similarity-weighted voting is motivated by the
observation that many of the target-to-atlas registrations fail to align anatomical structures
properly, probably due to falling into a local optimum. Similarity-weighted voting helps us
assign larger weight to the atlases that registered better to the target subject. Since we use free-
form registration, it is possible that an atlas matches a target subject well in one part of the
image and does so poorly inother parts of the image. Voxel-wise voting helps account for this
spatial variability in registration accuracy.

2Since SyN registration is symmetric, it is feasible to use half as many registrations. However, to keep things clean, we performed
Ntrain−1 registrations for each subject that is part of the training set and Ntrain registrations for each test subject.
3This size window is used as the default in SyN. Unpublished parameter evaluation experiments in different data sets have shown this
window size to be a good tradeoff between speed and registration accuracy.
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Let Mk be the rigid transformation from the T2 image to the T1 image for subject k, let ψk be
the deformable transformation from the T1 image of subject k to the reference space, and let
χij be the deformable transformation computed by subject-to-subject multi-modality
registration between target subject i and atlas j. In the reference space, we compute the cross-
correlation between the warped target T2 image ψi ∘Mi ∘  and the warped atlas T2 image

χij ∘ψj ∘Mj ∘ . Cross-correlation is computed at each voxel, producing an image, which we
denote Ci,j. Higher values of cross-correlation indicate better texture match between the two
registered images, as Fig. 5 illustrates. Taking all such images Ci, 1 …Ci, Ntrain for the target
subject i, we perform voxelwise ranking, producing a new set of rank images Ri, j:

These rank images are converted into weight images by applying the inverse exponential
function and smoothing spatially with an isotropic Gaussian filter:

(1)

where α>0 is a constant weighting factor and σ is the standard deviation of the Gaussian. Under
the inverse exponential mapping, the training subject that best matches the target subject at
voxel x is assigned weight 1, the training subject with second-best match is given weight e−α
and so on. These weight images are used to compute a consensus segmentation of the target
subject as the weighted sum of the atlas-based segmentations. Specifically, let  be the set of

all segmentation labels, plus the background (null) label. Let  be a binary image in the native

space of the training image j, with  at voxels that are assigned label l∈  and  at all
other voxels. Using these binary label images and the weight images from above, we compute
label density maps, in template space, for the target subject i as follows:

(2)

where  is a normalizing constant. 4 These density maps are illustrated in Fig.
6.

Density maps computed using (2) do not take into account the rules defined in the segmentation
protocol, e.g., that CA1-3 must lie inside the slices designated as hippocampal body, and so

4There are various strategies for sampling and interpolation of of images  when computing density maps. To minimize aliasing, we

compose deformation fields , , and the rigid transformation  into a single deformation field, so that  is resampled only

once. To further avoid aliasing, we smooth images  with a small isotropic Gaussian kernel (σ= 0.24mm) and sample the smoothed

image using linear interpolation at the point grid specified by the deformation field. This has the effect of low-pass filtering  prior to
resampling.
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on (see Section Manual Segmentation Protocol and Fig. 3). To incorporate these rules we derive

augmented density maps , in native space of target subject i, as follows:

From these augmented native-space density maps, a consensus segmentation is computed by
choosing at each voxel the label with the largest density:

An example of consensus segmentation is shown in Fig. 6.

The behavior of this voting scheme is controlled by two parameters: α and σ. Larger values of
α lead to greater bias in favor of the atlases that best match the target image at a voxel. For
example, if α=1, the weight assigned to the atlas with the best match to the target image (at a
given voxel) is greater than the sum of the weights assigned to all other atlases (i.e.,

). That means that the consensus segmentation ignores all segmentations except
the one coming from the best matching atlas. On the other hand, if α=0, all atlases are assigned
the same weight, regardless of similarity to the target image. This is known as simple majority
voting.

Parameter σ controls the degree of spatial regularization during the computation of weight
images Wi, j. When σ=0, voting is done completely independently at each voxel. When σ>0,
atlas-target similarity in the neighborhood of a voxel affects the voting weights at that voxel.
In the extreme case, when σ→∞, the voting is no longer spatially varying, i.e. each atlas is
assigned a single weight based on its overall similarity to the target image.

In our experiments we set a priori parameter values α=1 and σ=1.2mm. We perform post hoc
testing to evaluate the sensitivity of segmentation outcome to these two parameters.

Segmentation Refinement via AdaBoost Learning
The initial segmentations produced using MASV are further refined using a machine learning
technique. The flowchart of this approach is given in Fig. 7. As summarized in Section.
Overview of the Automatic Segmentation Algorithm, MASV is applied both to training and
test datasets. In the training set, initial segmentations produced by MASV are compared to the
ground truth manual segmentations, and voxels mislabeled by MASV are identified. An
AdaBoost classifier is trained to recognize such mislabeled voxels. We refer to this classifier
as bias detection, because it is capable of detecting systematic biases in the initial segmentation
relative to the ground truth. 5 A second kind of AdaBoost classifier is trained to assign the
correct label to each of the voxels flagged as mislabeled by bias detection. We refer to this type
of classifier as bias correction. Bias detection and bias correction are applied to the results of
the initial segmentation in the test dataset to obtain the final segmentation. We now describe
bias correction and bias detection in greater detail.

