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Abstract

The essential eukaryotic molecular chaperone Hsp90 operates with the help of different co-chaperones, which regulate its
ATPase activity and serve as adaptors to recruit client proteins and other molecular chaperones, such as Hsp70, to the
Hsp90 complex. Several Hsp90 and Hsp70 co-chaperones contain the tetratricopeptide repeat (TPR) domain, which interacts
with the highly conserved EEVD motif at the C-terminal ends of Hsp90 and Hsp70. The acidic side chains in EEVD interact
with a subset of basic residues in the TPR binding pocket called a ‘carboxylate clamp’. Since the carboxylate clamp residues
are conserved in the TPR domains of known Hsp90/Hsp70 co-chaperones, we carried out an in silico search for TPR proteins
in Arabidopsis and rice comprising of at least one three-motif TPR domain with conserved amino acid residues required for
Hsp90/Hsp70 binding. This approach identified in Arabidopsis a total of 36 carboxylate clamp (CC)-TPR proteins, including
24 novel proteins, with potential to interact with Hsp90/Hsp70. The newly identified CC-TPR proteins in Arabidopsis and rice
contain additional protein domains such as ankyrin, SET, octicosapeptide/Phox/Bem1p (Phox/PB1), DnaJ-like, thioredoxin,
FBD and F-box, and protein kinase and U-box, indicating varied functions for these proteins. To provide proof-of-concept of
the newly identified CC-TPR proteins for interaction with Hsp90, we demonstrated interaction of AtTPR1 and AtTPR2 with
AtHsp90 in yeast two-hybrid and in vitro pull down assays. These findings indicate that the in silico approach used here
successfully identified in a genome-wide context CC-TPR proteins with potential to interact with Hsp90/Hsp70, and further
suggest that the Hsp90/Hsp70 system relies on TPR co-chaperones more than it was previously realized.
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Introduction

The eukaryotic Hsp90 performs key roles in signal transduction

by regulating maturation, localization, stability and protein

interactions of a large number of signaling proteins [1,2]. Due to

its role in chaperoning oncogenic protein kinases, Hsp90 has

recently been surfaced as a drug target for inhibiting cancer

progression in humans [3]. Additional roles of Hsp90 lie in

chromatin remodeling, epigenetic regulation, and morphological

evolution [2]. Eukaryotic Hsp90 functions as a homodimer with

each monomer comprising of an N-terminal ATP-binding domain

that is responsible for the ATPase activity of Hsp90, a middle

domain that harbors the client protein binding site and can also

regulate the ATPase activity of the N-terminal domain, and a C-

terminal dimerization domain [4]. Hsp90-specific inhibitors such

as geldanamycin (GA) bind to the N-terminal domain of Hsp90

and inhibit its in vivo functions [3]. The C-terminus of cytosolic

Hsp90 contains a conserved pentapeptide MEEVD, which is

responsible for binding with the tetratricopeptide repeat (TPR)

domain present in several co-chaperones of Hsp90 [1,5].

Hsp90 has an ATP-driven chaperone cycle [2]. The open V-

shaped conformation of dimeric Hsp90 allows for loading of the

client protein. Following binding of ATP, a conformational change

in the middle domain leads to a closed conformation in which the

monomers are twisted around each other and the two N-terminal

domains are dimerized. With the coordinated assistance of Hsp70

and a range of co-chaperones in dynamic protein heterocom-

plexes, the final maturation of the client protein takes place. Upon

ATP hydrolysis, the client protein and the heterocomplex

dissociate and Hsp90 enters a new chaperone cycle [4].

The various co-chaperones assist Hsp90 by influencing its

ATPase activity and by linking it to other proteins and providing

some measure of specificity to the client protein-Hsp90 interaction

[6]. On a structural basis the Hsp90 co-chaperones can be broadly

divided into two categories: TPR domain proteins and non-TPR

proteins. The TPR domain is a protein-protein interaction domain,

comprised of a loosely conserved 34 amino acid sequence that is

repeated several times [7]. Several Hsp90 co-chaperones, such as

Hsp70-Hsp90 organizing protein (Hop), high molecular weight

immunophilins [cyclophilin 40 (Cyp40) and FK506-binding

proteins 51 and 52 (FKBP51 and FKBP52)], protein phosphatase

5 (PP5) and the carboxyl terminus of Hsc70 interacting protein

(CHIP) contain a three-motif TPR domain with conserved

carboxylate clamp residues [5]. Within a TPR motif, eight amino
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acids at positions 4 (W/L/F), 7 (L/I/M), 8 (G/A/S), 11 (Y/L/F), 20

(A/S/E), 24 (F/Y/L), 27 (A/S/L), and 32 (P/K/E) have a higher

frequency of conservation and these are important in maintaining

the a-helical structures within a motif. Clustering of several a-helices

within a tandem array of TPR motifs generates an amphipathic

channel with a large amount of surface area, which allows the TPR

domain to recognize its target protein [7].

A good understanding of the interaction of the TPR domain

with molecular chaperones Hsp90 and Hsp70 came from

cocrystalization study of TPR domains in Hop with pentapeptide

MEEVD and octapeptide GPTIEEVD, which correspond to the

C-termini of Hsp90 and Hsp70, respectively [8]. The side chains

of several basic amino acids in the TPR groove were seen to

establish interactions with the acidic side chains of the EEVD

motif. These basic amino acids are referred to as ‘carboxylate

clamp’ residues. With reference to the positions of the clamp

residues in a three-motif TPR domain, the consensus is Lys5 and

Asn9; Asn6; Lys2 and Arg6. These amino acids are conserved and

functionally important in most three-motif TPR containing co-

chaperones of Hsp90 and Hsp70. Additional contacts between

EEVD and the TPR groove involve hydrophobic interactions [9].

Hsp90 has been studied widely in animal and yeast model

systems, but little is known by comparison about plant Hsp90. The

Hsp90 family in the model plant Arabidopsis thaliana comprises of

seven members: four closely related isoforms are cytosolic

(AtHsp90-1 to AtHsp90-4), one is chloroplastic (AtHsp90-5), one

mitochondrial (AtHsp90-6), and one is localized to the endoplasmic

reticulum (ER) (AtHsp90-7) [10]. The occurrence of multiple

Hsp90 isoforms that display both developmental and stress-

responsive gene expression, suggests a range of specific functions

for these proteins. The recent demonstration of the involvement of

Hsp90 and co-chaperones RAR1 (required for M1a12 resistance)

and SGT1 (suppressor of G2 allele of skp1), in plant disease

resistance [11,12] has provided impetus for further investigation of

the roles of Hsp90 in plant signaling pathways. Apart from RAR1

and SGT1, Hsp70 [13], high molecular weight immunophilins [14],

Hop-like protein [15], PP5 [16], and p23-like proteins [17] have

been found to associate with plant Hsp90. Plant orthologs of the

previously characterized Hsp90/Hsp70 co-chaperones with TPR

domains include Hop [15], PP5 [16], immunophilins like Cyp40

(SQUINT) [18], Rotamase AtFKBP62 (AtROF1) and AtFKBP65

(AtROF2) [19], PASTICCINO1 (AtPAS1) [20], AtFKBP42

(AtTWD1) [21,22], Translocon of the outer envelope of chloroplast

(TOC64) [23] and AtCHIP [24]. Given the conservation and

preponderance of the TPR domain in established and potential co-

chaperones of the plant Hsp90/Hsp70 system, we set out to uncover

all carboxylate clamp (CC) type TPR proteins (CC-TPR proteins) in

Arabidopsis using an in silico approach and following the residues

conserved for interaction with the EEVD motif of cytosolic Hsp90/

Hsp70. Here we report the identification of 24 new CC-TPR

proteins in Arabidopsis, and similar as well as distinct CC-TPR

proteins in rice (Oryza sativa), as putative Hsp90/Hsp70 interactors.

Some of the newly uncovered proteins contain additional protein

domains such as ankyrin, SET, octicosapeptide/Phox/Bem1p

(Phox/PB1), DnaJ, thioredoxin, FBD and F-box, and protein

kinase and U-box, indicating novel functions that may add new

dimensions to the Hsp90/Hsp70 chaperone complex in plants.

