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Abstract
The process of crop domestication has long been a topic of active research for biologists,
anthropologists and others. Genetic data have proved a powerful resource for drawing inferences on
questions regarding the geographical origins of crops, the numbers of independent domestication
events for a given crop species, the specific molecular changes underlying domestication traits, and
the nature of artificial selection during domestication and subsequent crop improvement. We would
argue that these genetic inferences are fundamentally compatible with recent archaeological data that
support a view of domestication as a geographically diffuse, gradual process. In this review, we
summarize methodologies ranging from QTL mapping to resequencing used in genetic analyses of
crop evolution. We also highlight recent major insights regarding the timing and spatial patterning
of crop domestication and the distinct genetic underpinnings of domestication, diversification, and
improvement traits.

Captivating crops
Domesticated plants have provided excellent study systems for many fields of plant biology,
from molecular biology to physiology to population genetics, as well as other disciplines such
as archaeology and ethnobotany. There is also a strong human interest in plant domestication
because of the important role crops have played in shaping current societies, and, indeed,
allowing many more humans to exist on the planet than would otherwise have been possible.
Although this broad interest in plant domestication is an enviable position compared with what
is faced by those studying under-appreciated systems, it can sometimes mean that there are
lags in communication between the different disciplines studying this process, so that important
findings are not always fully recognized.

In this review, we explore some of the recent findings in the area of plant domestication
genetics, a field in which new advances are being made at a rapid pace. We describe how these
genetic findings can be interpreted in light of apparently conflicting inferences from other
scientific disciplines, particularly archaeology. We explore what can be synthesized from the
expanding pool of studies about the nature of genetic changes that occur under artificial
selection. Finally, we discuss the future of plant domestication genetics in an era of readily
accessible genomic data for non-model plant species.
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Plant domestication: timing and number of origins
There are two main questions about the origin of domesticated species that can be addressed
using both archaeological and evolutionary genetic techniques: the origin of a crop (including
whether there is evidence for multiple, geographically distinct domestication events); and the
tempo of the domestication event(s). Genetic studies that examine the geographical origins of
a crop typically rely on genome-wide neutral markers, which are used to assess allele
frequencies in a crop compared with populations of its wild relatives. Due to the strong genetic
bottlenecks that occur during the domestication process, the allelic diversity in the crop is
expected to be a subset of that found in the wild population(s) from which it was derived. Thus,
if populations of the wild progenitor are extant in the geographical location(s) where
domestication occurred, the geographical origin(s) of domestication can potentially be
pinpointed to a particular population or region. Genetic data have indicated single
domestication events for many, but not all, crops [1] (discussed below).

Similarly, genetic data can be used to address the tempo of plant domestication. The duration
of the domestication event can potentially be inferred from the severity of the genome-wide
bottleneck, and by whether a selectively favored ‘domestication allele’ (see Box 1 and Table
1) spread to fixation quickly or slowly, as measured by the size of the selective sweep (region
of reduced variation) in the surrounding genomic region [2–5]. Supporting information for the
potential speed of a domestication event can also be gained from the genetic architecture of
domestication traits, as inferred from quantitative trait locus (QTL) maps; in this case, it is
assumed that domestication phenotypes under simple genetic control can be achieved more
quickly than traits with a complex genetic basis [6–8].

Box 1

Domestication: definitions

The process of plant domestication has been aptly described as a continuum of increasing
codependence between plants and people [109]. At the starting point, plants are free-living,
and humans invest little in plant survival and production. At the other extreme, plants cannot
reproduce or survive without the investment of a large amount of human labor, and humans
have shifted to an agricultural economy, giving up other modes of subsistence. This
continuum can make it difficult to know when some plants are ‘domesticated’, and therefore
difficult to categorically classify traits and underlying genes as being directly related to
domestication. For simplicity, domesticated plants are generally classified as such because
they possess at least a subset of a suite of traits constituting the ‘domestication
syndrome’ [110]. This includes an increase in fruit or grain size compared with the wild
progenitor, more determinate growth and/or apical dominance, robust stature, and
particularly a loss of dispersal mechanisms; these traits should be found in nearly every
variety of a domesticated species. Following domestication, there is also a process of crop
improvement and diversification, such as selection for grain quality (changes in starch and
other compounds), fruit or grain color, fruit or grain shape, flowering time (synchronization
or loss of photoperiod sensitivity), and plant height [111]. These changes can be dramatic,
but they are of a nature that the plant would still be considered domesticated in the absence
of such traits, and the traits are often found in only a subset of domesticates.