5Note that the meaning of the term bias in this paper is different from its common use to describe MRI field inhomogeneity. By bias,
we mean those errors in the initial segmentation that are systematic, i.e., follow a pattern from training subject to training subject.
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Bias Detection
The task of bias detection is to identify voxels wrongly labeled by the initial segmentation
algorithm. This is a binary classification problem: a voxel in the T2 image is either correctly
labeled or wrongly labeled. We use the AdaBoost algorithm (Freund and Schapire, 1995) to
iteratively build a strong classifier by combining complementary weak classifiers derived from
a rich feature pool. Informally, two classifiers are complementary to each other if they do not
make similar mistakes. At each voxel in the T2 image, three types of features are obtained:
appearance features, contextual features and spatial features. We denote AΔx,Δy,Δz(P)= I(Px +
Δx, Py + Δy, Pz + Δz)–Ī to be the appearance feature at the relative location (Δx,Δy,Δz) for voxel
P with coordinates (Px,Py,Pz). I is intensity of the T2-weighted image. To compensate for
different intensity ranges, we normalize the intensities by the average intensity of the
hippocampus region of interest, Ī. Besides the intensity features, we use subfield labels from
the initial segmentation as contextual features, similarly to Morra et al. (2009a). We denote
the contextual feature as LΔx,Δy,Δz(P) = S̄ (Px + Δx, Py + Δy, Pz + Δz), where S̄ is the result of
the initial subfield segmentation. To include spatial information, we use Qx(P) = Px–x̄, Qy(P)
= Py–ȳ and Qz(P) = Pz–z ̄, where x̄ is the center of mass of all the subfields combined, computed
from the initial segmentation. To enhance the spatial correlation of our features, we include
the joint feature obtained from multiplying the spatial feature with the appearance and
contextual features. For example, the joint features of appearance and location include
AΔx, Δy, Δz(P)Qx(P), AΔx, Δy,Δz(P)Qy(P), and AΔx,Δy,Δz(P)Qz(P). Since the in-slice resolution of
T2-weighted images is much higher than slice thickness, we use – 6≤Δx, Δy ≤6 and Δz=0.
Overall, we use ∼ 1300 features to describe each voxel.

For each feature in the feature set, a weak classifier is constructed by selecting an optimal
threshold to identify mislabeled voxels. AdaBoost is then used to iteratively select weak
classifiers based on their ability to correctly classify “difficult” training cases, meaning those
cases that are poorly classified by previously selected weak learners. The final strong classifier
is a weighted sum of the weak classifiers.

Bias Correction
Bias detection outputs candidate voxels that we suspect to be mislabeled in the initial
segmentation. We then need to reassign new, hopefully correct, labels to them. There are many
ways to approach this problem. One simple method is to enforce the correct topology of
subfields. For instance, if a voxel at the boundary of CA1 and DG is mislabeled, and its neighbor
voxels are correctly labeled, because of the topology constraints, we know that the correct label
for this voxel has to be either CA1 or DG. Hence, switching its label can correct it. This simple
method can correct most mislabeled voxels, however it may run into trouble at 3-way or 4-
way boundaries. For a more robust method, again we use a learning-based method. Given all
the voxels that are mislabeled in the initial segmentation, we train classifiers to map them to
the correct labels. This is a multi-class classification problem. We follow the common practice
and train a binary classifier for each label to separate it from other labels. For this task, we use
AdaBoost training with the same set of features as described above. Since we only use the
mislabeled data for training, the learning cost is much less than that using the entire training
data. Moreover, by not taking the correctly labeled voxels into consideration, relabeling the
mislabeled voxels is a simpler problem than relabeling the whole hippocampus, which
simplifies the learning step as well. After bias detection, we reevaluate each detected
mislabeled voxel by each classifier and assign the label whose corresponding classifier gives
the highest score to the voxel.

Evaluation of Segmentation Accuracy
Evaluation is performed by comparing automatic segmentation results to manual
segmentations. As a way of bootstrapping, we perform Nexp=10 cross-validation experiments,
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each using Ntrain= 21 randomly selected training images and Ntest=10 test images. In each of
these experiments, manual segmentations by JP are used as training, because they are available
for both hemispheres in the entire set of subjects.

When reporting results, we primarily compare segmentations generated on the test data to the
manual segmentations by JP. However, during the evaluation of our manual segmentation
protocol, a subset of Nrel=10 images was segmented twice by two raters (JP and CC) to establish
reliability. Within each cross-validation experiment, a subset of these reliability images is
included among the test images (e.g., in the first of 10 cross-validation experiments, 4 out of
10 test subjects have been segmented by both CC and JP). For this subset, we compute Dice
overlap between the automatic segmentation and manual segmentations by both raters.
Averaging over all the cross-validation experiments, we obtain an estimate of segmentation
accuracy across different raters. Thus, in the Results section, we list two sets of comparisons:
automatic method compared to JP on a larger set of test subjects, and automatic method
compared to both raters on a smaller set of test subjects.

When comparing automatic and manual segmentations, we employ several complementary
metrics. We measure relative volumetric overlap between two binary segmentations using the
Dice similarity coefficient (DSC) (Dice, 1945). DSC between two segmentations (i.e., sets of
voxels) A and B is given by

We compute and report Dice overlap separately for each subfield.

Boundary displacement error (BDE)—Is measured as root mean squared distance
between the boundaries of two binary segmentations. It is computed by extracting a dense
triangle mesh representation of the boundary of each segmentation. Given two such meshes,

 and , this error is given by

where V  denotes the set of vertices in the mesh , and d(v, ) denotes Euclidean distance
from vertex v to the closest point (not necessarily a vertex) on the mesh  Like overlap,
boundary displacement error is computed and reported separately for each subfield. Overlap
and boundary displacement measures are highly complementary because the former measures
relative segmentation error and the latter measures absolute segmentation error.

Additional metrics used in this paper include subfield volume and overall segmentation
error. Subfield volume is simply measured by adding up voxels in a segmentation and
multiplying by the volume of the voxel. Overall segmentation error is used as a summary
measure of segmentation accuracy across all subfields. It is computed between a test
segmentation (e.g., automatic segmentation) and a reference segmentation (e.g., manual
segmentation) and given by
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where Ti denotes the label assigned to voxel i in the segmentation T. We use the overall
segmentation error when reporting the results of post hoc parameter tuning experiments, where
a summary measure of segmentation accuracy is needed.