Methods

Identification of CC-TPR proteins in Arabidopsis
The term ‘TPR’ submitted as query at the InterPro home page:

http://www.ebi.ac.uk/interpro/ [25] retrieved 31 entries of which

IPR013026 was found to best conform to TPR structure and

function. The ‘Taxonomic coverage’ of IPR013026 revealed 235

TPR proteins in the Arabidopsis proteome (taxon ID 3702). The

sequences of all proteins and the Arabidopsis Genome Initiative

Identifier (AGI ID) were recorded and confirmed against the

database of National Centre for Biotechnology Information

(NCBI) and each sequence was analyzed for the presence of

TPR domain using InterProScan (http://www.ebi.ac.uk/

InterProScan/) [26]. Since the known co-chaperones that interact

with MEEVD of Hsp90 consist of three-motif TPR domain,

proteins with one or more TPR domains comprising of three

motifs were short-listed. Subsequently, these motifs were analyzed

for the presence of the conserved residues (K5N9-N6-K2R6). A

second round of search was carried out where protein sequences

with one or two TPR motifs were manually mapped for the

presence of the second and/or third motif and the conserved

residues (K5N9-N6-K2R6). Following selection of the CC-TPR

proteins, these proteins were searched for additional known

domains and localization signal sequences. Multiple sequence

alignment for each of the three motifs of the CC-TPR proteins

identified in Arabidopsis (above-described search) and human Hop

TPR2a as the reference sequence was used to build a statistical

model of the corresponding motif using the software package

HMMER 3.0 (http://hmmer.org/). Each of these three models

was queried on the basis of HMM profile against TAIR9_-

pep_20090619 (Arabidopsis annotation from TAIR) and Rice

Genome Annotation Project (ftp://ftp.plantbiology.msu.edu/

pub/data/Eukaryotic_Projects/O_sativa/annotation_dbs/pseu-

domolecules/version_6.0). The HMMER-selected proteins (E-

value ,10) were scanned for conserved residues (K5N9-N6-K2R6),

and BLAST and manual editing were used to remove redundancy.

Phylogenetic tree construction
Full-length sequences of CC-TPR proteins of Arabidopsis and

rice were aligned using Clustal X 2.0.10. The phylogenetic tree

was derived from the sequence comparisons using the neighbor-

joining method in Clustal X.

Protein localization prediction
The electronic Fluorescent Pictograph (eFP) Browser [27] from

the Bio-Array Resource (BAR) (http://bbc.botany.utoronto.ca/)

was used to predict the subcellular localization (SL) of the CC-TPR

proteins. The information retrieved was based on computational

prediction and/or experimental documentation compiled in SUBA;

the Arabidopsis SUBcellular localization database [28]. If experi-

mental documentation for SL was available for a protein, it was

considered as significant. However, for proteins lacking experimen-

tal documentation we inferred data available from several

prediction algorithms such as iPSORT (http://hc.ims.u-tokyo.ac.

jp/iPSORT/), LOCtree (http://cubic.bioc.columbia.edu/cgi-bin/

var/nair/loctree/query), MitoPred (http://bioapps.rit.albany.edu/

MITOPRED/), MitoProt II (http://ihg2.helmholtz-muenchen.de/

ihg/mitoprot.html), MultiLoc (http://www-bs.informatik.uni-

tuebingen.de/Services/MultiLoc/), PeroxP, Predotar (http://urgi.

versailles.inra.fr/predotar/predotar.html), SubLoc (http://www.

bioinfo.tsinghua.edu.cn/SubLoc/), Target P (http://www.cbs.dtu.

dk/services/TargetP/) and WOLFPSORT (http://wolfpsort.org/).

This data was cross-checked with the actual eFP Browser data that

was generated using heuristic prediction algorithms [27].

Expression analyses using AtGenExpress Visualization
Tool

Affymetrix microarray data provided by Weigel World (http://

www.weigelworld.org/) was accessed using AtGenExpress Visual-
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ization Tool (AVT) (http://www.weigelworld.org/resources/

microarray/AtGenExpress/) [29,30] to analyze the developmental

expression of the newly identified CC-TPR genes by inputting their

AGI IDs on the homepage. Absolute expression values were

retrieved and used to develop the figure.

Expression analysis using MPSS database
The MPSS database (http://mpss.udel.edu/rice/) was searched

(opting 17-nt signature sequences) using the locus ID given in the

Rice Genome Annotation Project database to generate the

expression profiles of rice CC-TPR proteins in different tissues

and stress.

Electronic Northern Analysis
The expression profiles of Hsp90 and CC-TPR genes were

examined against the AtGenExpress extended tissue and abiotic

stress data sets using the Expression Browser tool available at the

Botany Array Resource (BAR) (http://bbc.botany.utoronto.ca/

affydb/cgi-bin/affy_db_exprss_browser_in.cgi) [31]. The output

option was selected as average of replicate treatments relative to

the average of appropriate control. The output files were

formatted into heatmaps using the Data MetaFormatter tool

hosted at the BAR website by selecting ‘View Graphical

Representation of Log Transformed Cluster Data’. The colour

scale indicates the log2-level of expression above or below the

median. Strong red indicates more than four-fold above the

median, while dark blue indicates four-fold below the median.

Expression Angler
The Expression Angler tool at BAR identifies genes that are co-

expressed with a gene of interest [31]. Using the cut-off r-value

between 0.75–1.00, 156 genes were found against the AtGenEx-

press stress series dataset to be co-expressed with AtHsp90-1

(AT5G52640), a bona fide heat stress (HS)-induced gene. This list

of genes was checked against the Arabidopsis list of 36 CC-TPR

proteins to identify those that are co-expressed with AtHsp90-1

under HS.

Plant growth and treatments
Arabidopsis seeds were surface sterilized and plated on 1X

Murashige and Skoog (MS) medium (Sigma) supplemented with

B5 vitamins, 1% (w/v) agar and 1% sucrose. The plates were kept

for 3 days in the dark at 4uC to encourage synchronized

germination and then transferred to a growth chamber maintained

at 22uC with a 16/8 h photoperiod (80 mmol m-2 s-1). For HS

treatment, 10 day-old seedlings were exposed to 38uC for 1 h and

3 h in an incubator, following which the plant tissue above the

medium was collected and quick-frozen for RNA isolation. For

treatment with brassinosteroid (BR), 21 day-old seedlings grown

on MS medium were submerged in water containing either 1 mM

24-epibrassinolide (EBR) or 0.01% ethanol (solvent for EBR) for

3 h and 12 h. After the treatment, the plant material was quick-

frozen.

RNA extraction and Quantitative real-time RT-PCR
Total RNA was prepared using SV Total RNA Isolation System

(Promega). First strand cDNA was synthesized from 1 mg of total

RNA using QuantiTect Reverse Transcription Kit (Qiagen) and

used as a template for quantitative RT-PCR (qRT-PCR). qRT-

PCR was performed in 200 ml tubes with a Rotor-Gene RG-3000

real-time thermal cycling system (Corbett Research) using SYBR

green to monitor double-strand DNA synthesis. Three indepen-

dent biological samples were used with gene-specific primers

(Table S1). Data were analyzed using Rotor-Gene 6.0.16 software

(Corbett Research). Values were normalized using ubiquitin as the

internal reference, and fold change in the expression level was

calculated [32].

Yeast two-hybrid assay
To determine interaction of the two newly identified proteins,

AtTPR1 and AtTPR2, with AtHsp90-2 by the yeast two-hybrid

approach, AtHsp90-2 and AtTPR1/AtTPR2 coding sequences were

cloned into bait and prey vector, respectively. AtHsp90-2 was

amplified by PCR using the Arabidopsis Biological Resource Center

(ABRC) cDNA clone C105057 and primers attB1-Hsp90-2F 59-

GGGG ACA AGT TTG TAC AAA AAA GCA GGC TCC ATG

GCG GAC GCT GAA ACC TTT GCT TTC-39 and attB2-

Hsp90-2R 59- GGG GAC CAC TTT GTA CAA GAA AGC

TGG GTC GTC GAC TTC CTC CAT CTT GCT ACC TTC -

39. The PCR product was cloned into pDONR221 by in vitro BP

recombination (Invitrogen) to generate pDONRHsp90-2, which

was used in LR reaction with pDestDB (bait vector) to generate

pDBHsp90-2. AtTPR1 and AtTPR2 cDNAs were synthesized from

total RNA from Arabidopsis leaf using gene-specific gateway

primers (attB1-TPR1F 59- GGGG ACA AGT TTG TAC AAA

AAA GCA GGC TCC ATG GTA CTG ATC GAA TCA AGT

GAG AG-39 and attB2-TPR1R 59- GGGG GAC CAC TTT

GTA CAA GAA AGC TGG GTC TA TGG CTC TTC CAC

TAA ACC CG-39; attB1-TPR2F 59-GGGG ACA AGT TTG

TAC AAA AAA GCA GGC TCC ATG GCG CTA TGG ATG

GAC GCT GG-39 and attB2-TPR2R 59-GGG GAC CAC TTT

GTA CAA GAA AGC TGG GTC GTT TGG TGG AGT CCA

TTT TCC AGC G-39). AtTPR1 and AtTPR2 PCR products were

cloned, as described for AtHsp90-2, into pDestAD (prey vector) to

generate pADTPR1 and pADTPR2. Following sequence verifi-

cation, pDBHsp90-2 and pADTPR1/pADTPR2 were trans-

formed into Y8930 and Y8800 yeast strains, respectively.