In Table 1, we have listed domestication genes from multiple crops. However, we have only
listed improvement and diversification genes from rice due to the large number of plant
improvement and diversification genes that have now been identified.

Since the 1990s, the application of QTL mapping, followed by the characterization of
functional mutations at some domestication genes, has revealed that the suite of changes
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associated with domestication (Box 1 and Table 1) can, in many plants, have a relatively simple
genetic basis [8–14] (but see Refs [7,15]), and that some major morphological transitions can
be achieved via changes at a single locus [16–19]. These genetic approaches complement a
limited number of domestication experiments where artificial selection has been shown to
rapidly change the phenotypes of wild or crop–wild hybrids, and to achieve domesticate-like
forms in less than 20 generations [20–23]. Together, these lines of evidence have suggested
that domestication need not be a slow or gradual process, and that it could potentially be fairly
rapid, given strong selective pressures and an appropriate genetic architecture. Similarly,
evidence of severe genome-wide reductions in variation (due to population bottlenecks in
combination with selection) [24–28] and large selective sweeps [29–32] have suggested rapid
domestication and/or spread of domestication traits in some crop species.

Recently, archaeological evidence has surfaced to suggest that the process of plant
domestication might have been a more gradual process, at least for cereal crops in the Fertile
Crescent. Supporting evidence has included widespread indications of pre-domestication
cultivation of wild plants, archaeological evidence of multiple domestication ‘trials’ in
geographically distinct locations, and the gradual appearance in the archaeobotanical record
of some classical domestication traits, such as the non-shattering phenotype (Box 2) [33,34].
It has been argued that these findings contradict or should substantially alter our understanding
of the process of plant domestication [35,36]. We would instead argue that findings from
genetic and archaeological studies represent complementary perspectives on domestication,
each highlighting a different facet of this complex process.

Box 2

Why were we so slow in selecting for non-shattering grains?

Although limited in number, artificial domestication experiments have played an important
role in our understanding of crop evolution. These studies (all, to our knowledge, conducted
in cereals) have shown that classical domestication traits, such as the loss of shattering and
loss of seed dormancy, can arise and increase in frequency over a short time period when
subjected to strong selection [20–23]. In contrast, Old World archaeological data indicate
that the appearance of non-shattering grains was probably gradual, at least in barley, wheat,
and rice [33,34,112]. In these crops, the non-shattering phenotype appears only after an
increase in grain size, a trait that itself reflects selection for germination under active
cultivation conditions (e.g., tillage and greater sowing depth). Thus, although the loss of
shattering would be expected to greatly facilitate the harvesting of grains in planted fields,
the phenotype does not actually appear in the initial stages of active cultivation and selection
[33].

One explanation proposed for this pattern in rice is that strong selection did not occur until
after an optimal, reduced-shattering phenotype had arisen [71]. Mutations conferring a
complete loss of shattering might facilitate harvesting, but they would also make the
subsequent threshing process more laborious. By contrast, a reduction in shattering, as
occurs with the rice sh4 domestication allele [69], would provide a better balance between
harvesting and threshing. Therefore, the increase in non-shattering phenotypes would be
slow until the appearance of this optimal phenotype (potentially not discernable in the
archeological record), at which time it would be under strong selection. Alternatively,
conscious selection might simply have been ineffective in the face of gene flow from wild
or weedy relatives (demonstrated by [113]).

Quantification of the strength of selection on diverse domestication genes might also
provide insights into this question. The selection coefficient (s) for a domestication allele
can potentially be inferred from the size of the selective sweep in the surrounding genomic
region [29]. If s values for non-shattering alleles were found to be lower overall than those
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of other domestication-related alleles, this would support the hypothesis that the strength
of selection for this phenotype has been weaker than for other domestication-related traits.
To our knowledge, there is currently only one non-shattering allele for which a selective
coefficient has been quantified (rice sh4 [71]), and there are only a few genes to which the
value can be compared. The value for s for sh4 is between 0.187 and 0.235; this value is
lower than the s for the waxy allele (4.59-4.24), but higher than what is seen for the tb1
allele (s = 0.05) [29]. Additional measures of s and comparative analyses across diverse
domestication genes (see Box 1 and Table 1) are needed to fully test this hypothesis.