Results
Comparison to Manual Segmentation by Primary Rater (JP)

To evaluate segmentation accuracy, we compare automatic segmentation results to manual
segmentations. Fig. 8 shows examples of automatic and manual segmentation in three
arbitrarily chosen subjects from the first of ten cross-validation experiments. Intermediate
results of MASV and bias detection are also illustrated.

Average Dice overlap between the automatic segmentation and manual segmentation by rater
JP is given for each subfield in the first column of Table 1. The averages are taken over
Nexp=10 cross-validation experiments and within each experiment, over Ntest=10
segmentations. The overlaps for left and right hippocampi are included in the averages. Thus,
each entry in Table 1 is an average of 2·Nexp·Ntest=200 pairwise automatic-manual
comparisons. The average Dice overlap for larger subfields (CA1, DG) as well as head and tail
regions, exceeds 0.85. For smaller subfields (CA2, CA3), overlap is substantially lower, just
above 0.5. For SUB and ERC, overlap exceeds 0.75.

To illustrate the effect of the main components of the proposed segmentation method, Table 1
also lists average overlap for two variants of the method. In the first variant (column 2), the
initial segmentation using MASV is performed, but AdaBoost bias detection and correction
are not performed. In the second variant (column 3), the MASV is performed using simple
majority voting instead of the similarity-weighted voting described in Section Consensus
Segmentation using Metric-Weighted Voting, and AdaBoost is not used. Across all subfields,
the full method performs better than MASV, and MASV with similarity-weighted voting
performs better than simple majority voting. The improvements due to weighted voting are
substantial, particularly for small subfields (e.g., 0.11 increase in overlap for CA2). The
improvements due to AdaBoost range from as much as 0.06 for CA2 to as little as 0.01 for
HEAD, and are generally greater for smaller, harder to segment structures.

Table 2 compares the performance of the three variants based on the boundary displacement
error metric. Again, a similar pattern of consistent improvement due to bias correction and
similarity-weighted voting is observed in all subfields. Subfields CA1 and DG, which have
Dice overlap over 0.87, also have RMS boundary displacement error below the in-slice voxel
size (0.4 mm). Small subfields CA2 and CA3, where the Dice overlap is lowest among all
subfields, have relatively small boundary errors, close to the in-slice voxel size. ERC, another
relatively small subfield, does fairly well in terms of both metrics, with 0.79 overlap and 0.44
mm boundary error. On the other hand, large subfields HEAD and TAIL, which have very high
Dice overlap, do much worse in terms of boundary displacement. Subfields SUB and PHG
perform worst in terms of displacement errors. These are also the only two subfields for which
the rules defined in the segmentation protocol do not explicitly specify the starting and ending
slices (see Section Manual Segmentation Protocol and Fig. 3).

Yushkevich et al. Page 12

Neuroimage. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Comparison to Manual Segmentation by Two Raters
A subset of Nrel=10 images in our dataset was used for the reliability analysis of manual
segmentation. The left and right hippocampal formations were segmented by raters JP and CC
in these images. In this subset of images, we compare the performance of the automatic
segmentation against rater JP (whose segmentations were used to train the method) to the
performance against rater CC, whose segmentations were not used for training. These
comparisons, in terms of average Dice overlap, are given in the first two columns of Table
3.The Dice overlapisaveraged over 68hippocampal formations, because 34 of the Nexp
·Ntest=100 test images belong to the subset of Nrel images used for reliability analysis. 6 Overall,
overlap between the automatic method and individual raters is relatively close to the average
inter-rater overlap for each subfield but substantially lower than the average intra-rater overlap.
When comparing the automatic method to both raters, we do not observe a consistent bias
towards JP even though JP produced the segmentations on which the automatic method was
trained. Only for one of the subfields, CA1, the bias approaches significance (p=0.052) 7.

Reliability of Subfield Volume Estimation
Measures of volume overlap and boundary displacement error reflect how well the proposed
algorithm localizes subfields in MR images. However, for cross-sectional analysis, it is also
important to show that the volume estimates produced by automatic and manual segmentation
are consistent. Fig. 9 shows Bland-Altman plots comparing automatically estimated subfield
volume to the volume estimated manually. The volumes are highly correlated for CA1, DG
and Head subfields, with less correlation for smaller subfields. Fig. 10 plots the intraclass
correlation coefficient (ICC) (Shrout and Fleiss, 1979) expressing agreement between
automatic segmentation and manual segmentation by rater JP. We use the variant of ICC that
(Shrout and Fleiss, 1979) call ICC(2,1), which measures absolute agreement between volume
measurements under a two-way random ANOVA model. In Fig. 10, ICC is computed
separately for each cross-validation experiment, and a box-whisker plot is used to display the
range of ICC values for each subfield. ICC is relatively large for subfields CA1 (average over
10 cross-validation experiments is 0.89) , DG (0.94) and HEAD (0.91). It is substantially lower,
with average in the range 0.4-0.5 for CA2, CA3, ERC, SUB and TAIL. For PHG the ICC is
particularly low (0.19), which may be explained by the fact that it's extent in the slice direction
is not constrained by heuristic rules, as for the other subfields.