Transformants were selected on synthetic complete (SC) media

lacking either leucine (bait vector) or tryptophan (prey vector). Bait

and prey transformants were then mated and selected on SC

media lacking leucine and tryptophan. The interaction of

pDBHsp90-2 with pADTPR1/pADTPR2 was assayed based on

the ability of cells to grow on SC-Leu-Trp-His plus 3 mM

3-aminotriazole (3AT).

In vitro protein-binding assay
Plasmid expressing AtHsp90-2 with a cleavable N-terminal

glutathione-S-transferase (GST) tag in pGEX-6p-1 (Hsp90-GST)

was kindly provided by Dr. David Hubert, University of North

Carolina. Plasmid expressing Hsp90DMEEVD-GST was gener-

ated by PCR amplification and cloning of the PCR product into

pGEX-6p-1 (GE Healthcare). The chitin-binding domain (CBD)

affinity tag was fused to the C-terminus of TPR1 by cloning TPR1

cDNA in frame into pTYB2 (New England Biolabs) to prepare

TPR1-CBD. Similarly, the GST tag was fused to the N-terminus

of TPR2 by cloning TPR2 cDNA in frame into pGEX-6p-1 to

prepare TPR2-GST fusion protein.

Hsp90-GST and Hsp90DMEEVD-GST were expressed in

BL21 cells. Expressed proteins were purified on Glutathione-

Sepharose 4B beads as per the protocol provided by GE

Healthcare. The beads were washed once with PBS buffer

containing 500 mM NaCl, five times with PBS buffer, and once

with cleavage buffer (50 mM Tris, pH 7.0, 150 mM NaCl, 1 mM

EDTA and 1 mM DTT). The beads were incubated at 4uC
overnight with cleavage buffer containing PreScission Protease to

cleave the GST tag. The cleaved protein was eluted with the

cleavage buffer. Fresh Glutathione-Sepharose 4B beads were

Carboxylate Clamp-TPR Proteins
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added to the eluate (cleaved Hsp90 and Hsp90DMEEVD) to

remove the PreScission Protease. Purified Hsp90 and

Hsp90DMEEVD were concentrated, dialyzed against 10 mM

HEPES, pH 7.5, and 50 mM NaCl, and stored at 280uC until

further use.

TPR1-CBD and TPR2-GST proteins were produced in E. coli

strains ER2566 and BL21 cells and immobilized on chitin beads

and Glutathione-Sepharose 4B beads, respectively. For in vitro

binding assays, 50 ml aliquot of beads with immobilized proteins

were incubated for 60 min on ice with 1 mg of purified Hsp90 or

Hsp90DMEEVD in reaction buffer (20 mM HEPES, pH 7.5,

20 mM KCl, 1 mM MgCl2, 0.01% NP-40) containing either no

nucleotide, 5 mM ADP or 5 mM ATP. After incubation the

supernatant was removed and the beads were washed thrice with

the reaction buffer containing either no nucleotide, 5 mM ADP or

5 mM ATP. Proteins retained on the beads were extracted into

SDS-sample buffer, separated by SDS-PAGE and immunoblotted

with the R2 anti-Hsp90 antibody [33].

Results

Identification of CC-TPR proteins in Arabidopsis
Orthologs of most of the known CC-TPR co-chaperones of

animal and yeast Hsp90 have also been identified in plants. To

understand the extensiveness of CC-TPR proteins in the model

plant Arabidopsis, the InterPro database was first searched for TPR

proteins. The initial big list of 235 TPR proteins was narrowed

down to 52 proteins on the criterion of proteins possessing a Hop

TPR2a-like three-motif domain. The start and end sites of each

of the three motifs in the 52 proteins were identified and the

motifs were then searched for the conserved residues (K5N9-N6-

K2R6) responsible for interacting with the MEEVD motif of

cytosolic Hsp90. This led to the identification of 24 proteins,

including SQUINT, which appeared in the database as a two-

motif TPR domain. Following from this example, proteins

showing one or two motifs of TPR were manually searched for

the conserved residues, leading to another 12 proteins being

identified as CC-TPR proteins with potential to interact with

Hsp90/Hsp70. Thus, a total of 36 CC-TPR proteins were

identified in Arabidopsis (Table 1). Analyses of these genes in

TAIR, which provides structural and functional annotation as

well as links to different databases containing information of

specific gene, transcript, and/or protein, led us to infer that 24 of

the 36 genes in the list were novel, while 12 genes had been

characterized previously in Arabidopsis or another plant species

(Table 1).

As an additional search of TPR proteins in Arabidopsis, we used

the HMMER program, which aims to detect remote homologs

on the basis of mathematical models, to generate a list of proteins

against each motif of the CC-TPR proteins. The number of

proteins generated against each motif varied and each list of

proteins (data not shown) could be divided into four categories: 1)

All 36 proteins described in Table 1 were among the top hits

identified for all three motifs. An additional 2-6 proteins were

detected in this list of proteins, which on analysis fell in the

second category of proteins; 2) True TPR domain proteins (entry

no. IPR013026), but lacking a three-motif TPR domain and/or

the conserved carboxylate clamp residues. These proteins had

been analysed earlier and rejected; 3) TPR-like domain

containing proteins (InterPro entry no. IPR011990). The motif

structure of this domain varied in the number of amino acids in

different proteins and there was no conservation of the

carboxylate clamp residues; 4) Proteins with no TPR domain.

In conclusion, the HMMER search identified the same 36 CC-

TPR proteins, lending further support to the results shown in

Table 1.

Previously known CC-TPR proteins, such as Hop (AtHop1,

AtHop2 and AtHop3), immunophilins (AtROF1, AtROF2, PAS1,

AtTWD1 and SQUINT), AtCHIP, TOC64 (AtTOC64-III, and

AtTOC64-V) and AtPP5 were all present in the list represented in

Table 1. Hop, immunophilins, CHIP and PP5 are known co-

chaperones [5], while Translocase of the mitochondrial outer

membrane (Tom70), the functional homolog of TOC64, is a

known interactor of Hsp90 in yeast and animal systems [34].

AtROF1and AtROF2 [19], AtTWD1 [21], and pea TOC64 [23]

have been demonstrated to interact with Hsp90, while soybean

Hop [15] and tomato PP5 [16] have been shown to act as co-

chaperones of Hsp90. Of the newly identified proteins, TTL1 has

been associated with salt sensitivity and altered abscisic acid (ABA)

responses [35], but no links have been made of this protein to the

Hsp90/Hsp70 chaperone machinery. The closest protein to TTLs

in other organisms is Tpr2, a relatively new co-chaperone of

mammalian Hsp90 that contains a DnaJ-like domain instead of

the thioredoxin domain [35–37].

In addition to identifying members of a gene family, transcript

data from NCBI also provides information on the number of splice

variants for each gene family member. It is noted in Table 1 that

there are two splice variants for PAS1, AtROF1, AtPP5, AtHop3,

AtTPR8, AtTPR10 and AtTPR15, and three splice variants for

AtTPR1. The DnaJ-domain containing AtTPR15 has two CC-

TPR domains both of which are present in the first variant, but the

second variant appears to be missing the first motif of the second

TPR domain. With the exception of AtPP5 that has been shown to

contain two splice variants localized in the cytoplasm/nucleus and

ER, respectively [16], the splice variants of all other genes remain

to be verified experimentally.