In this context, it is important to draw a distinction between the domestication processes
inferred by sampling the present-day representatives of a crop species, and those inferred by
considering the archaeological record. The genetic evidence that can be extracted from living
crops cannot provide information about any lineage that did not contribute to the currently
extant domesticate (Figure 1). Even studies that use ancient DNA (e.g., Ref. [37]) capture only
a small subset of the historical genetic diversity of a crop. Thus, it is possible that there could
be numerous early ‘experiments’ in the domestication of many crop species, but that few of
these lineages have persisted to contribute to the genetic diversity of contemporary germplasm
[33,38]. Indeed, genetic studies of species in the incipient stages of domestication have revealed
multiple domestication origins or high ongoing gene flow between wild and cultivated varieties
[39,40], which is consistent with this scenario.

Even with the necessarily limited historical picture obtained by genetic sampling of present-
day germplasm, it is interesting to note the number of crop species for which genetic data have
revealed multiple origins. For example, genetic analysis has confirmed the multiple origins of
barley (Hordeum vulgare) [41], Phaseolus beans [42,43], and Asian rice (Oryza sativa) [44];
notably, these are species for which morphological or archaeological evidence alone was
insufficient to confirm multiple origins. Evolutionary genetics have also been used to explore
details of the multiple origins of peppers (Capsicum spp.) [45], squash (Cucurbita spp.) [46],
and African rice (Oryza glaberrima) [47]; these are all species for which obvious geographical
or morphological differences already strongly suggested multiple origins. These findings
would appear to stand in contrast to assertions that molecular evolutionary studies “…have
invariably assumed rapid, single origins for domestic species” [2].

Domesticated plants: models for convergent and parallel evolution
Convergent phenotypic evolution (the appearance of the same trait in independent evolutionary
lineages) and parallel phenotypic evolution (the appearance of the same trait in closely related
or potentially interbreeding lineages) can both occur in crop domestication. Convergent
evolution is manifest in the repeated evolution of classical domestication traits, such as the loss
of seed shattering and seed dormancy seen in most cereal crops. Parallel evolution occurs as
the appearance of the same domestication trait in multiple, independent origins of a single
domesticated crop (although this pattern can also reflect selective introgression of a single
favored allele across crop varieties; Box 3). Both types of evolution pose the same intriguing
question: what is the genetic basis of phenotypic changes that have evolved repeatedly in
response to human selective pressures?

Box 3

Multiple origins and mixed signals

Multiple origins of a single species (domesticated or wild) can be discerned from the
relationship of the alleles in the derived lineage relative to the progenitor. A lineage with
multiple origins will show a polyphyletic pattern, whereas a lineage with a single origin
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will appear monophyletic. However, not all genes will reflect the history of a crop
accurately. In particular, domestication alleles that result in desirable traits can easily be
moved from one domesticate to another through hybridization and selective breeding (see
Figure I, shown in the large tree). Thus, although the majority of the genes in the genome
will represent the true history of a domesticated lineage (Figure I, the tree based on neutral
genes), domestication genes might falsely indicate that the crop has a single origin (Figure
I, the tree based on domestication genes). The difference between gene trees and lineage
histories (usually called species trees) is reviewed in [114]. Overall, even though two unique
domestication alleles for the same trait is strongly supportive of multiple origins (as is the
case for the brittle rachis loci in barley, where the two domestication alleles have unique
origins [52]), a single origin for a domestication allele does not necessarily indicate a single
origin for a crop (as is the case for shattering in rice, where the domestication allele
originated in the japonica group and spread to the indica group through selective breeding
[69,71]).

Figure I.
Lineage history and gene trees for a crop with multiple origins. The lineage history is the
large tree, shown in black, and reflects the fact that there are two domestication events.
Neutral and domestication gene trees are shown in color; the same trees are shown both
inside the lineage tree and independently in the lower left and right hand sides.