Post hoc analysis of voting parameters
As discussed in Section. Consensus Segmentation using Metric-Weighted Voting, the
similarity-weighted voting scheme is controlled by two parameters: the bias parameter α and
the regularization parameter σ. In the experiments above, these parameters were set to a
priori values α=1, σ=1.2mm. To determine how sensitive segmentation results are to these
parameters, we perform post hoc analysis. This analysis performs multi-atlas segmentation and
voting using different values of α and σ for a single random partition of the data set into 22
atlases and 10 target images. Bias detection/correction is not performed. For each subject, we
measure the overall segmentation error (OSE), described in Section 3.7. Figs. 11 and 12 plot
segmentation error against α and σ, respectively. Interestingly, our a priori choice of parameter
values was fairly effective. Indeed, α=1 results in lowest segmentation error, and with respect
to σ, segmentation error reaches lowest values in the range 1-1.4 mm.

6Note that the average overlaps in column 1 of Table 3 are slightly higher than the overlaps in column 1 of Table 1. This is due to the
fact that Table 1 computes average overlap over 200 segmentation attempts and Table 3 averages over 68 segmentation attempts, i.e.,
the cases where segmentation by rater CC is available.
7Bias is estimated using a paired t-test. For each subject, hemisphere and rater, the average overlap between the automatic method and
the rater is computed (average taken over cross-validation experiments). Then the t-test is applied to the difference of overlap between
raters.
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Discussion
We have presented a technique that allows hippocampal subfields to be segmented
automatically with a relatively small amount of input from a human expert. The accuracy of
our technique, measured in terms of Dice overlap, is very close to inter-rater reliability for
manual segmentation. For larger subfields, including CA1 and DG, there is high (≈0.9)
intraclass correlation between manually and automatically measured hippocampal volumes,
which suggests that the automatic method may be used in place of manual segmentation for
cross-sectional analysis of subfield volume changes due to various brain disorders. In the
following sections, we compare our results to previously published results, discuss the
limitations and potential improvements to our approach, and discuss how our approach can be
leveraged in future studies.

Comparative Evaluation and Significance of the Results
This work is most closely related to the hippocampus subfield segmentation paper by (Van
Leemput et al., 2009). As we note in the Background section, the two techniques are applied
to very different MRI data, which complicates a direct comparison of the results. (Van Leemput
et al., 2009) acquire multiple averages over a 35 min scan time to obtain high-contrast T1-
weighted images with 0.4 × 0.4 × 0.8mm3 resolution. By contrast, we use a sequence with
acquisition time is under 4 min to obtain data that has 0.4 × 0.5 × 2.0mm3 resolution and T2
weighting. The resulting images have a distinct hypointense band between layers of the HF,
but they suffer from severe partial voluming. The differences between the two approaches also
extend to the anatomical definition of HF subfields. (Van Leemput et al., 2009) primarily list
geometrical rules as criteria for defining subfields, whereas the protocol used in this paper
generally proceeded by comparing in vivo image slices to annotated postmortem data in
published atlases, such as (Duvernoy, 2005), although geometric rules are used for defining
the boundaries of smaller subfields CA2 and CA3. Visually, HF subfield definitions in our
work are very different from ((Van Leemput et al., 2009), Fig. 1). In terms of methodology,
there are similarities between (Van Leemput et al., 2009) and our work. Both methods use
example segmentations to train the automatic method. Van Leemput et al. frame the
segmentation problem in Bayesian terms and use a tetrahedral mesh model to represent the
hippocampal formation, whereas our work relies on deformable image registration and
machine learning. The Dice overlaps reported in our paper are generally higher than those
reported by(Van Leemputetal.,2009).We report overlap above 0.85 for CA1, DG, HEAD and
TAIL, and overlap above 0.75 for ERC and SUB, whereas the highest overlap reported for any
subfield by (Van Leemput et al., 2009) is around 0.75. However, a direct comparison of overlap
values between the two papers should be read with a great deal of caution, given the differences
in anatomical definition of subfields, and due to the fact that head/body/tail slice boundaries
are supplied as manual input to our method.

One of the highly encouraging outcomes of this study is that the segmentation accuracy for
subfields CA1 and DG is comparable to some of the best results published for whole-
hippocampus automatic segmentation. There is a wide range of variability in whole-
hippocampus segmentation results reported in the literature. ((Colollins and Pruessner, 2009),
Table 1) give a comprehensive listing of automatic segmentation results reported in the last
ten years. Dice overlap between automatic and manual segmentation in this listing ranges
between 0.75 for older methods to 0.87 in the very recent papers. (Collins and Pruessner,
2009) report whole hippocampus segmentation accuracy of 0.89 for their own technique, which
they evaluate against manual segmentation in young normal controls. By contrast, we report
Dice overlap of 0.873 in DG and 0.875 in CA1 in a cohort that combines older healthy adults
and older adults with cognitive complaints and MCI. In other words, our results suggest that
automatic segmentation of CA1 and DG in T2-weighted MRI may be just as reliable as
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automatic segmentation of the whole hippocampus in routine 1mm3 T1-weighted MRI. This
is potentially a very significant finding, given the important role that hippocampal volume
plays as a biomarker for neurodegenerative diseases (Dickerson and Sperling, 2005). Although
future validation is necessary, our results suggest that biomarkers derived from automatic HF
subfield segmentation may prove just as sensitive as biomarkers derived from whole
hippocampal volume, while providing additional anatomical specificity.