Multiple sequence alignments of excised TPR motifs of proteins

listed in Table 1 against human Hop TPR2a as reference sequence

showed high degree of conservation of the consensus residues

K5N9-N6-K2R6 (Table 2). In the case of proteins with more than

one TPR domain (AtTTLs, AtTPR12-16), the domain with

highest conservation was used for alignment. It can be seen in

Table 2 that with one exception, the substitutions for K5 and K2 in

the first and third motif, respectively, are mostly conservative,

whereby Lys (K) is replaced with Arg (R). Since this substitution

occurs in confirmed Hsp90 interactors such as Hop, it is concluded

that this substitution does not interfere with the binding of the

TPR domain to Hsp90/Hsp70. The substitution of Asn (N9) with

Gln (Q) in the first motif is also conservative. All others

replacements are radical according to classification of amino acids

by volume and polarity, with the K5 to Glu (E) replacement in

AtTPR4 being most noteworthy. With the exception of AtPhox1

and AtPhox4, the consensus residue N6 of the second motif is

highly conserved in Arabidopsis proteins. It should be noted that Ala

(A) and Met (M) substitute R6 in the third motif of known co-

chaperones AtHop1-3 and AtCHIP, respectively, indicating that

some radical changes are accommodated in the TPR:Hsp90/

Hsp70 interaction. How such substitutions affect interaction with

Hsp90/Hsp70 remains to be seen.

A notable feature of AtTPR5 is that the conserved N is detected

in the fifth position of the second motif as opposed to the sixth

position. If, however, the second motif is initiated at residue 117

instead of 118 in the protein sequence, then the N residue falls in

the right place. The perfect match of residues in the first and third

TPR motifs of AtTPR5 to the consensus K5N9 and K2R6,

respectively, as well as the presence of a relatively conserved R

residue after N in the second motif, suggest that AtTPR5 qualifies

as a CC-TPR protein.

Carboxylate Clamp-TPR Proteins
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In silico characterization of the newly identified CC-TPR
proteins in Arabidopsis

To obtain clues about the functions of the newly identified CC-

TPR proteins, InterProScan against InterPro database was used to

identify additional functional domains as well as subcellular

localization signal sequences within these proteins. The known

functional domains were highlighted on the output display page

for each input FASTA sequence. Using this information the

schematics of domain architecture of the new proteins were

prepared (Figure 1). Eight of the proteins contained a single TPR

domain, seven contained a single TPR domain plus another

functional domain, three contained two TPR domains, and six

contained two TPR domains plus another functional domain. The

second functional domains in these proteins include SET, ankyrin,

Table 1. Properties of the Arabidopsis CC-TPR proteins.

AGI ID Name
Number of
amino acids Additional functional domains

Subcellular
localization mRNA species

One TPR domain

AT4G30480 AtTPR1 161/208/277 C/N 3

AT1G04130 AtTPR2 360 C/N 1

AT1G04190 AtTPR3 328 C/N/M 1

AT1G04530 AtTPR4 310 C 1

AT1G56440 AtTPR5 476 N/P 1

AT1G58450 AtTPR6 164 M/C 1

AT5G21990 AtTPR7 554 M/N 1

AT4G08320 AtTPR8 426/427 C/M/N/P 2

AT1G33400 AtTPR9 798 SET N 1

AT3G04710 AtTPR10 455/456 Ankyrin P/C 2

AT2G25290 AtPhox1* 697 Phox/PB1 C/N 1

AT1G62390 AtPhox2* 751 Phox/PB1 C/M/N/P 1

AT5G20360 AtPhox3* 809 Phox/PB1 N 1

AT4G32070 AtPhox4* 811 Phox/PB1 C/N 1

AT4G22670 AtTPR11 441 Heat shock chaperonin-binding V 1

AT2G15790 AtSquint 361 Cyclophilin C 1

AT3G54010 AtPAS1 635/545 Peptidyl-prolyl-cis-trans isomerase C/N 2

AT3G25230 AtROF1 551/562 Peptidyl-prolyl-cis-trans isomerase C 2

AT5G48570 AtROF2 578 Peptidyl-prolyl-cis-trans isomerase C/Pe 1

AT3G21640 AtTWD1 365 Peptidyl-prolyl-cis-trans isomerase PM 1

AT3G07370 AtCHIP 278 U-box C 1

AT2G42810 AtPP5 484/538 PP5 C/N/ER 2

AT3G17970 AtToc64-III 589 Amidase P/M 1

AT5G09420 AtToc64-V 603 Amidase M 1

More than one TPR domain

AT1G78120 AtTPR12 530 M 1

AT5G10090 AtTPR13 594 M/N/P 1

AT5G65160 AtTPR14 593 M/N 1

AT2G41520 AtTPR15 1077/1108 DnaJ P/N 2

AT5G12430 AtTPR16 1165 DnaJ P/N 1

AT1G53300 AtTTL1 699 Thioredoxin N/M/C 1

AT3G14950 AtTTL2 721 Thioredoxin M/N/P 1

AT2G42580 AtTTL3 691 Thioredoxin M/N/P 1

AT3G58620 AtTTL4 682 Thioredoxin P/M/N 1

AT1G12270 AtHop1 572 Heat shock chaperonin-binding C/N 1

AT1G62740 AtHop2 571 Heat shock chaperonin-binding PM 1

AT4G12400 AtHop3 530/558 Heat shock chaperonin-binding M/P/N 2

The 24 new CC-TPR proteins are referred to as AtTPR1-16, AtPhox1-4 and AtTTL1-4, while the known CC-TPR proteins are referred to by their names.
*represents new names of the proteins. For subcellular localization the bolded represent experimental documentation, while the italicized represent the most
significant according to computational predictions. C, cytoplasm; ER, endoplasmic reticulum; M, mitochondria; N, nucleus; P, plastid; Pe, peroxisome, PM, plasma
membrane; V, vacuole.
doi:10.1371/journal.pone.0012761.t001
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octicosapeptide/Phox/Bem1p (PB1), DnaJ, and thioredoxin

(Figure 1). With the exception of DnaJ, these domains have not

previously been linked with CC-TPR proteins.

The ankyrin repeat is a protein-protein interaction motif

comprised of a tandemly repeated 33 amino acid sequence. Each

repeat folds into a helix-loop-helix structure [38]. Ankyrin repeats

are present in functionally diverse proteins involved in transcrip-

tion initiation, cell-cycle regulation, ion transportation and signal

transduction. This domain was identified in AtTPR10, which is

predicted to localize to the plastid (Table 1).

As a conserved sequence motif made up of 130–140 amino

acids, the SET domain occurs as a part of multidomain proteins

involved in histone methylation, which regulates chromatin

structure and gene transcription [39]. These enzymes use S-

adenosylmethionine (AdoMet) as a donor substrate and add

methyl groups to lysine residues of histone H3. SET domain

proteins can also methylate non-histone proteins [40]. Recently it

was shown that a human protein called SMYD2 interacts with

Hsp90a, and that this interaction enhances the histone methyl-

transferase activity of SMYD2 [41]. The presence of the SET

domain in AtTPR9 and its predicted localization to the nucleus

(Table 1) suggest that this protein may be involved in methylating

histone or non-histone proteins.

AtPhox1 to AtPhox4 constitute a gene family (Figure S1). In

addition to the TPR domain, the AtPhox proteins contain the

Phox/PB1 domain (Figure 1), which is known to mediate protein-

protein interactions in cell processes such as cell polarity,

pheromone signaling, cytoskeletal organization, osteoclastogenesis,

Figure 1. Domain schematics of the newly identified CC-TPR proteins in Arabidopsis. Each orange box represents one motif of the TPR
domain, and the grey box represents another domain. The scale below indicates the size of the protein in number of amino acids. The schemes were
generated using MyDomains from PROSITE (http://www.expasy.ch/tools/mydomains/).
doi:10.1371/journal.pone.0012761.g001
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angiogenesis and early cardiovascular development [42]. Hetero-

dimerization of two PB1 domains is important in the formation of

macromolecular signaling complexes. PB1 domains can also

interact with other protein domains. The presence of Ser (S) in

place of the consensus N6 in the second TPR motif of AtPhox1

and AtPhox4 (Table 2) warrants investigation of this substitution in

the context of Hsp90/Hsp70 binding.