For the case of convergent evolution, it is interesting to note that domestication QTL that map
to syntenic regions across multiple crop species do not necessarily involve the same underlying
loci. For example, although broad similarities in the genetic architecture of domestication traits
of cereal crops initially suggested that the same loci might be responsible across the grass
family [11], fine mapping and cloning of the underlying genes has not borne this out. Instead,
more precise QTL maps have revealed that the same traits in different cereals are controlled
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by distinct constellations of loci [48,49]. In the Solanaceae, some fruit weight QTL in tomato
(Solanum lycopersicum) and pepper (Capsicum spp.) do map to the same locations [50],
suggesting that this prediction might hold true for a subset of traits in this family. However,
overall, domestication genes that have been cloned and characterized to date have not been of
major importance in multiple domesticates. This is illustrated by the well-studied
domestication gene tb1, which is responsible for major plant architectural changes in maize
(Zea mays) [16], but which has only a slight effect on the branching architecture of
domesticated foxtail millet (Setaria italica) [51]. More telling, perhaps, is the finding that even
multiple domestication events within the same species can result from changes at different loci,
as is the case for shattering in barley, which is controlled by unique loci in the two domesticated
lineages [52]. These findings all indicate that there are many ways to ‘make’ domesticated
plants. It is also notable that most of the domestication alleles characterized to date are not
loss-of-function mutations (Box 1 and Table 1); thus, unique domestication genes are not
simply the product of ‘breaking’ a given pathway at different points in each species.

In contrast to domestication genes per se, recent studies of genes selected upon after the initial
domestication process (Box 1) are revealing more instances of repeated evolution affecting the
same genes both within and among species. ‘Diversification’ genes are the target of selection
for phenotypic variation among varieties of a crop, such as different types of starch or flavor.
One classic example of a trait under diversifying selection is the glutinous or sticky phenotype
of cooked cereal grains, reflecting the absence (or near absence) of the starch amylose in the
endosperm. The glutinous phenotype is favored in select varieties of rice (primarily a subset
of japonica varieties of O. sativa) [29,53], maize [54], and foxtail millet [55,56], and is
controlled by unique mutations at the Waxy gene in all these crops. This pattern has also been
shown within a single species, specifically in the context of diversifying selection for aroma
qualities in cultivated rice. The rice BADH2 gene underlies variation in the production of 2-
acetyl-1-pyrroline, a primary determinant of aromatic qualities in rice [57]. A survey of the
BADH2 gene in aromatic rice accessions from around the world has shown that although one
aromatic allele is by far the most common, the aromatic phenotype has also been generated via
a variety of mutations at the same gene [58].

Some traits that are widespread in domesticated crops are important because they change the
quality of the harvested crop, although they do not strongly affect cultivation in terms of ease
of harvest or sowing. These traits represent the effect of selection on ‘improvement’ genes
following the initial stages of domestication. Grain or kernel color has been a target of selection
for improved quality in wheat (Triticum aestivum), maize, and rice [59–63]. In rice, the genetic
basis for the widespread white (nonpigmented) grains in domesticated varieties (compared
with the pigmented grains of wild rice) has been revealed to be loss-of-function mutations at
the Rc gene, which encodes a regulatory protein in the proanthocyanidin synthesis pathway
[64]. Rc is often considered as both a domestication gene and an improvement gene (see Box
1 and Table 1) because it is closely linked to QTL that underlie variation in seed dormancy
[65]. The majority of nonpigmented rice cultivars (>97%) carry a single loss-of-function allele
as a result of selective introgression of this allele across variety groups (Box 3); however, a
few landraces (<3%) carry an independently evolved loss-of-function allele instead [30].
Unlike genes selected upon during the initial domestication process, ‘diversification’ and
‘improvement’ phenotypes in rice appear more likely to result from a variety of mutations at
the same gene (5 out of 11, if Rc is counted as an improvement gene; Box 1 and Table 1). In
addition, these are generally loss-of-function mutations, making the pattern somewhat counter-
intuitive, because it would seem that there might be many ways to ‘break’ a particular pathway
other than repeated mutations in the same gene. It is unclear whether this early trend will hold
as more genes are cloned and characterized in a variety of cultivars within and among species.
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Finding domestication, diversification, and improvement genes
Quantitative trait locus (QTL) mapping conducted in crop–wild crosses was one of the first
techniques applied to understand the genetic basis of domestication traits [66,67]. As described
above, the limited number of QTL related to domestication traits suggested that many plants
have been domesticated via changes at relatively few loci [1]. QTL mapping is necessarily
limited in resolution, and each QTL peak can potentially span more than 100 genes;
nevertheless, the apparent simplicity of genetic transitions required to produce a domestication
phenotype is still impressive. In addition, the same crop–wild crosses used for QTL mapping
have often provided the recombinant mapping populations that led the way to map-based (or
positional) cloning of domestication genes. Map-based cloning has provided the majority of
cloned and characterized domestication genes to date (Box 1 and Table 1), and have confirmed
the predictions that individual domestication genes themselves (and not just QTL) could have
major phenotypic effects.