Methodological Innovation
The MASV component of our approach constitutes a framework that leverages, with
modifications, existing methodology that has proved highly effective in prior evaluation. For
example, registration within MASV uses SyN, an algorithm that ranked among the top two
deformable registration algorithms with open-source implementations in a large-scale
evaluation study by (Klein et al., 2009). The overall MASV strategy is derived from published
multi-atlas segmentation approaches that have proved highly successful at improving
segmentation accuracy in various applications (Rohlfing et al., 2004; Klein and Hirsch,
2005; Chou et al., 2008; Aljabar et al., 2009; Artaechevarria et al., 2009; Collins and Pruessner,
2009). However, our implementation of voxel-wise similarity-weighted voting in unique in its
use of rank-based weighting, as opposed to weighting based on the value of the metric, proposed
by (Artaechevarria et al., 2009). Our motivation for using this type of voting is based on
qualitative observation of SyN registration performance in T2-weighted data. We have found
that in this data, the cross-correlation similarity metric leads to better pairwise registration than
intensity difference or mutual information metrics. We have also observed that pairwise SyN
registration often performs well in some regions of the image and performs poorly in other
regions; this is exacerbated by the presence in these images of cysts, whose number, size and
position varies from subject to subject. This regional variability in registration quality led us
to adopt a voxel-wise voting scheme, which also leads to improved segmentation quality in
(Artaechevarria et al., 2009), albeit in conjunction with the mean square intensity difference
metric.

The bias correction component of our framework is more novel. Although this scheme is related
to the work of (Morra et al., 2009b), who used AdaBoost for automatic whole hippocampus
segmentation, we believe it to be a unique and significant methodological contribution that
allows the performance of virtually any automatic segmentation technique to be improved by
training a classifier to recognize and correct its mistakes. However, this technique is not the
primary focus of this paper. A parallel paper that evaluates this approach in a variety of datasets
is presently in submission.

In summary, the main methodological novelty of this paper lies in the way that it combines
existing and new techniques to solve the problem of HF subfield segmentation in focal T2-
weighted MRI, which to our knowledge has not been addressed previously.

Limitations of the Proposed Approach
As with other multi-atlas segmentation techniques, our approach is computationally expensive.
Different costs are associated with training the framework and applying it to a target dataset.
These components of computational cost are summarized in Table 4. The greatest single
computational expense (over 6 hours) is associated with AdaBoost classifier training for the
bias detection and correction algorithms. MASV also is very computationally expensive
because of the large number of multi-modality registrations required during both training and
testing. MASV registrations can be run in parallel on a computing cluster, reducing total run
time dramatically. AdaBoost training can also be parallelized across different subfields.
However, AdaBoost training has large memory requirements (4-5 GB in our experiments),
which limits the ability to distribute it across multiple cores on the same CPU. Estimated total
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run times for two example computer configurations are given in Table 5. Although our
approach is computationally expensive and would most likely require access to at least a small
computing cluster, this computational cost must be weighted against the cost of producing HF
subfield segmentations manually. In our experience, manual subfield segmentation in a single
HF requires around four hours for a trained, highly motivated human expert. It can take several
months (as it has in our case) to train human raters, evaluate their reliability on test datasets,
and perform manual segmentation in a relatively small imaging study.

As any framework that combines multiple technologies, our method requires setting the values
of multiple parameters. It is virtually impossible to test the sensitivity of the method with
respect to all parameters. Furthermore, parameter optimization is not feasible because of the
relatively small size of our dataset; such optimization would require partitioning the dataset
into two subsets, one to optimize parameters over and the other for testing. Instead, we chose
to perform post hoc sensitivity analysis on a pair of parameters we considered the most crucial:
the bias and smoothing parameters in the similarity-weighted voting scheme (incidentally, we
found that our a priori guesses for these parameters were nearly optimal). Sensitivity to other
parameters would be far more expensive to test, and it is unclear to what extent such testing is
necessary. Particularly, we have found that the similarity-weighted voting scheme makes the
method much less sensitive to the parameters that control the quality of pairwise image
registration. Early in our experiments, we used a SyN parameter setting that caused
registrations to converge poorly (time step=0.1, later corrected to the SyN default 0.5). After
correcting this problem by setting the parameter value to its default, we found a significant
effect on the results of MASV with simple majority voting (>0.04 improvement in Dice overlap
for each subfield), but only a marginal improvement in the accuracy of MASV with similarity-
weighted voting. This explains why our evaluation focused on the sensitivity of the results to
parameters that control the voting scheme.

Even with post hoc parameter testing, some of the decisions in the design of the proposed
voting scheme may appear ad hoc. Indeed, there are many ways to assign weights to training
subjects based on image similarity, and there is nothing particularly special about basing
weights on the negative exponent of the rank, as in Eq. (1). Using rank avoids having to worry
about the scale of the similarity metric; in statistics, rank-based measures are robust to outliers
in the data. The decision to compute similarity maps and weight images in the space of the
reference image is not arbitrary, since this is the space where the subject-to-subject registration
takes place. Computing weight images in another space would introduce interpolation errors.
Likewise, the decision to compute per-label density maps in reference space while computing
final consensus segmentations in native space is not arbitrary. Density maps are floating point
images, and can be interpolated using linear interpolation or higher-order schemes, whereas
the final segmentation image is an image of integers and requires nearest neighbor
interpolation. Thus it makes sense to apply the transformation ψi ∘Mi to the density image, as
in Eq. (2).

From the practical point of view, the requirement for manual input in the form of designating
slices as head/body/tail can be viewed as a limitation. We emphasize that this partitioning does
not divide the hippocampus into three distinct anatomical regions, but rather defines a section
of the hippocampus (body) where it was felt that it is feasible for manual raters to consistently
differentiate between CA1-3, DG, and SUB subfields. Anatomically, all these subfields extend
into the slices we designate head and tail. In other words, the head/body and tail/body
boundaries are largely artificial. When these boundaries are not provided to our algorithm,
CA1-3, DG, and SUB subfield labels in the automatic segmentation propagate into the slices
where the manual rater simply assigns a “head” or “tail” label, and vice versa, “head” and “tail”
labels propagate into slices where the manual rater choses to distinguish between specific
subfields. This leads to reduced overlap between manual and automatic segmentations (as listed
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in Table 6), although this does not mean that the automatic segmentation is necessarily less
accurate, since the actual anatomical extent of CA1-3, DG, and SUB subfields is greater than
the set of slices in which manual raters label these subfields. Thus, we feel that to make the
comparison between manual and automatic segmentation fair, it is necessary to apply the
artificial, manually-defined head/body/tail slice designations in an equal way to automatic and
manual segmentations. Luckily, such marking requires only a few minutes per hippocampus
and can be performed at the same time as the initial visual inspection of the input images. In
our reliability study, raters JP and CC performed slice marking with 100% reliability. It may
be possible in future work to automate this step by training a classifier to recognize and locate
the two anatomical landmarks used for slice marking. A much more significant advance, and
a challenge for future work, is to extend the subfield segmentation protocol to the entire HF,
which we hope to achieve by optimizing imaging parameters and incorporating a model of
hippocampal anatomy from an atlas derived from postmortem imaging (Yushkevich et al.,
2009).