The TTLs (AtTTL1-4) are a novel protein family (Figure S2)

unique to plants that in addition to the TPR domain contain a

motif in the C-terminus with homology to thioredoxins. The

thioredoxin fold is involved in the regulation of protein activity by

changes in the redox state of thiol groups (S2 to SH2) [43]. The

localization of these proteins to plastid/mitochondria where redox

reactions are common is consistent with their possessing a

thioredoxin domain.

Co-presence of TPR and DnaJ domains in a CC-TPR protein

has been noted before in the human Tpr2 co-chaperone [36]. Two

of the newly identified CC-TPR proteins AtTPR15 and AtTPR16

contain the DnaJ domain, which mediates protein-protein

interactions and various chaperone functions [44].

The heat shock chaperonin-binding motif found in Hop is for

binding heat shock proteins. This domain is found singly or

duplicated in proteins [45]. The newly identified protein AtTPR11

contains this domain. As would be expected, transcripts of proteins

with this domain are induced by high temperature.

Identification of CC-TPR proteins in rice
The HMM profile created with Arabidopsis sequences was used

to search for CC-TPR proteins in rice. The top hits for each of the

motifs were searched for the conserved carboxylate clamp

residues. Sequence alignments of each of the three motifs of the

top scoring CC-TPR proteins in rice are shown in Table 3. In case

of proteins with more than one three-motif TPR domain, the most

conserved domain was used for alignment. Proteins with both

conservative and non-conservative amino acid substitutions in the

carboxylate clamp residues were identified. The protein sequences

of CC-TPR proteins identified in Arabidopsis (Table 1) and rice

(Table 3) were used to generate a phylogenetic tree (Figure 2). The

various additional domains detected in Arabidopsis CC-TPR

proteins were also found in rice CC-TPR proteins. In addition,

we found that unlike in Arabidopsis, rice contains numerous ankyrin

containing CC-TPR proteins (Figure 2, highlighted in red), one

CC-TPR protein with FBD and F-box (highlighted in green), and

one CC-TPR protein with protein kinase (STYKc) and U-box

(highlighted in blue). The latter two proteins in rice likely expand

the ability of the Hsp90/Hsp70 system to link cellular proteins to

the ubiquitin proteasome system.

Expression patterns of CC-TPR proteins in Arabidopsis
A collaborative microarray project (based on Affymetrix ATH1

arrays), dubbed AtGenExpress, has utilized 79 different Arabidopsis

samples in triplicate to generate expression data [29,30]. We

rationalized that the expression patterns of Hsp90 co-chaperones

must overlap to some degree with the expression patterns of Hsp90

family members. Data to this end could help formulate functional

hypotheses for these proteins in the context of the Hsp90/Hsp70

chaperone machinery. We first performed e-Northern analysis

with the Expression Browser at BAR using the AtGenExpress

extended tissue and stress series data sets for the AtHsp90 gene

family. The Arabidopsis Hsp90 gene family members are referred to

as AtHsp90-1 (AT5G52640), AtHsp90-2 (AT5G56030), AtHsp90-3

(AT5G56010), AtHsp90-4 (AT5G56000), AtHsp90-5 (AT2G04030),

AtHsp90-6 (AT3G07770), and AtHsp90-7 (AT4G24190). AtHsp90-1

to AtHsp90-4 are cytoplasmic, AtHsp90-5 is plastidial, AtHsp90-6

and AtHsp90-7 are localized to the mitochondria and ER,

respectively [10]. Of these, AtHsp90-3 was not present on the

ATH1 array and is therefore missing from our analysis.

When absolute expression values retrieved by AVT were used

to compare the expression levels of AtHsp90 gene family members,

AtHsp90-4 was found to have the highest level of constitutive

expression, and AtHsp90-1 to be most responsive to HS (data not

shown). For e-Northern data from BAR depicting tissue

expression, the median level of expression across all samples

displayed for a particular gene is used as control value for

calculating the relative level. Data in Figure 3A shows that with

the exception of AtHsp90-1, which is highly expressed in seeds,

most other members have higher expression in the shoot apex,

followed by roots and flowers. Further dissection of the flower into

sepals, petals, stamens and carpels revealed that in general carpels

and petals have higher levels of AtHsp90 transcripts as compared to

the other two floral organs (Figure 3B). AtHsp90 genes are induced

by various abiotic stresses, such as cold, salt, UV-B, etc., although

maximum induction is in response to HS (Figure 3C). These data

are in accordance with our earlier observations in Brassica napus of

the relatively high expression of Hsp90 in apex, flowers and seeds,

as well as of its responsiveness to cold temperatures [46].

To compare the expression levels of CC-TPR genes (AtTPR7 and

AtPhox1 were not present on the ATH1 array) in different plant

parts, the absolute expression values retrieved by AVT were

plotted (Figure 4). This was done because the low level expression

of some TPR genes led to artifacts in the output of the Expression

Browser. Several conclusions can be drawn from the data

represented in Figure 4: 1) most genes are expressed in different

plant parts, albeit at much lower levels than the highly expressed

AtHsp90-4; 2) of the newly identified genes, AtTPR11 and AtPhox2

are expressed at relatively high levels in most tissues (Figure 4A),

suggesting that the encoded proteins may be general co-

chaperones of Hsp90/Hsp70; 3) of the known co-chaperones,

immunophilins (AtPAS1, AtROF1 and 2) and Hop (AtHop1, 2 and

3), are expressed at relatively high levels (Figure 4B) and, like their

animal counterparts, are abundant co-chaperones of plant Hsp90.

The near to exclusive expression of AtTPR13 and AtTPR14 in

stamens, and the relatively high expression of AtPhox genes,

AtTPR16, AtTTL2, AtTPR6 and AtTPR8 in stamens as compared

to other floral organs (Figure 4C) is noteworthy. The immuno-

philins and AtHop, similar to AtHsp90, have predominant

expression in petals and carpels (Figure 4D). Together, these data

indicate that the Hsp90/Hsp70 chaperone machinery components

are expressed in all plant tissues, albeit at different levels. It is

possible that some components may function as general co-

chaperones, while others may have tissue-specific functions within

the context of the Hsp90/Hsp70 chaperone machinery. The

expression profiles of the newly identified CC-TPR proteins

provide an initial working hypothesis for delineating their

functions.

e-Northern analysis of CC-TPR genes by BAR and AVT using

the stress series data set indicated that heat is the most prominent

signal for induction of transcript abundance. AtTPR2, AtTPR5 (by

AVT), AtTPR8, AtTPR10, AtPhox2 and AtTPR11 are heat-

responsive in both root and shoot (Figure 5A, B). The fold-change

values for AtTTL2, AtTPR13 and AtTPR14 in the output of

Figure 5 are unreliable due to their low expression; these genes are

therefore not considered as heat-responsive. AtROF1, AtROF2,

AtHop2, AtHop3 and AtSquint are also heat-induced both in root

and shoot (Figure 5C, D), an attribute that has been noted before

[15,19]. The heat-induced expression patterns of CC-TPR genes

are similar to that of AtHsp90-1. This observation supports a co-

chaperone role for the encoded proteins during HS. The co-
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expression of this subset of genes with AtHsp90-1 was confirmed

using Expression Angler. AtHsp90-1 was used as query in

AtGenExpress stress series, and the data generated by Expression

Angler was searched for the presence of CC-TPR genes during HS.

AtROF1, AtROF2, AtHop2, AtHop3, AtTPR2, AtTPR10 and AtTPR11

were within the top 156 proteins that are HS-induced and co-

expressed with AtHsp90-1 (data not shown). As a final confirma-

tion, the HS response of AtTPR2, AtTPR5, AtTPR8, AtPhox2,

AtTPR10 and AtTPR11 in leaf tissue was checked by qRT-PCR.

All of these genes showed induction of expression in response to

heat (Figure 6A).

Analysis of the AtGenExpress data set revealed some interesting

information. One was the stress and ABA-responsive expression of

the AtPhox gene family. AtPhox2 was found induced by heat

(Figure 5), AtPhox3 by cold and salt stress, and AtPhox4 by cold,

osmotic and salt stress, as well as pathogen infection. In

accordance with the role of ABA in stress tolerance [47], AtPhox3

and 4 were found to be ABA-responsive (data can be retrieved by

AVT). The second interesting observation was the brassinosteroid

(BR) responsive expression of the AtTTL gene family. Three out of

four TTL genes that have wide spread tissue expression, were

found to be most responsive to BR as compared to other

hormones. Since BR is a relatively new hormone [48,49], the list

of BR-regulated genes is still growing. To add AtTTL genes to this

list we confirmed the BR-responsive expression of AtTTL1,

AtTTL3 and AtTTL4 in Arabidopsis seedlings by qRT-PCR. All

three genes showed 2 to 3-fold induction by BR at 12 h

(Figure 6B). These results strongly suggest that AtTTL1, 3 and 4

are BR response genes.