QTL mapping and map-based cloning have also been conducted using crosses other than crop–
wild combinations. These alternatives include wild–weedy crosses and crosses between
different varieties within a domesticate [65,68]. All these crosses can provide valuable
information, but it is important to recognize that the QTL (and eventually the genes) identified
in a particular cross might not be important in other crosses or environments. One interesting
demonstration of this phenomenon is the two shattering genes that have so far been cloned in
rice, sh4 [69] and qSH1 [70]. The sh4 gene was cloned from a crop–wild mapping population,
whereas qSH1 was cloned from a cross between the two independently domesticated
subspecies of Asian rice, indica and japonica. Surveys of the occurrence of these two genes
in a world-wide sample of domesticated and wild rice showed that the sh4 domestication allele
has been fixed in all cultivated rice, whereas the qSH1 domestication allele is found in only a
subset of temperate japonica varieties [71,72]. This distribution of domestication alleles at the
two different shattering loci is entirely congruent with the mapping populations used to the
discover them; sh4 is a locus that differentiates wild from domesticated rice, whereas qSH1 is
probably more important for improvement or modification within the temperate japonica
variety group. Researchers should carefully consider the nature of the traits and genes they are
interested in characterizing when they choose the basis of their mapping populations.

Despite the large amount of information gained from QTL mapping and map-based cloning to
date, this approach suffers from the problem of bias in human perception of important traits;
that is, we tend to investigate what we already think is important. Genomic scans (also referred
to as hitchhiking mapping), where diversity at molecular markers in wild and domesticated
populations is compared to identify reductions in variation consistent with selection [5,73,
74], are unbiased about the type of locus that might be identified as being important in
domestication. Genome scans are becoming easier to implement because of the relative
accessibility of genomic data from which markers can be developed, although large sample
sizes and appropriate data analysis are still challenges. These scans have mainly been
implemented to identify the proportion of genes under selection during domestication, and
have provided lists of candidate domestication genes for further consideration [3,75–77]. As
with QTL mapping, the choice of sampling is key to the conclusions that can be drawn from
a study–a comparison of wild plants and domesticated landraces can be used to identify
domestication genes, whereas a comparison of landraces to elite cultivars can provide a list of
candidate genes important in crop improvement and diversification [78–80]. Interestingly,
genomic scans in sunflower (Helianthus annuus) and maize have revealed the signature of
selection at genes involved in amino acid synthesis in the domesticates, suggesting similar
patterns of change at the molecular level that might not have detected based on investigations
starting at the phenotypic level [3,78].
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Plant biologists are also beginning to pursue association mapping, an approach closely related
to QTL mapping. In both methods, the goal is to statistically associate segregating allelic
variation with a phenotype of interest; however, with association mapping the associations are
inferred using population samples of potentially unrelated individuals rather than the progeny
of an artificial cross [81]. Human geneticists pioneered this technique, in part because of the
obvious constraints of genetic mapping in humans [82,83]. Association mapping offers an
advantage compared with any other technique in potentially identifying a restricted genomic
region or even the causal single-nucleotide polymorphism (SNP) controlling the trait of interest
owing to the long history of recombination in natural populations, compared with the few
generations usually represented in mapping populations [84–86]. However, association
mapping in selfing species (which are common among domesticated plants) does have a
drawback because the build-up of linkage disequilibrium (LD) in these lineages due to
population structure can lead to spurious associations [87]. Interestingly, crop–wild hybrid
zones, which are fairly common for some domesticated plants, might offer a source of material
for association mapping approaches, provided the hybrid zones are persistent rather than
ephemeral [88,89].

