
Long-Term Memory for Pavlovian Fear Conditioning
Requires Dopamine in the Nucleus Accumbens and
Basolateral Amygdala
Jonathan P. Fadok1,2, Martin Darvas2, Tavis M. K. Dickerson2, Richard D. Palmiter2*

1 Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington, United States of America, 2 Department of Biochemistry and Howard

Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America

Abstract

The neurotransmitter dopamine (DA) is essential for learning in a Pavlovian fear conditioning paradigm known as fear-potentiated
startle (FPS). Mice lacking the ability to synthesize DA fail to learn the association between the conditioned stimulus and the fear-
inducing footshock. Previously, we demonstrated that restoration of DA synthesis to neurons of the ventral tegmental area (VTA)
was sufficient to restore FPS. Here, we used a target-selective viral restoration approach to determine which mesocorticolimbic
brain regions receiving DA signaling from the VTA require DA for FPS. We demonstrate that restoration of DA synthesis to both the
basolateral amygdala (BLA) and nucleus accumbens (NAc) is required for long-term memory of FPS. These data provide crucial
insight into the dopamine-dependent circuitry involved in the formation of fear-related memory.
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Introduction

DA is synthesized by neurons in discrete nuclei within the brain,

including the hypothalamus, olfactory bulb, and ventral midbrain

[1]. DA neurons in the VTA of the ventral midbrain project to

limbic brain areas that are important for fear conditioning, such as

the prefrontal cortex, hippocampus, amygdala, and NAc [1,2,3].

Consistent with a role of DA in fear conditioning, the firing rate of

DA neurons is altered by fear-inducing stimuli as well as cues that

predict aversive outcomes [4,5,6]. Furthermore, in response to

fearful stimuli or stressful situations, DA levels increase in several

limbic brain regions [7,8,9,10] and pharmacological and genetic

manipulations of DA function can disrupt learning in fear

conditioning paradigms [11,12,13,14].

In Pavlovian fear conditioning, a neutral conditioned stimulus,

such as a light, is paired with an aversive unconditioned stimulus,

such as a footshock. Following training, presentation of the

conditioned stimulus alone elicits fear responses [3]. FPS is a

commonly employed Pavlovian fear conditioning paradigm in

which learning is assessed by cue-elicited increases in the acoustic

startle response [15]. We have previously demonstrated that DA

neurons in the VTA are sufficient for learning in a FPS paradigm

[12]. Furthermore, we demonstrated that DA in the BLA is

sufficient to produce short-term memory (STM), but not long-term

memory (LTM), of the cue-shock association. Of the remaining

targets of VTA DA neurons, the NAc receives the largest

innervation and was therefore a prime candidate site for the

formation of LTM for FPS [2].

A large literature supports a role for DA within the NAc for

associative learning processes in reward-based paradigms [16]. It is

currently unclear whether DA in the NAc is also important for

learning in Pavlovian fear conditioning. However, studies have

shown that DA levels increase in the NAc in response to fearful

stimuli and predictive cues [10]. Furthermore, the NAc is heavily

innervated by the BLA [16,17], a nucleus essential for fear

conditioning, and DA facilitates neuronal function in both the

NAc and BLA [18,19,20,21]. Therefore, it is possible that

connectivity between the BLA and NAc, and DA signaling in

both of these regions, is required for Pavlovian fear conditioning.

To determine whether DA is necessary in the NAc and BLA for

LTM in Pavlovian fear conditioning, we made use of the

dopamine-deficient (DD) mouse model that lacks the ability to

synthesize DA due to insertion of a loxP-flanked transcriptional/

translational stop cassette in the tyrosine hydroxylase (Thfs) gene [22].

In the presence of Cre recombinase, DA signaling can be

selectively restored to specific target regions by reactivation of

the Thfs allele through the removal of the stop cassette. We used a

retrogradely-trafficked virus expressing Cre recombinase to

selectively restore DA to either the NAc alone, or to both the

NAc and BLA. Our results demonstrate that DA in the NAc and

BLA is sufficient for establishing LTM for FPS.

Results

Restoration of TH in Virally-Rescued DD Mice
To determine where in the brain DA is necessary for the

formation of LTM for FPS, DA function was restored in DD mice

via injections of CAV2-Cre recombinase. This virus selectively

infects neurons and is retrogradely transported from the site of
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injection [23]. If injected into a target nucleus of DA neurons in

DD mice, this virus will be trafficked back to DA neurons of the

ventral midbrain where it excises the floxed stop cassette thereby

reactivating the Th gene, restoring TH production, and allowing

DA production only to the selected targets [22]. We used this

technique in two separate cohorts of mice. Because the NAc is the

largest target of DA neurons of the VTA [2], we hypothesized that

this nucleus might be critical for the formation of LTM for FPS;

therefore, bilateral injections of CAV2-Cre were made into the

NAc in one cohort. We also tested the hypothesis that DA may be

required in multiple targets of the VTA for LTM. To test this,

bilateral injections were made into both the NAc and BLA of

DD mice.