Expression patterns of CC-TPR proteins in rice
We searched tissue-specific and stress-related libraries in the rice

MPSS database (http://mpss.udel.edu/rice/) using 17 nucleotides

long signatures to obtain information on the relative transcript

abundance of rice CC-TPR genes. Of the 35 rice CC-TPR genes

being reported here, no expression was detected for seven genes

(Os02g29190, Os02g29210, Os01g07640, Os05g31056, Os05g50990,

Os04g45480 and Os02g29150) in the tested conditions. Genes that

were widely expressed (several tissues) at relatively high levels

(Figure 7A) and most strongly induced by stress (salinity, drought

and cold) (Figure 7B) are Os10g34540 (AtTPR1), Os08g41390

(AtROF1), Os05g11550 (AtPP5), and Os02g43020 (AtHop). The

most closely related Arabidopsis proteins are given in parentheses.

Tissues that showed highest transcript abundance in general are ovary

and mature stigma (NOS), stem (NST), immature panicle (NIP), young

leaves (NYL), and young root (NYR). Since we had observed a subset

of Arabidopsis CC-TPR genes to be expressed exclusively or at the highest

level in stamens, we paid close attention to the rice genes expressed

similarly in pollen. Based on maximal expression of Os02g51730

(closest to AtTPR13/AtTPR14, Figure 2) in pollen as compared to its

expression in other tissues (Figure 7A), and the same of AtTPR13/

AtTPR14 in stamens (Figure 4C), it is tempting to speculate that

Os02g51730 is a functional ortholog of AtTPR13/AtTPR14.

Similarly, salt and drought -responsive expression of Os01g11920,

Figure 2. Phylogenetic tree showing sequence relationships
between the CC-TPR proteins from rice and Arabidopsis. Full-
length protein sequences were aligned using Clustal X 2.0.10. A
phylogenetic tree was then derived using the neighbor-joining method
in Clustal X. The numbers indicate bootstrap values based on 1000
replicates. The ankyrin containing proteins are highlighted in red, the
protein with FBD and F-box is highlighted in green, and the protein
with protein kinase (STYKc) and U-box is highlighted in blue.
doi:10.1371/journal.pone.0012761.g002
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Os05g11990 and Os01g42960 (Figure 7B), together with their

sequence and structural similarities with AtTTLs (Figure 2), suggest

that these proteins are functional orthologs of each other. The protein

with the unique combination of CC-TPR, protein kinase, and U-box

domains (Os06g06760) was found expressed at low levels in immature

panicle and to be induced by drought stress.

AtTPR1 and AtTPR2 interact with Hsp90 by the molecular
‘clamp’ mechanism

We applied yeast two-hybrid and in vitro binding assays as a proof-

of-concept trial for analysis of the newly identified proteins for

binding to Hsp90. AtHsp90-2 fused to the DNA-binding domain

(pDBHsp90-2) and AtTPR1/TPR2 fused to the activation domain

(pADTPR1/TPR2) were co-expressed in yeast. Growth of yeast

on selection medium when co-transformed with pDBHsp90-2

and pADTPR1/TPR2 only, but no other plasmid combination

(Figure 8A), indicated positive interaction between Hsp90 and

AtTPR1/TPR2. This interaction was further validated in in vitro

binding assays. TPR1-CBD and TPR2-GST immobilized on

chitin and Glutathione Sepharose 4B beads, respectively, were

incubated with purified recombinant AtHsp90-2 in the absence

or presence of ATP and ADP. Both TPR1-CBD (Figure 8B, top

panel) and TPR2-GST (bottom panel) bound Hsp90 in a

nucleotide independent manner, but no binding was seen to

CBD or GST alone. Neither TPR1-CBD nor TPR2-GST bound

to Hsp90DMEEVD, confirming that the interaction requires

MEEVD for carboxylate clamp formation. These results provide

evidence for the validity and success of our in silico strategy of

identifying TPR proteins with potential to interact with Hsp90/

Hsp70.

Figure 3. Expression profiles of AtHsp90 genes. (A) e-Northern results for expression of AtHsp90 genes in root, stem (second internode), leaf
(cauline leaves), apex (shoot apex; inflorescence), flowers (stage 12), and seeds (stage 10, without siliques). (B) e-Northern results for expression of
AtHsp90 genes in individual floral organs (flowers stage 12), sepals, petals, stamens and carpels. (C) e-Northern results for expression of AtHsp90 genes
in response to different abiotic stresses. The control is mock treatment at each time point. The colour scale indicates the log2-level of expression
above or below the median. Dark red indicates more than 4-fold above the median, while dark blue indicates 4-fold below. The clustering tree can be
seen to the right of the heatmap.
doi:10.1371/journal.pone.0012761.g003
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Discussion

Identification of new CC-TPR proteins in Arabidopsis and
rice by in silico methods

Co-chaperones are an integral part of the Hsp90/Hsp70

chaperone protein folding machinery, which has key roles in

numerous cellular processes [1–5]. The known CC-TPR co-

chaperones (Hop, immunophilins, PP5, CHIP, TOM70, Tpr2)

bind to the MEEVD motif of Hsp90 and regulate the functions of

Hsp90 [5,8]. Orthologs of these are present in plants, and

mutations in some have shown striking phenotypes. Due to the

significance of the CC-TPR co-chaperones in the biochemical

regulation of the Hsp90/Hsp70 machinery, we set out to uncover

all CC-TPR proteins encoded by the model plant Arabidopsis

genome based on the information available through studies in

animal and yeast systems. The confirmation of two of the 24 newly

identified CC-TPR candidates to bind to the MEEVD motif of

Hsp90 indicates a high probability for these proteins as bona fide

interactors of either Hsp90 or Hsp70 or both. This data set

provides a useful framework that will accelerate studies of the

Hsp90/Hsp70 chaperone machinery in plants, as well as of the

newly identified CC-TPR proteins, most of which have no

assigned functions.

To predict the CC-TPR co-chaperone network in Arabidopsis,

sequences with the well characterized protein interaction domain

called ‘TPR’ were extracted from the InterPro database, followed

by careful identification of the conserved residues involved in

binding with the MEEVD motif of Hsp90 [8]. Within this protein

set, 12 proteins are orthologs of previously known co-chaperones

of Hsp90/Hsp70, and 24 are new proteins with potential to serve

as co-chaperones of Hsp90/Hsp70. A similar search in rice

identified 35 CC-TPR proteins. The presence of all CC-TPR

proteins (GmHop, AtROF1, AtROF2, AtTWD1, AtCHIP,

AtSQUINT, LePP5 and AtTOC64) previously characterized in

Arabidopsis or another plant species to bind to Hsp90/Hsp70 in our

data (Table 1, Figure 2), not only validates our in silico search

strategy but also lends support to the prediction of the newly

identified CC-TPR proteins as co-chaperones of Hsp90/Hsp70.

