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Abstract

Aim: This study introduces a new method for graphical and numerical evaluation of time lags typically asso-
ciated with subcutaneous glucose sensing, based on Poincaré-type plot and a maximum statistical agreement
criterion.
Methods: The proposed method is illustrated by retrospective analysis of 56 continuous glucose monitor (CGM)
time series collected by the FreeStyle Navigator™ (Abbott Diabetes Care, Alameda, CA) from 28 patients with
type 1 diabetes mellitus, each wearing simultaneously two sensors (on arm and abdomen) and parallel refer-
ence blood glucose (BG) collected with a reference YSI (Yellow Springs, OH) analyzer every 15 min. The aver-
age duration of a time series was 111 h; there were approximately 10,000 sensor–reference data pairs.
Results: When sliding in time CGM readings versus BG, the point of minimal spread of a Poincaré-type plot
marks visually the time of CGM delay. The same point is numerically estimated by minimizing the distance
between BG and CGM readings. The average observed time lag between reference BG and CGM was 12.5 min.
Stratified by BG rate of change, the time lag was longer (16.8 min) when BG was falling, compared to steady
or rising BG (11.7 min and 9.9 min, respectively) (P � 0.005). The time lags at the two sensor locations were
not significantly different: 12.4 min on the arm, 12.6 min on the abdomen.
Conclusions: In this data set, substantial blood-to-sensor time delays were observed, possibly because of both
blood-to-interstitial glucose transport and instrumental delay. Analysis of BG-CGM co-dynamics that is free
from mathematical approximation of glucose fluctuations resulted in convenient visualization and numerical
estimation of these delays.
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Introduction

BLOOD GLUCOSE (BG) FLUCTUATIONS represent the measur-
able result from the action of an underlying dynamical

system. In healthy individuals this system is governed by in-
ternal feedback control; in those with diabetes the internal
feedback loops are disrupted or inefficient, which results in
abnormal glucose fluctuations and the need for their exter-
nal regulation. Subcutaneous continuous glucose monitors
(CGMs) assist this regulation by providing frequent data for
the dynamics of BG. However, CGMs measure glucose con-
centration in a different compartment—the interstitium. Inter-
stitial glucose (IG) fluctuations are related to BG presumably
via a diffusion process between the two compartments.1–4

To account for the gradient between BG and IG, CGMs are
calibrated with capillary glucose, which brings the typically
lower IG concentration to BG levels. Successful calibration

would adjust the amplitude of IG fluctuations with respect
to BG, but would not eliminate the possible time lag due to
BG-to-IG glucose transport and sensor processing time (in-
strumental delay). Because such a time lag could greatly in-
fluence the accuracy of CGM, a number of studies were ded-
icated to its investigation.5–8 The estimates of the physiologic
BG-to-IG time lag vary in different study conditions. For ex-
ample, it was hypothesized that if glucose fall is due to pe-
ripheral glucose consumption the physiologic time lag
would be negative, i.e., fall in IG would precede fall in BG.1,9

In other studies IG lagged behind BG (most of the time) by
4–10 min, regardless of the direction of BG change.3,5 The
formulation of the push-pull phenomenon offered reconcil-
iation of these results and provided arguments for a more
complex BG-IG relationship than a simple constant or di-
rectional time lag.8,10 Sensor instrumental delay, which ap-
pears negligible for needle-type sensors but could be sub-
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stantial with microdialysis,8,11 should be added to BG-to-IG
time lag, resulting in combined, potentially substantial BG-
to-CGM delay.

However, the quantifying of BG-to-IG or combined BG-
to-CGM time lag in sensor accuracy studies is quite complex
because of the nature of the data—dense time series of fluc-
tuating BG and IG concentrations. Several methods have
been proposed, ranging from estimates of the derivatives
(slopes) of BG and IG fluctuations5 to spline approximation
and horizontal translation of the BG/IG time series.8 While
these methods are built over sound assumptions and pro-
duce similar results, certain improvements could be offered
in two directions: (1) simple visualization of the time lag ob-
served in potentially thousands (BG, CGM) data pairs and
(2) numerical estimation of the time lag that does not rely on
an underlying model or approximation (e.g., spline or poly-
nomial). Both of these directions are important in view of the
complex temporal relationship between BG and CGM.