Finally, high-throughput resequencing techniques now offer a complement to (or simply a
faster implementation of) the approaches outlined above. One obvious application is the
resequencing of a candidate domestication gene or of a diversification or improvement gene
in population-level samples of the wild or domesticated species. This approach can be used to
test for the presence of a selective sweep [6], and, if combined with a phenotypic assay, can
potentially enable a functional polymorphism to be pinpointed through association mapping
[90]. In addition, easily obtained sequence data can provide a wealth of new markers for fine-
mapping in a non-model species. Alternatively, for domesticates that have experienced a severe
genetic bottleneck (which makes the detection of selective sweeps difficult [91]), these
resequencing surveys can identify regions of high divergence between the crop and the wild
species, which are also candidate regions for changes associated with domestication. In the
future, it should be possible to combine genome scans and association mapping in many
species, along with QTL mapping in species that are amenable to crosses.

Future research
Our understanding of plant domestication is constantly being reshaped by new discoveries in
a variety of disciplines, and many of the patterns that have emerged for the tempo of
domestication, the origins of cultivated plants, and the nature of genes underlying
domestication traits are still subject to change. Indeed, because cereal crops have so dominated
research into plant domestication (owing to their economic importance and genetic
tractability), additional information from other crops will be particularly important for
confirming or rethinking the current paradigms. Over the next ten years, the application of
genome resequencing, genome scans, and selective sweep mapping should greatly expand the
pool of available evidence for non-model domesticates. It will be interesting to see whether
this new information will bolster or reshape our current understanding of the pattern and process
of plant domestication.
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Figure 1.
Why archaeology and genetics do not match. This figure shows the genealogy of seven lineages
over time. Genetic approaches applied to the modern crop can only detect the lineage shown
in red. By contrast, all lineages can potentially be detected using archaeological techniques.

Gross and Olsen Page 14

Trends Plant Sci. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gross and Olsen Page 15

Ta
bl

e 
1

C
ro

p 
do

m
es

tic
at

io
n,

 d
iv

er
si

fic
at

io
n 

an
d 

im
pr

ov
em

en
t g

en
es

G
en

e
C

ro
p

T
ra

it
C

au
sa

tiv
e 

ch
an

ge
C

la
ss

ifi
ca

tio
n

Se
l’n

a
Pr

ev
al

en
ce

R
ef

s

D
om

es
tic

at
io

n 
ge

ne
s

Vr
s1

 (s
ix

-r
ow

ed
 sp

ik
e 

1)
B

ar
le

y
In

flo
re

sc
en

ce
 st

ru
ct

ur
e

Pr
em

at
ur

e 
st

op
 (i

ns
er

tio
n,

de
le

tio
n,

 o
r A

A
 c

ha
ng

e)
D

om
es

tic
at

io
n

N
.T

.
Su

bs
et

 o
f d

om
es

tic
at

es
[9

2]

tb
1 

(te
os

in
te

 b
ra

nc
he

d1
)

M
ai

ze
Pl

an
t a

nd
 in

flo
re

sc
en

ce
 st

ru
ct

ur
e

R
eg

ul
at

or
y 

ch
an

ge
D

om
es

tic
at

io
n

Y
es

A
ll 

do
m

es
tic

at
es

[1
6,

93
]

tg
a1

 (t
eo

si
nt

e g
lu

m
e a

rc
hi

te
ct

ur
e

1)
M

ai
ze

Se
ed

 c
as

in
g

A
A

 c
ha

ng
e

D
om

es
tic

at
io

n
Y

es
A

ll 
do

m
es

tic
at

es
[9

4]

sh
4 

(Q
TL

 4
 re

sp
on

si
bl

e 
fo

r t
he

re
du

ct
io

n 
of

 g
ra

in
 sh

at
te

rin
g)

R
ic

e
Sh

at
te

rin
g

R
eg

ul
at

or
y 

an
d 

A
A

 c
ha

ng
e

D
om

es
tic

at
io

n
Y

es
A

ll 
do

m
es

tic
at

es
[6

9,
71

]

PR
O

G
1 

(P
RO

ST
RA

TE
G

RO
W

TH
 1

)
R

ic
e

Pl
an

t s
tru

ct
ur

e
A

A
 c

ha
ng

e
D

om
es

tic
at

io
n

Y
es

b
A

ll 
do

m
es

tic
at

es
[1

8,
19

]

qS
H

1 
(Q

TL
 fo

r s
ee

d 
sh

at
te

rin
g

on
 c

hr
om

os
om

e 
1)

R
ic

e
Sh

at
te

rin
g

R
eg

ul
at

or
y 

ch
an

ge
D

om
es

tic
at

io
n 

an
d 

im
pr

ov
em

en
t

N
o

Su
bs

et
 o

f d
om

es
tic

at
es

[7
0,

71
]