The data gathered in the present study provides many valuable

insights: 1) several aspects of the Hsp90/Hsp70 TPR co-

chaperone system are conserved in yeast, plant and human; 2)

the Hsp90/Hsp70 TPR co-chaperone system appears to be the

largest in plants due to the presence of gene families; 3) the

identification of 24 new CC-TPR proteins in Arabidopsis with

potential to act as co-chaperones indicates that the TPR domain is

utilized by the Hsp90/Hsp70 machinery on a much larger scale

than previously understood; 4) the presence of numerous other

known functional domains in the newly identified plant CC-TPR

proteins adds new functional dimensions to these proteins as well

as to the Hsp90/Hsp70 chaperone machinery; 5) the plant CC-

TPR co-chaperone network appears to have evolved unique

features as judged by the combination of protein domains unique

to plants, such as the thioredoxin domain in TTLs, and the FBD

domain of unknown function in F-Box and BRCT domain

containing plant proteins; and 6) the presence of a CC-TPR

protein with both FBD and F-box, and another protein with

protein kinase and U-box domains in rice, but not in Arabidopsis,

indicates that some CC-TPR proteins may perform species-

specific functions. Finally, the information provided here on the

newly identified CC-TPR proteins will facilitate efficient investi-

gation of their biological functions and significance. The in silico

approach used here is the first of its kind to identify CC-TPR

Figure 4. Expression profiles of Arabidopsis CC-TPR genes in different plant parts. Absolute expression values were retrieved by AVT and
plotted as such. The developmental stage with the highest expression value was used for each transcript. Expression profiles of new CC-TPR genes (A)
and of known CC-TPR co-chaperones (B) for root, stem, leaf, apex, flowers and seeds. Expression profiles of new CC-TPR genes (C) and of known CC-
TPR co-chaperones (D) for individual floral organs: sepals, petals, stamens and carpels.
doi:10.1371/journal.pone.0012761.g004
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Figure 5. Expression profiles of Arabidopsis CC-TPR genes in response to HS. e-Northern results for expression of new CC-TPR genes in roots
(A) and shoots (B) of seedlings exposed to HS. e-Northern results for expression of known CC-TPR co-chaperones in roots (C) and shoots (D) of
seedlings exposed to HS.
doi:10.1371/journal.pone.0012761.g005
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proteins in a genome-wide context with potential to interact with

Hsp90/Hsp70 by the carboxylate clamp mechanism.

CC-TPR proteins can bind to both Hsp90 and Hsp70
The interaction of Hsp90 and Hsp70 with TPR proteins occurs

via the conserved C-terminal EEVD motif in both Hsp90 and

Hsp70 and the conserved carboxylate clamp residues (K5N9-N6-

K2R6) in the TPR domain [8]. Additional contacts involving

charged and hydrophobic amino acids determine the specificity of

interaction. In case of Hop, Hsp70 and Hsp90 interact with two

separate domains, viz TPR1 and TPR2a, respectively [45], but in

the case of CHIP a single TPR binds either chaperone protein

[50]. This is accomplished by accommodating either the

methionine of Hsp90 (DDTSRMEEVD) or the isoleucine of

Hsp70 (GSGPTIEEVD) into a hydrophobic pocket of CHIP,

which is not present in Hop, resulting in the peptide being twisted

into a conformation so that no further specific contacts are

required [50]. Additional examples of TPR proteins binding to

both Hsp90 and Hsp70 include the yeast CNS1 [51], and the

human Tpr2 [36]. CNS1 binds to both Hsp90 and Hsp70 with

comparable affinities and while it exerts no influence on the

ATPase activity of Hsp90, it activates the ATPase activity of

Hsp70 up to 30-fold. Tpr2 binds Hsp90 with slightly lower affinity

as compared to Hsp70, but requires ATP for binding Hsp70 in the

presence of Hsp90. The DnaJ homologous J domain in Tpr2

stimulates ATP hydrolysis and polypeptide binding by Hsp70 [36].

These data bring to light the importance of TPR co-chaperones

and of Hsp70 regulation in the context of the Hsp90 chaperone

cycle, and raise the possibility that the TPR proteins identified

herein may interact with either Hsp90 or Hsp70 or both.

Experimental analyses of interaction with both Hsp90 and

Hsp70 are required for each of these proteins to understand their

mode of action and its implications within the context of the

Hsp90/Hsp70 chaperone machinery.

Figure 6. Transcript expression analysis by qRT-PCR in response to HS and BR treatment. (A) For HS treatment, 10 day-old Arabidopsis
seedlings were exposed to 38uC for 1 and 3 h at which time the plant tissue above the medium was collected and quick-frozen for RNA isolation.
(B) BR treatment was given to 21 day-old seedlings for 3 and 12 h and the tissue was collected as in A. Transcripts were analyzed by qRT-PCR. Bars
indicate mean 6 SD.
doi:10.1371/journal.pone.0012761.g006

Carboxylate Clamp-TPR Proteins

PLoS ONE | www.plosone.org 14 September 2010 | Volume 5 | Issue 9 | e12761



AtTPR1 and AtTPR2 bind Hsp90 through its MEEVD motif
AtTPR1 and AtTPR2 were verified for binding to Hsp90 as

proof-of-concept of interaction of newly identified CC-TPR

proteins with Hsp90 by the ‘carboxylate clamp’ mechanism. Both

proteins bound Hsp90 in yeast two-hybrid and in vitro binding

assays. Neither protein bound to Hsp90 lacking MEEVD,

indicating that interaction occurs by the ‘carboxylate clamp’

mechanism [52,53]. During the course of this study, a tomato

TPR protein (SlTPR1) with highest similarity to AtTPR1 and

Os10g34540 was demonstrated to interact with ethylene receptors,

and its overexpression in tomato and Arabidopsis caused a range of

developmental phenotypes [54]. Although no connections were

made with Hsp90/Hsp70, we checked and found the presence of

the consensus carboxylate clamp residues in the tomato protein,

suggesting that it is an interactor of Hsp90/Hsp70. Based on the

above information, it can be expected that important cellular

functions will be unveiled in the future for the newly CC-TPR

identified proteins.

Putative functions of the CC-TPR proteins
The different subcellular localization possibilities and the

different combinations of protein domains (Table 1, Figures 1

and 2), suggest a diverse range of functions for the CC-TPR

proteins, which likely add to and/or regulate the functional

capacity of the Hsp90/Hsp70 chaperone system. Proteins that

have a single TPR domain and no additional known domains may

function as co-chaperones by modulating the ATPase activity of

Hsp90/Hsp70. It is possible that their functional specificity is

derived, at least in part, through specific temporal and spatial

expression patterns. Proteins with more than one TPR domain or

Figure 7. Transcript abundance of rice CC-TPR genes in tissue-specific and salinity, drought and cold -specific MPSS libraries.
(A) Transcript abundance in NYR (young roots, 14 days); NRA (mature roots, 60 days) replicate A; NST (mature stem, 60 days); NYL (young leaves, 14
days); NLA (mature leaves, 60 days) replicate A; NME (crown vegetative meristematic tissue, 60 days); NPO (mature pollen); NOS (ovary and mature
stigma); and NIP (immature panicle, 90 days). (B) Transcript abundance in NSR (young roots, 14 days) and NSL (young leaves, 14 days) stressed by
250 mM NaCl for 24 h; NDR (young roots) and NDL (young leaves) stressed by drought for 5 days; NCR (young roots) and NCL (young leaves) stressed
by 4uC cold for 24 h.
doi:10.1371/journal.pone.0012761.g007
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other domains like DnaJ, ankyrin, or Phox/PBI may function

additionally through recruitment of other proteins. The presence

of the SET domain in AtTPR9 and Os10g36250, together with

the high probability of AtTPR9 protein to be localized in the

nucleus (Table 1) suggests that it cooperates with the Hsp90/

Hsp70 machinery in the process of chromatin remodelling [2].

Recent identification of the targets of thioredoxins in plants

suggests that these proteins could influence nearly every major

cellular process [55]. The involvement of AtTTL1 in ABA

signaling pathway and stress responses [35] has set the stage for

further investigation of the functions of TTLs along these lines.

Subcellular localization of a protein can provide clues to its

functions. AtTPR10 with one TPR domain and ankyrin repeats

has a high probability of being localized to the plastid. Since the

plastidial Hsp90 and Hsp70 lack the EEVD motif at their C-

terminus, we speculate that the interaction of the TPR domain is

limited to cytosolic Hsp90/Hsp70, which chaperones the traffick-

ing of precursor proteins to the chloroplast [23]. Whether the

ankyrin domain recruits a client for the cytosolic Hsp90/Hsp70

system or a plastidial partner for AtTPR10 itself, are questions that

need to be answered in the future. Experimental documentation of

the plastidial localization of AtTPR10 is a prerequisite for

addressing the functions of this protein. The identification of a

protein in rice (Os06g06760) that contains both protein kinase and

U-box domains is intriguing. To date, no such combination of

domains has been noted in a CC-TPR protein. As a unique CC-

TPR protein, functional analysis of this protein should be a

priority.

In conclusion, the present study has uncovered a number of new

potential interactors of Hsp90/Hsp70: future investigations of

these will provide a better understanding of the Hsp90/Hsp70

chaperone machinery, its functions and its mode of action in plant

cells. Due to the critical requirement of the Hsp90/Hsp70 system

for cell viability and normal functioning of the cell, which has

ramifications in human health, knowledge of this system is a high

priority in any model organism.