In order to address these issues, we introduce the notion
of co-dynamics of BG and CGM and propose tools for its
quantifying and visualization. As a base we use the classical
approach to visualization nonlinear system dynamics—the
Poincaré plot, which takes a sequence of sample values and
plots each sample against the following sample.12 The sig-
nificance of this plot is that it is the two-dimensional recon-
structed phase space—the projection of the system attractor
that describes the dynamics of the time series.13,14 The geom-
etry of the Poincaré plot reveals properties of the system dy-
namics. For example, a cigar-shaped plot along the princi-
pal diagonal (x � y) would reveal high autocorrelation
within the time series, while a circular plot would reveal pe-
riodicity (the Poincaré plot of a sine wave or a pendulum is
a circle). The Poincaré plot has been used extensively to de-
scribe heart rate variability15–19 and was also introduced to
the analysis of CGM time series.20 In this paper, we propose
an altered Poincaré-type plot, which extends the visualiza-
tion of system dynamics to depiction of the co-dynamics of
BG and CGM. Then, we equip the resulting pictures with a
measure of proximity between BG and sensor data based on
the notion of statistical agreement and maximum likelihood.
This technique is applicable to evaluating both BG-to-IG and
BG-to-CGM time differences, depending on the data in hand,
as well as to evaluation of the delay in any direction—BG
preceding or lagging behind IG.

Materials and Methods

Data and procedure

This study utilizes data from an accuracy study of the
FreeStyle Navigator™ (Abbott Diabetes Care, Alameda, CA).
The data were collected under controlled hospital conditions
from 28 study participants with type 1 diabetes. Each sub-
ject wore simultaneously two sensors—one on the arm and
the other on the abdomen. Thus 56 CGM data series were
generated; these CGM time series had resolution of 1 min
and average duration of 111 h. Reference BG was measured
every 15 min using a YSI (Yellow Springs, OH) BG analyzer.
After elimination of missing data and nonfunctioning sen-
sors, the final data set was composed of approximately
10,000 BG–sensor data pairs.

Poincaré-type plot of sensor delay

The classic Poincaré plot of system dynamics presents sys-
tem state at time t plotted versus system state at time t � �t,
e.g., BG(t) on the y-axis is plotted against BG(t � �t) on the
x-axis for a time series of BG readings designated BG(t �
n�t), n � 1,2,3, . . . . We modify the plot to depict the co-dy-
namics of BG and (recalibrated) sensor interstitial readings
by placing BG(t) on the x-axis and CGM(t � �t) readings on
the y-axis for any fixed time delay �t and a time series of
sensor–reference data pairs designated [BG(tn), CGM(tn �
�t)], n � 1,2,3, . . . . Further, we vary �t with increments of
1 min (which is permitted by the high resolution of the Nav-
igator data collected in this study) and repeat the plot for
each �t. Because the discrepancy between BG and CGM dy-
namics will be minimized when �t reaches the true under-
lying sensor delay �t0, the Poincaré plot of BG-CGM co-dy-
namics will have minimal spread at �t0. In other words, the
data cloud in the Poincaré plot of BG–sensor co-dynamics will ap-
pear most orderly at the true value of sensor delay �t0.

Numerical evaluation of sensor delay

Following the idea presented in the previous paragraph,
we must now find a metric corresponding to the visual im-
pression of “most orderly” Poincaré plot. Intuitively, the
Poincaré plot would be most orderly if the statistical agree-
ment between BG fluctuations and CGM is maximized. To
compute an appropriate agreement criterion (AC), we first
normalize the data, converting the typically asymmetric dis-
tributions of CGM and reference BG into distributions that
are closed to normal (Gaussian). In order to do so, we use a
previously introduced logarithmic transformation that has
been shown effective in that regard21: each CGM or BG read-
ing (measured in mg/dL) is first transformed using the for-
mulas CGMT � 1.509 � [(ln (CGM))1.084 � 5.381] and BGT �
1.509 � [(ln (BG))1.084 � 5.381].21 After the transformation,
the (BGT, CGMT) data pairs will have approximately bivari-
ate normal distribution. Normalizing the data before com-
puting AC is important for the following statistical reason:
if a bivariate normal distribution is in place, we can claim
that the R2 coefficient of a linear regression of CGM read-
ings along BG is proportional to the information that CGM
extracts from the reference data. Thus, when the data are
normalized, maximum agreement between BG and CGM
measured by R2 would correspond to maximal information
carried by CGM about BG fluctuations. We can therefore de-
fine AC � R2 of a linear regression of BGT along CGMT, mea-
sured in percentages. As with the plots explained in the pre-
vious paragraph, we vary �t with increments of 1 min and
repeat a linear regression for each �t. Maximal AC will be
then reached when �t reaches the true underlying CGM de-
lay �t0. Thus, this procedure provides a numerical estima-
tion of �t0 that corresponds to the visual impression con-
veyed by a Poincaré plot.