Our evaluation of segmentation accuracy is limited by the fact that no gold standard is available.
As in so many other papers, we use manual segmentation as the target for comparison,
recognizing that manual segmentation itself may be inaccurate. Notably, the two human raters
in our study achieve high inter-rater and intra-rater reliability, but this does not say anything
about how close their partition of the HF is to the true anatomical subfield boundaries. This is
particularly of concern when defining boundaries between CA1 and CA2, CA2 and CA3, SUB
and CA1, etc., because these boundaries are not associated with changes in the intensity pattern
and are thus defined based on geometrical and landmark-guided rules derived from published
labeling of histological sections and corresponding postmortem MRI slices (Duvernoy,
2005). In certain cases, the definition of subfield boundaries in the manual segmentation
protocol deviates from published labeling of histological sections. For example, the CA1/ SUB
boundary is chosen based on a heuristic geometric rule that can be reliably replicated across
multiple image sets, and may assign portions of the presubiculum and subiculum to the CA1
subfield (Mueller et al., 2009). There is no clear way to address the limitations of the manual
segmentation protocol because there is no clear strategy for evaluating manual segmentation
in in vivo data, beyond establishing reliability. One option would be to evaluate the manual
protocol on “simulated in vivo” data derived from postmortem MRI; however results would
only be as believable as the simulation. Another option is to validate in datasets where both in
vivo and postmortem imaging is available, but such datasets are extremely rare and validation
in this type of data would have to account for postmortem changes in the brain tissue.

The focus of the paper has been primarily on the hippocampus, and the segmentation of the
PHG is developed to a much lesser extent. The segmentation protocol assigns to the PHG label
only the medial portion of the parahippocampal gyrus, consisting primarily of entorhinal cortex
and the region called temporopolar cotex by (Insausti et al., 1998), and largely omitting the
perirhinal cortex. The PHG label was designed primarily based on the raters' perceived ability
to consistently delineate this structure in T2-weighted images. Part of the difficulty with tracing
these structures consistently is the fact that the angulation of the T2-weighted images is
optimized for CA/DG differentiation in the hippocampal body, and is not necessarily optimal
for PHG substructure differentiation. Given the critical roles that entorhinal and perirhinal
cortices play in memory and dementia, future research should extend the manual segmentation
protocol to differentiate between these structures and evaluate the ability to segment these
structures automatically.

Applicability of the Method to Other Studies
We evaluated our segmentation method in a single set of subjects, using cross-validation to
provide a bootstrap estimate of variability in segmentation accuracy. It remains to be seen how
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well this method will generalize to other datasets. Most subjects in our evaluation study are
cognitively normal older adults. The majority of the 11 subjects with cognitive impairment do
not meet clinical or research criteria for MCI. This leaves open the question of how well our
results will generalize to clinical studies that largely involve MCI and early AD patients, such
as clinical trials for AD disease-modifying treatments. One of the concerns is that image quality
for cognitively impaired subjects is generally worse than for controls because of motion
artifacts. Thus, although we started with a slightly more balanced dataset (26 control, 6 MCI,
8 CIND), several images had to be excluded due to poor image quality. The decision to exclude
was made at the time of manual segmentation; i.e., raters felt that the manual segmentation
protocol can not be reasonably applied to the image. We are presently collecting and manually
segmenting additional MRI data in MCI patients. However, preparing a dataset for validating
a segmentation method requires months of manual segmentation effort. Thus the authors felt
it is important to present segmentation findings on the current data set, despite its unbalanced
composition.

A related issue is that the MRI data used in our experiments came from a Brucker 4 T research
system, which is not in wide clinical use. However, we believe that the results would largely
extend to more common 3 T MRI scanners, based on our visual evaluation of T2-weighted
images from the two scanners. We have been collecting data at 3 T in MCI patients and controls
using a Siemens Trio scanner equipped with a TIM upgrade. Raters CC and JP visually
inspected these data and compared them to the 4 T data. The raters agreed that the image quality
(contrast between subfields, presence of artifacts) at 3 T was no worse than that of 4 T data,
and perhaps even better. Based on this, albeit purely qualitative, evaluation, we expect the
approach to extend to 3 T data. Testing this hypothesis is part of our future research aims.

As part of evaluating the ability of the method to generalize to different datasets, we plan to
test its robustness with respect to the training data. Ideally, it will not be necessary to retrain
the algorithm for every new MRI scanner and every new patient population. Our use of multiple
atlases and our use of cross-correlation rather than absolute intensity difference for measuring
image similarity should, in theory, make the method work reasonably well on data with slightly
different image characteristics and slightly different anatomy. It is the aim of our future research
to prove that this is indeed the case.