Rc
 (r

ed
 p

er
ic

ar
p)

R
ic

e
G

ra
in

 c
ol

or
Pr

em
at

ur
e 

st
op

 (d
el

et
io

n 
or

A
A

 c
ha

ng
e)

D
om

es
tic

at
io

n 
an

d 
im

pr
ov

em
en

t
Y

es
Su

bs
et

 o
f d

om
es

tic
at

es
(m

os
t m

od
er

n)
[3

0,
64

]

Sd
r4

 (S
ee

d 
do

rm
an

cy
 4

)
R

ic
e

Se
ed

 d
or

m
an

cy
R

eg
ul

at
or

y 
ch

an
ge

D
om

es
tic

at
io

n
N

.T
.

Su
bs

et
 o

f d
om

es
tic

at
es

[9
5]

St
yl

e2
.1

 (Q
TL

 fo
r s

ty
le

 le
ng

th
 o

n
ch

ro
m

os
om

e 
2)

To
m

at
o

A
ut

og
am

y
R

eg
ul

at
or

y 
ch

an
ge

D
om

es
tic

at
io

n
N

.T
.

A
ll 

do
m

es
tic

at
es

[9
6]

fw
2.

2 
(Q

TL
 fo

r f
ru

it 
w

ei
gh

t o
n

ch
ro

m
os

om
e 

2)
To

m
at

o
Fr

ui
t w

ei
gh

t (
fr

ui
t s

iz
e)

R
eg

ul
at

or
y 

ch
an

ge
D

om
es

tic
at

io
n 

an
d 

im
pr

ov
em

en
t

N
.T

.
Su

bs
et

 o
f d

om
es

tic
at

es
(m

os
t m

od
er

n)
[6

6]

fa
s (

fa
sc

ia
te

d)
To

m
at

o
Lo

cu
le

 n
um

be
r (

fr
ui

t s
iz

e)
R

eg
ul

at
or

y 
ch

an
ge

D
om

es
tic

at
io

n 
an

d 
im

pr
ov

em
en

t
N

.T
.

Su
bs

et
 o

f d
om

es
tic

at
es

(m
os

t m
od

er
n)

[9
7]

Q
W

he
at

Sh
at

te
rin

g 
an

d 
fr

ee
-th

re
sh

in
g

R
eg

ul
at

or
y 

an
d 

A
A

 c
ha

ng
e

D
om

es
tic

at
io

n
N

.T
.

A
ll 

do
m

es
tic

at
es

[1
7]

Im
pr

ov
em

en
t a

nd
 d

iv
er

si
fic

at
io

n 
ge

ne
s i

n 
ri

ce

G
IF

1 
(G

RA
IN

 IN
C

O
M

PL
ET

E
FI

LL
IN

G
 1

)
R

ic
e

G
ra

in
 fi

lli
ng

R
eg

ul
at

or
y 

ch
an

ge
Im

pr
ov

em
en

t
Y

es
A

ll 
do

m
es

tic
at

es
 (s

ur
ve

y
no

t c
om

pl
et

e)
[9

8]

G
S3

 (Q
TL

 fo
r g

ra
in

 si
ze

 a
nd

le
ng

th
 o

n 
ch

ro
m

os
om

e 
3)

R
ic

e
G

ra
in

 si
ze

 a
nd

 le
ng

th
Pr

em
at

ur
e 

st
op

 (d
el

et
io

n)
Im

pr
ov

em
en

t
Y

es
Su

bs
et

 o
f d

om
es

tic
at

es
[9

9]

qS
W

5 
(Q

TL
 fo

r s
ee

d 
w

id
th

 o
n

ch
ro

m
os

om
e 

5)
R

ic
e

G
ra

in
 w

id
th

D
el

et
io

n
Im

pr
ov

em
en

t
Y

es
b

Su
bs

et
 o

f d
om

es
tic

at
es

[1
00

]

G
W

2 
(Q

TL
 fo

r g
ra

in
 w

ei
gh

t o
n

ch
ro

m
os

om
e 

2)
R

ic
e

G
ra

in
 w

id
th

 a
nd

 w
ei

gh
t

Pr
em

at
ur

e 
st

op
 (d

el
et

io
n)