Data analysis

In order to perform data analysis, the AC and the corre-
sponding CGM delay �t0 are computed from each CGM data
set, yielding two delay estimates (arm and abdomen) per
participant in the study. Then, repeated-measures analysis
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of variance is used to compare the time delays across sensor
placements and BG rates of change. Mean and standard de-
viation (SD) of the time delays across subjects are presented
as well. Using the Kolmogorov-Smirnov test for Gaussian
distribution, we have also confirmed that the data transfor-
mation described in the previous section indeed normalized
the BG data—for all but three subjects, the BG data prior to
transformation did not have normal distribution (P � 0.001),
while post-transformation the normality hypothesis was re-
jected for only one subject.

Results

Figure 1 presents a set of Poincaré plots of BG-sensor co-
dynamics over the entire BG delay values of �t � 30 min
(Fig. 1A), 22 min (Fig. 1B), 15 min (Fig. 1C), 7 min (Fig. 1D),
and 0 min (Fig. 1E). It is evident that the most orderly plot
with minimum spread of the data is in Figure 1C, e.g., at a
delay of 15 min. This visual impression is confirmed by the
graph of the AC in Figure 1F, which shows that AC achieves
a maximum at 12.5 min. Thus, in this data set across the en-
tire BG range the true sensor delay value appears to be �t0 �
12.5 min (SD � 6.1 min).

Because each participant in the study was wearing two
sensors simultaneously, it was possible to compare the time
lags at the two sensor locations. Figure 2 presents the AC of
sensors inserted in the arm (Fig. 2A) and the abdomen (Fig.
2B). The average time lag of sensors inserted in the arm was
�t0 � 12.4 min (SD � 4.9 min); the average time lag of sen-
sors inserted in the abdomen was similar: �t0 � 12.6 min
(SD � 7.1 min). Paired t test showed no statistical difference
between the two sensor sites (t � 0.1, difference not signifi-
cant).

Further, we compute the values of the time lag for differ-
ent glucose rates of change. When CGM was falling at 1
mg/dL/min or faster, the AC achieved a maximum at 16.8
min. Thus, at fast negative rate of change the true sensor de-
lay value appears to be �t0 � 16.8 min (SD � 9.8 min). When
glucose fluctuations were relatively steady—rate of change
within the range of [-1,1] mg/dL/min—the AC achieved a
maximum at 11.7 min. Thus, the true sensor delay value ap-
pears to be �t0 � 11.7 min (SD � 7.2 min). When CGM was
rising at 1 mg/dL/min, or faster, the AC achieved a maxi-
mum at 9.9 min corresponding to true sensor delay �t0 � 9.9
min (SD � 8.9 min). Repeated-measures analysis of variance
showed that the time lags at different glucose rates of change
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FIG. 1. Poincaré plots of BG–sensor co-dynamics at delay values of (A) 30 min, (B) 22 min, (C) 15 min, (D) 7 min, and (E)
0 min. (F) AC achieves a maximum at 12.5 min, which coincides with the visual impression of minimal spread of the plot
at 15 min.



were statistically different (F � 8.3, P � 0.005). A contrast re-
vealed that this significant difference was primarily due to
longer time lag at fast negative rates of change (t � 3.7, P �
0.005).