Conclusions
We have presented a technique that automates the segmentation of HF subfields in focal T2-
weighted MR images. These images can be obtained in the course of a routine MRI study, as
they require only a few minutes to acquire; they also reveal a hypointense band of tissue that
provides a strong visual cue for separating the layers of the HF. Our technique builds on the
well-established approach of atlas-based segmentation with multiple atlases and extends this
approach with a novel learning-based bias correction step. Being one of the first techniques to
address automatic HF subfield segmentation and, to our knowledge, the first one to do so in
focal T2-weighted MRI, we report very encouraging segmentation accuracy results for some
of the larger subfields. For the larger subfields, CA1 and DG, comparison of manual and
automatic segmentations yields average Dice overlaps exceeding 0.87, average boundary
displacement errors below 0.3 mm, and average intraclass correlation coefficients exceeding
0.89. Our results compare favorably with prior work on subfield segmentation, and accuracy
for CA1 and DG is very close to the best results reported for whole-hippocampus segmentation
in T1-weighted MRI. These findings provide support for the hypothesis that subfield-specific
biomarkers for neurodegenerative disorders could prove to be as sensitive, yet more
anatomically specific, than the widely recognized biomarkers derived from whole-
hippocampus volumetry.
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Fig. 1.
A comparison of the T1-weighted and T2-weighted MRI used by the automatic segmentation
algorithm. a. A sagittal slice through the right hippocampal formation in the T1-weighted
image. The green overlay illustrates the position and orientation of the T2-weighted image,
which is oblique relative to the T1-weighted image. b. A coronal slice in the T1-weighted
image; the dashed blue crosshairs point to the same voxel as in the sagittal slice. c. A sagittal
slice through the T2-weighted image. d. A coronal slice through the T2-weighted image. The
T2-weighted image offers greater contrast between hippocampal layers and greater in-slice
resolution. In particular, a well-pronounced hypointense band formed by the innermost layers
of the cornu Ammonis is apparent in both left and right hippocampi. However, the T2-weighted
image has low resolution in the slice direction.
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Fig. 2.
A close-up view of the right hippocampal formation in the image in Fig. 1. a. The coronal slice
of the T2-weighted image, zoomed in by a factor of 10. b. Manual segmentation of the
hippocampal formation overlaid on the coronal slice c,d. Three-dimensional rendering of the
manual segmentation viewed from superior and inferior directions, respectively.
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Fig. 3.
Diagram of the subdivision of the coronal slices in T2-weighted MRI into hippocampal head,
body and tail. The vertical lines indicate coronal slices. The colored rectangles describe the
subfields included in the manual segmentation protocol. Subfields CA1-3 and DG are defined
in body slices; SUB is defined in body and tail slices; PHG is not restricted to specific slices,
but the portion of the PHG belonging to three slices near the head-body boundary is designated
ERC. The scale of the subfields in this diagram does not correspond to their actual volume.
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Fig. 4.
A sagittal slice of the reference space extracted from the T1 population template. This image
is the average of 32 subject T1-weighted images warped to the template space and resampled
at 0.4 mm isotropic resolution.
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Fig. 5.
Illustration of the similarity-weighted voting procedure. Top row: coronal slice from the target
T2-weighted image warped to the reference space, and coronal slices from two “atlases”
warped to the target image using deformable registration. Middle row: Maps of normalized
cross-correlation (Ci,j in the text) between the target image and warped atlas images. The binary
mask used during registration is applied to the cross-correlation images. Bottom row: weight
images (Wi,j) derived for each atlas by ranking the cross-correlation maps, applying an inverse
exponential, and smoothing (see text for details). Larger weight values should indicate greater
similarity between the atlas and the target image. Atlas A is better registered to the target image
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than Atlas B, so the cross-correlation map and weight image for Atlas A have greater values
than for Atlas B. Continued in Fig. 6.
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Fig. 6.
Illustration of the similarity-weighted voting procedure (continued from Fig. 5). Top row: CA1
segmentations from atlases A and B warped to the target image. Middle row, left: CA1 density
map (  in the text) computed as the weighted sum of warped CA1 segmentations from all
atlases (weights Wi,j illustrated in Fig. 5). Middle row, right: density map computed using
simple majority voting, i.e., equal weight averaging of warped labels from all atlases. The
density map produced using weighted voting has greater density throughout CA1. Bottom
Row: coronal slice in the target image, in its native image space, with overlaid consensus
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segmentations produced using similarity-weighted and majority voting. The consensus
segmentation is the final output of MASV.
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Fig. 7.
Flowchart of the segmentation refinement algorithm. In the training set, initial segmentation
results from MASV are compared to ground truth manual segmentations, and a classifier is
trained to recognize mislabeled voxels. Additionally, classifiers are trained to assign the correct
label to each mislabeled voxel. MASV is also applied to images in the test set. Its results are
refined by using the first type of classifier to detect voxels mislabeled by MASV and by using
the second type of classifier to assign a correct label to these voxels.
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Fig. 8.
Examples of automatic and manual segmentations in three target subjects. Left HF is shown
in subjects 1 and 3; right HF is shown in subject 2. Shown from left to right are (1) detail of
the coronal slice of the T2-weighted image (in native image space); (2) result of multi-atlas
segmentation with similarity-weighted voting (MASV); (3) voxels declared “mislabeled” by
the learning-based bias detection algorithm; (4) final segmentation, after applying learning-
based bias correction to relabel “mislabeled” voxels; (5) manual segmentation.
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Fig. 9.
Bland-Altman plots comparing automatic volume estimates to manual volume estimates by
rater JP for each subfield. Each point corresponds to a segmentation of one of the two
hemispheres in one of Ntest test subjects in one of the Nexp cross-validation experiments. The
difference between automatic and manual estimates is plotted against their average. The solid
horizontal line corresponds to the average difference, and the dashed lines are plotted at average
±1.96 standard deviations of the difference.
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Fig. 10.
Agreement between automatically and manually derived estimates of hippocampal subfield
volume. For each subfield, the box-whisker plot shows the range of ICC coefficients obtained
from 10 cross-validation experiments (‘boxes’ are drawn between lower and upper quartiles;
'whiskers' indicate minimum and maximum values, minus the outliers, indicated by circles;
the bold line represents the median). Large values of ICC indicate better agreement. See text
for details.
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Fig. 11.
Segmentation error vs. voting bias parameter α.
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Fig. 12.
Segmentation error vs. voting regularization parameter σ.
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Table 1