Im
pr

ov
em

en
t

N
.T

.
Su

bs
et

 o
f d

om
es

tic
at

es
(s

ur
ve

y 
in

co
m

pl
et

e)
[1

01
]

BA
D

H
2 

(B
ET

AI
N

E 
AL

D
EH

YD
E

D
EH

YD
RO

G
EN

AS
E 

2)
R

ic
e

Fr
ag

ra
nc

e
Pr

em
at

ur
e 

st
op

 (d
el

et
io

n 
or

A
A

 c
ha

ng
e)

D
iv

er
si

fic
at

io
n

Y
es

Su
bs

et
 o

f d
om

es
tic

at
es

[5
7,

58
]

Trends Plant Sci. Author manuscript; available in PMC 2011 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gross and Olsen Page 16

G
en

e
C

ro
p

T
ra

it
C

au
sa

tiv
e 

ch
an

ge
C

la
ss

ifi
ca

tio
n

Se
l’n

a
Pr

ev
al

en
ce

R
ef

s

G
hd

7 
(Q

TL
 fo

r g
ra

in
 n

um
be

r,
pl

an
t h

ei
gh

t, 
an

d 
he

ad
in

g 
da

te
)

R
ic

e
G

ra
in

 n
um

be
r, 

pl
an

t s
tru

ct
ur

e,
 a

nd
flo

w
er

in
g 

da
te

Se
ve

ra
l u

ni
qu

e 
al

le
le

s w
ith

di
ff

er
en

t e
ff

ec
ts

; s
om

e
pr

em
at

ur
e 

st
op

 a
nd

 d
el

et
io

n
al

le
le

s

Im
pr

ov
em

en
t

N
.T

.
Su

bs
et

 o
f d

om
es

tic
at

es
[1

02
]

Ph
r1

 (P
he

no
l r

ea
ct

io
n 

1)
R

ic
e

G
ra

in
 d

is
co

lo
ra

tio
n 

(o
xi

da
tio

n)
Pr

em
at

ur
e 

st
op

 (i
ns

er
tio

n 
or

de
le

tio
n)

D
iv

er
si

fic
at

io
n

Y
es

Su
bs

et
 o

f d
om

es
tic

at
es

[1
03

,1
04

]

W
ax

y
R

ic
e

G
ra

in
 q

ua
lit

y 
(s

ta
rc

h)
In

tro
n 

sp
lic

in
g 

de
fe

ct
 (n

on
-

fu
nc

tio
na

l)
D

iv
er

si
fic

at
io

n
Y

es
Su

bs
et

 o
f d

om
es

tic
at

es
[2

9,
53

]

G
n1

a 
(Q

TL
 fo

r g
ra

in
 n

um
be

r o
n

ch
ro

m
os

om
e 

1,
 a

)
R

ic
e

G
ra

in
 n

um
be

r
Pr

em
at

ur
e 

st
op

 (d
el

et
io

n)
Im

pr
ov

em
en

t
N

.T
.

Su
bs

et
 o

f d
om

es
tic

at
es

[6
8]

sd
1 

(s
em

id
w

ar
f1

)
R

ic
e

Pl
an

t s
tru

ct
ur

e
Pr

em
at

ur
e 

st
op

 (d
el

et
io

n)
 o

r
A

A
 c

ha
ng

e
Im

pr
ov

em
en

t
Y

es
Su

bs
et

 o
f d

om
es

tic
at

es
[1

05
–1

08
]

a Ev
id

en
ce

 o
f p

os
iti

ve
 se

le
ct

io
n 

ba
se

d 
on

 p
at

te
rn

s o
f g

en
et

ic
 v

ar
ia

tio
n 

an
d/

or
 p

op
ul

at
io

n 
ge

ne
tic

 te
st

s;
 N

.T
. i

nd
ic

at
es

 th
at

 se
le

ct
io

n 
w

as
 n

ot
 te

st
ed

.

b In
fe

rr
ed

 b
as

ed
 o

n 
pr

ev
al

en
ce

 o
f a

n 
al

le
le

, n
ot

 b
as

ed
 o

n 
pa

tte
rn

s o
f g

en
et

ic
 v

ar
ia

tio
n 

or
 p

op
ul

at
io

n 
ge

ne
tic

 te
st

s.

Trends Plant Sci. Author manuscript; available in PMC 2011 September 1.