Discussion

In this paper we present a new method for graphical and
numerical evaluation of the possible time lag between BG
and CGM readings observed in a number of studies of sub-
cutaneous glucose monitoring.5–8 The method is based on
the notion of co-dynamics of BG fluctuations and their cor-
responding CGM readings and on the representation of these
co-dynamics via Poincaré-type plots. The principal idea is
that the plot would appear most orderly and aligned along
the true underlying relationship between BG levels and
CGM values when its lag is at the exact time of sensor de-
lay. If the relationship between BG and CGM is strictly lin-
ear, the points of the plot will coalesce along a straight line—
the principal diagonal of the plot. In such a linear case the
Poincaré plot would also be a correlation plot and its mini-
mum spread would be at the point of maximal correlation,
i.e., the true sensor delay will occur at the point where the
correlation between BG and sensor readings is maximized.
However, in many cases the relationship between BG and
CGM is not linear and is not exactly known. For example, if
the sensor tends to overestimate hypoglycemia and under-
estimate hyperglycemia, the relationship would be S-shaped.
The approach adopted in this paper does not assume linear
relationship between BG and CGM. Instead, the identifica-
tion of the likely value of a delay is first done visually; then
the numerical estimation relies on normalizing the data and
on the information properties of the resulting normal distri-
bution. If such a distribution is in place, we can claim that
the R2 of a linear regression of CGM along BG data is pro-
portional to the information, which CGM extracts from the
reference data. In other words, maximum agreement be-
tween the normalized reference and CGM data would im-
ply maximum information carried by CGM.

Because the proposed technique does not rely on mathe-
matical approximation of the data, it offers certain advan-
tages over techniques that rely on numerical derivatives,5 lin-
ear approximation, or spline smoothing of BG and sensor
fluctuations.8 The principal advantage is non-vulnerability

to missing data. For example, if some sensor data points are
missing, the time sequence of CGM data would contain gaps,
which would distort the computation of derivatives or the
spline approximation of the data. The advantage of having
gaps in the data without penalty on the delay estimation is
important: it translates into the ability of the proposed
method to estimate time delays at data strata defined by dif-
ferent rates of change or different BG levels. For example,
the method does not need long streaks of rapidly falling BG
values to estimate the delay at negative BG rates of change—
a task that is difficult with model-based approaches relying
on mathematical approximation of the data sequence. Fur-
ther, consecutive CGM readings are highly interdependent,22

which presents problems to statistical tests, particularly
when there is a need to determine degrees of freedom. The
AC proposed here does not rely on independence of the data
points involved in its computation, and therefore its appli-
cation to CGM data is statistically justified. Alternative
methods quantifying the visual impression of most orderly
Poincaré plot can be used as well, as long as independence
of consecutive BG–CGM data pairs is not assumed. For ex-
ample, standard clustering criteria can be adopted to pro-
vide numerical evaluation of the spread of the Poincaré plot.

To illustrate the proposed technique, we analyzed a data
set from an accuracy clinical trial of the FreeStyle Navigator.
In these data, the average overall time delay between refer-
ence BG and sensor readings was 12.5 min, which is com-
parable to literature results. The data did not permit sepa-
rating the possible delays because of BG-to-IG transport and
instrument time. With this data set, we were also unable to
separate the delay that can be potentially introduced by the
smoothing and filtering algorithms used by the CGM for pro-
cessing raw current data. However, we used Navigator data
derived in “engineering mode” at a frequency of one read-
ing per minute, thus, the influence of data preprocessing on
these data should be minimal.

Negative rates (e.g., rapid glucose fall) caused longer de-
lay—16.8 min—compared to 11.7 min at steady glucose and
9.9 min at rising glucose. This effect could be attributable to
the static description of the delay process—a dynamic ap-
proach that accounts for the evolution of glucose fluctuations
could ameliorate these differences. Or, we can speculate that
the sensor time delay may have a physiologic component
that depends on the rate of glucose change. In addition, be-
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FIG. 2. Graphs of AC for sensors worn on
the (A) arm and (B) abdomen, showing no
difference between the sensor delays at the
two sites.



cause each participant in the study wore two sensors, it was
possible to compare the delays at different locations—arm
and abdomen—with no significant differences found.

In summary, we have proposed a new graphical and nu-
merical analysis of BG-CGM co-dynamics that is free from
underlying approximation of glucose fluctuations and thus
results in model-free estimation of blood-to-sensor time de-
lays. The method is applicable to estimating delays in any
direction, positive or negative, corresponding to sensor lag-
ging behind or running ahead of BG, and is not sensitive to
gaps in the data, which is important for stratified analysis of
sensor delay. We should emphasize that, although signifi-
cant delays were identified, the purpose of this paper is to
introduce a new technique, not to prove or disprove the ex-
istence of possible interstitial time lag.
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