Supporting Information

Figure S1 Amino acid sequence alignment of AtPhox1-4. The

numbers on the side indicate the amino acid positions in the

proteins. Alignment was performed using MEGA4 software.

Black, grey and light grey shading indicates 100%, 75% and

50% conservation of amino acids, respectively.

Found at: doi:10.1371/journal.pone.0012761.s001 (3.51 MB TIF)

Figure S2 Amino acid sequence alignment of of AtTTL1-4. The

numbers on the side indicate the amino acid positions in the

proteins. Alignment was performed using MEGA4 software.

Black, grey and light grey shading indicates 100%, 75% and

50% conservation of amino acids, respectively.

Found at: doi:10.1371/journal.pone.0012761.s002 (3.41 MB

TIF)

Figure 8. Interaction of AtTPR1 and AtTPR2 with Hsp90. (A) Positive interaction between AtHsp90-2 and AtTPR1/AtTPR2 in yeast, resulting in
the activation of reporter genes, was detected by growth on SC –Leu –Trp –His + 3 mM 3AT (lower panel). No growth on this medium was observed
for plasmid combinations (as indicated in the figure) when either AtHsp90-2 or AtTPR1/AtTPR2 or both were absent. Yeast cells were grown on SC –
Leu –Trp to select for both pDB and pAD plasmids (upper panel). (B) In vitro binding of recombinant Hsp90 or Hsp90DMEEVD to immobilized TPR1-
CBD (upper panel) and TPR2-GST (lower panel) in the absence of any nucleotide or in the presence of 5 mM ADP or 5 mM ATP. After formation of
complexes, washing of the beads and elution of proteins, Hsp90 was detected by immunoblotting. An aliquot of purified Hsp90 was run on the gel to
mark the position of Hsp90 (extreme left). Controls were immobilized CBD and GST incubated with Hsp90.
doi:10.1371/journal.pone.0012761.g008
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Table S1 Sequences of primers used in quantitative RT-PCR

(qPCR) analysis.

Found at: doi:10.1371/journal.pone.0012761.s003 (0.03 MB

DOC)
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7. Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif
mediating protein-protein interactions. Bioessays 21: 932–939.

8. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, et al. (2000)
Structure of TPR domain-peptide complexes: critical elements in the assembly

of the Hsp70-Hsp90 multichaperone machine. Cell 101: 199–210.

9. Cheung-Flynn J, Roberts PJ, Riggs DL, Smith DF (2003) C-terminal sequences

outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause
differential binding to Hsp90. J Biol Chem 278: 17388–17394.

10. Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana.
Cell Stress Chaperones 6: 238–246.

11. Hubert DA, Tornero P, Belkhadir Y, Krishna P, Takahashi A, et al. (2003)

Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease

resistance protein. EMBO J 22: 5679–5689.

12. Shirasu K (2009) The HSP90 – SGT1 chaperone complex for NLR immune
sensors. Annu Rev Plant Biol 60: 139–164.

13. Stancato LF, Hutchison KA, Krishna P, Pratt WB (1996) Animal and plant cell
lysates share a conserved chaperone system that assembles the glucocorticoid

receptor into a functional heterocomplex with hsp90. Biochemistry 35: 554–561.

14. Reddy RK, Kurek I, Silverstein AM, Chinkers M, Breiman A, et al. (1998)

High-molecular-weight FK506-binding proteins are components of heat-shock
protein 90 heterocomplexes in wheat germ lysate. Plant Physiol 118: 1395–1401.

15. Zhang Z, Quick MK, Kanelakis KC, Gijzen M, Krishna P (2003)
Characterization of a plant homolog of hop, a cochaperone of hsp90. Plant

Physiol 131: 525–535.

16. de la Fuente van Bentemm S, Vossen JH, de Vries KJ, van Wees S,

Tameling WI, et al. (2005) Heat shock protein 90 and its co-chaperone protein
phosphatase 5 interact with distinct regions of the tomato I-2 disease resistance

protein. Plant J 43: 284–298.

17. Zhang Z, Sullivan WP, Felts SJ, Prasad BD, Toft DO, et al. (2010) p23-like

proteins in plants have unique characteristics but are conserved in hsp90-
binding. Cell Stress Chaperones 15: 703–715.

18. Smith MR, Willman MR, Wu G, Berardini TZ, Moller B, et al. (2009)
Cyclophilin 40 is required for microRNA activity in Arabidopsis. Proc Natl Acad

Sci USA 106: 5424–5429.

19. Aviezer-Hagai K, Skovorodnikova J, Galigniana M, Farchi-Pisanty O,

Maayan E, et al. (2007) Arabidopsis immunophilins ROF1 (AtFKBP62) and
ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind

HSP90. Plant Mol Biol 63: 237–255.

20. Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, et al. (2006) The

C terminus of the immunophilin PASTICCINO1 is required for plant
development and for interaction with a NAC-like transcription factor. J Biol

Chem 281: 25475–25484.

21. Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU (2002)

Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and
interacts with Hsp90. Plant J 32: 263–276.

22. Bouchard R, Bailly A, Blakeslee JJ, Oehring SC, Vincenzetti V, et al. (2006)
Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of

Arabidopsis P-glycoproteins. J Biol Chem 281: 30603–30612.

23. Qbadou S, Becker T, Mirus O, Tews I, Soll J, et al. (2006) The molecular

chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor
Toc64. EMBO J 25: 1836–1847.

24. Shen G, Yan J, Pasapula V, Luo J, He C, et al. (2007) The chloroplast protease

subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays an important role

in chloroplast function. Plant J 49: 228–237.

25. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2005)
InterPro, progress and status in 2005. Nucleic Acids Res 33: D201–205.

26. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. (2005)

InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–120.

27. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. (2007) An

"electronic fluorescent pictograph" browser for exploring and analyzing large-

scale biological data sets. PLoS ONE 2: e718.

28. Heazlewood JL, Verboom RE, Tonti-Filippini J, Small I, Millar AH (2007)

SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Res 35: D213–218.

29. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, et al. (2005) A gene

expression map of Arabidopsis thaliana development. Nat Genet 37: 501–506.

30. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, et al. (2007) The

AtGenExpress global stress expression data set: protocols, evaluation and model

data analysis of UV-B light, drought and cold stress responses. Plant J 50:

347–363.

31. Toufighi K, Brady SM, Austin R, Ly E, Provart NJ (2005) The Botany Array

Resource: e-Northerns, Expression Angling, and promoter analyses. Plant J 43:

156–163.

32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:

402–408.

33. Krishna P, Reddy RK, Sacco M, Frappier JR, Felsheim RF (1997) Analysis of

the native forms of the 90 kDa heat shock protein (Hsp90) in plant cytosolic

extracts. Plant Mol Biol 33: 457–466.

34. Bhangoo MK, Tzankov S, Fan AC, Dejgaard K, Thomas DY, et al. (2007)

Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent

mitochondrial import. Mol Biol Cell 18: 3414–3428.

35. Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, et al.

(2006) The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is

required for the osmotic stress responses and abscisic acid sensitivity. Plant

Physiol 142: 1113–1126.

36. Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, et al. (2003) Cofactor

Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90

chaperone system. EMBO J 22: 3613–3623.

37. Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (2008) Role of the

cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 47: 8203–8213.

38. Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as

molecular architecture for protein recognition. Protein Sci 13: 1435–1448.

39. Min J, Zhang X, Cheng X, Grewal SI, Xu RM (2002) Structure of the SET

domain histone lysine methyltransferase Clr4. Nat Struct Biol 9: 828–832.

40. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, et al. (2004) Regulation of

p53 activity through lysine methylation. Nature 432: 353–360.

41. Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, et al. (2008)

The tale of two domains: proteomics and genomics analysis of SMYD2, a new

histone methyltransferase. Mol Cell Proteomics 7: 560–572.

42. Ito T, Matsui Y, Ago T, Ota K, Sumimoto H (2001) Novel modular domain

PB1 recognizes PC motif to mediate functional protein-protein interactions.

EMBO J 20: 3938–3946.

43. Inaba K, Murakami S, Suzuki M, Nakagawa A, Yamashita E, et al. (2006)

Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide

bond generation. Cell 127: 789–801.

44. Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular

chaperones and specific regulators of Hsp70. Trends Biochem Sci 19: 176–181.
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