A comparison of the accuracy of three variants of the automatic segmentation algorithm. The first variant is the
algorithm as described in the paper. The second variant is the algorithm without the AdaBoost learning step, i.e.,
just the initial segmentation. The third variant is initial segmentation implemented with simple majority voting
in place of similarity-weighted voting. For each variant, the mean ± standard deviation of the Dice overlap
between the automatic segmentation and manual segmentation by JP is given. The statistics are computed over
10 cross-validation experiments with 10 test datasets in each experiments. Left and right hemispheres are pooled
in the statistics.

Subfield

Accuracy (Dice Overlap) by Variant of Automatic Method

Full Method
(MASV+AdaBoost)

MASV Only MASV with Majority Voting

CA1 0.875 ± 0.033 0.851 ± 0.040 0.804 ± 0.059

CA2 0.538 ± 0.171 0.470 ± 0.179 0.357 ± 0.194

CA3 0.618 ± 0.128 0.583 ± 0.133 0.530 ± 0.145

DG 0.873 ± 0.042 0.859 ± 0.045 0.813 ± 0.087

HEAD 0.902 ± 0.018 0.893 ± 0.018 0.878 ± 0.021

TAIL 0.863 ± 0.093 0.828 ± 0.105 0.793 ± 0.112

SUB 0.770 ± 0.061 0.742 ± 0.063 0.715 ± 0.062

ERC 0.787 ± 0.097 0.738 ± 0.093 0.696 ± 0.108

PHG 0.706 ± 0.064 0.658 ± 0.073 0.627 ± 0.074
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Table 2

A comparison of the accuracy of three variants of the automatic segmentation algorithm in terms of boundary
displacement error. The columns are defined in the caption to Table 1.

Subfield

Boundary Displacement Error (mm) by Method Variant

Full Method
(MASV+AdaBoost)

MASV Only MASV with Majority Voting

CA1 0.282 ± 0.079 0.320 ± 0.090 0.412 ± 0.139

CA2 0.411 ± 0.308 0.480 ± 0.342 0.640 ± 0.563

CA3 0.395 ± 0.279 0.432 ± 0.287 0.501 ± 0.406

DG 0.287 ± 0.124 0.318± 0.139 0.424 ± 0.232

HEAD 0.594 ± 0.092 0.623 ± 0.093 0.693 ± 0.105

TAIL 0.572 ± 0.394 0.636 ± 0.446 0.728 ± 0.468

SUB 0.639 ± 0.272 0.675 ± 0.275 0.697 ± 0.247

ERC 0.443 ± 0.216 0.497 ± 0.209 0.566 ± 0.246

PHG 0.803 ± 0.273 0.856 ± 0.262 0.880 ± 0.238
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Table 4

Computational cost of the different atomic components of the proposed method. For each component, the table
lists the number of times it is performed during training, the number of times it is performed during testing, and
the average CPU time, measured when performing experiments on a 3 GHz Intel CPU, with each component
using a single CPU thread. Components not listed in the table have negligible computational cost (a few minutes
or less). The table describes the number of runs for a single train/test experiment; i.e., it does not take into account
repeated execution of the algorithm during cross-validation.

Algorithm Component Training Runs Testing Runs Time per run

MASV: T1 to T1 template whole-brain registration Ntrain Ntest 174 min

MASV: T1+T2 multi-atlas registration 2Ntrain(Ntrain−1) 2NtrainNtest 46 min

AdaBoost training: bias detection 2Nsubfields 0 5-376 min*

AdaBoost training: bias correction 2Nsubfields 0 376 min

*
: execution time for bias detection is proportional to subfield size.
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Table 5

Estimated approximate total run time on two different computer configurations. Run time is calculated for a
training set of 20 subjects and a test set of 10 subjects. The 64-core cluster has 8 CPUs with 8 cores and 16 GB
memory per CPU. The 8-core workstation has one CPU with 8 cores and 16 GB memory.

Configuration Training Time Testing Time

64-core cluster 19 h 8h

8-core workstation 168 h 46 h
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Table 6

The contribution of manual head/body/tail slice marking to the agreement between automatic and manual
segmentation results. The first column gives average Dice overlaps between manual segmentations and initial
MASV segmentations constrained by manual slice marking (as described in the paper). The second column shows
Dice overlaps computed when MASV is not constrained by slice marking, i.e., subfields CA1-3, DG, and SUB
are allowed toextend into slices in which the manual segmentation does not assign subfield-specific labels. See
text for discussion.

Subfield

Accuracy (Dice Overlap) by Use of Manual Slice Marking

MASV MASV without Slice Marking

CA1 0.851 ± 0.040 0.770 ± 0.065

CA2 0.470 ± 0.179 0.422 ± 0.175

CA3 0.583 ± 0.133 0.532 ± 0.137

DG 0.859 ± 0.045 0.773 ± 0.067

HEAD 0.893 ± 0.018 0.874 ± 0.025

TAIL 0.828 ± 0.105 0.744 ± 0.119

SUB 0.742 ± 0.063 0.727 ± 0.061

ERC 0.738 ± 0.093 0.627 ± 0.123

PHG 0.658 ± 0.073 0.625 ± 0.076
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