Immunohistochemistry was used to confirm the restoration of

TH function in virus-injected DD mice (Figure 1). As expected,

there was a strong signal for TH in the NAc of control mice that

co-localized with the DA transporter (DAT) (Figure 1A–D). TH

was also detected in the BLA of control mice (Figure 1E); however,

DAT immunoreactivity was very low in the BLA and is therefore

not shown. Immunohistochemistry was also conducted on brain

tissue from non-injected DD mice (Figure 1 F–J). There was no

detectable TH signal in the NAc (Figure 1F, G), yet DAT staining

Figure 1. Selective restoration of TH in virally-rescued DD mice. A–E) Immunohistochemistry (IHC) results for a control mouse. A) Tyrosine
hydroxylase (TH) stain in the nucleus accumbens (NAc). B) 40x magnification of TH stain. C) Stain for dopamine transporter (DAT) in NAc. D) Merged
image of TH and DAT stain showing extensive overlap of the two signals. E) TH stain in basolateral amygdala (BLA) shown at 20x. F–J) IHC results for a
non-rescued DD mouse. F) Complete absence of TH in NAc. G) 40x magnification demonstrating lack of TH in NAc. H) DAT stain. I) Merged image of
TH and DAT illustrating lack of TH in the NAc. J) TH in BLA (20x) is almost undetectable. K–O) Representative IHC from NAc-rescued DD mouse. K) TH
was largely restored in the NAc. L) 40x magnification illustrating rescue of TH. M) DAT staining in NAc-rescued DD mouse. N) Merged image of TH and
DAT illustrating large extent of TH restoration in NAc. O) TH in BLA (20x) remains at low, non-injected levels. P–T) Representative IHC from DD mouse
injected into the NAc and BLA. P) Robust restoration of TH to the NAc. Q) 40x magnification demonstrating TH rescue. R) DAT staining. S) Merged
image of TH and DAT showing extensive restoration of TH to NAc. T) TH is restored to higher levels in NAc and BLA rescued DD mice.
doi:10.1371/journal.pone.0012751.g001
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was present (Figure 1H, I). The BLA of DD mice was also largely

devoid of TH staining (Figure 1J).

Immunohistochemistry from NAc-injected DD mice showed

that TH was restored to a large extent of the NAc (Figure 1K–N).

No detectable TH was observed in the BLA of NAc-injected DD

mice (Figure 1O). Double rescue to the NAc and BLA resulted in a

robust signal for TH in the NAc (Figure 1P–S) and a strong TH

signal in the BLA (Figure 1T). These data demonstrate that viral

injection of CAV2-Cre was highly effective at restoration of TH

expression specific to the brain regions injected.

To confirm that viral rescue of TH led to restoration of DA in

injected DD mice, we quantified DA, DA metabolites and

norepinephrine using high performance liquid chromatography

(HPLC; Table 1). For this experiment, we performed rescue in either

the NAc or the amygdala to also determine if TH rescue in one target

of DA projections would influence DA levels in another, non-injected

region. We found that dopamine-depleted DD mice had 0.51% of

control DA levels in the NAc and 1.39% of control levels in the

amygdala. NAc-rescued DD mice had DA levels that were 34.0% of

control in the NAc; yet DA levels in the amygdala were the same as

non-injected DD levels (1.57%). Amygdala-rescued DD mice had DA

levels in the amygdala that were 38.4% of control, yet DA levels in the

NAc were the same as non-rescued DD levels (0.46%). These results

demonstrate that virus-mediated rescue of TH leads to elevated DA

levels in injected target regions of DD mice. Furthermore, injection of

virus into either the NAc or amygdala did not lead to elevation of DA

levels in the other target. Finally, because TH is expressed in

noradrenergic neurons of DD mice [24,25], we attributed the small

amount of TH seen in IHC of the BLA in DD mice to noradrenergic

axons. The presence of norepinephrine in the BLA of non-rescued DD

mice was confirmed with HPLC (Table 1).

Dopamine is Required in the NAc and BLA for Long-Term
Memory

Fear-potentiated startle is a form of Pavlovian conditioning in

which a conditioned stimulus elicits increases in the acoustic startle

response [15]. To ensure that selective restoration of DA only to

the NAc, or only to the NAc and BLA, does not impair the

acoustic startle response itself, startle response curves were

generated for controls and rescued DD mice (Figure 2A). Two-

way repeated measures analysis of variance (RM ANOVA)

revealed a significant effect of sound intensity (F(4,172) = 37.1,

p,0.01), but no group by treatment interaction. Perturbations of

DA function can also cause differences in sensorimotor gating that

could impair FPS [15,26]. To analyze sensorimotor gating, all

mice were tested at multiple levels in a prepulse inhibition (PPI)

paradigm (Figure 2B). There was a significant effect of prepulse

intensity (RM ANOVA F(2,86) = 57.79, p,0.01) but no group by

treatment interaction. These results demonstrate that the selective

rescue of DA signaling to the NAC, or NAc and BLA, caused by

our experimental manipulations did not change the acoustic startle

response or sensorimotor gating.

The mice were subjected to a fear conditioning paradigm

(Figure 2C). During training, mice were given 30 trials in which a

10-sec light cue was paired with a mild footshock (0.5 sec, 0.2 mA).

Short-term memory (STM) was tested 10 min after training and

LTM was tested 24 hr later. There were no significant differences

between groups before conditioning. Following training, STM was

completely restored in DD mice with restoration to the NAc and

BLA. STM in NAc-injected DD mice was impaired, yet this effect

failed to reach significance; however, they had significantly less LTM

than control mice (p,0.05; Bonferroni posttest). LTM was

completely restored to control levels in DD mice injected bilaterally

into both the NAc and BLA. There were no significant differences

between groups in behavioral reaction to footshock (Figure 2D).

These data demonstrate that DA in the NAc and BLA is sufficient to

facilitate LTM for FPS.

Discussion

DA is thought to facilitate consolidation and the formation of

LTM in key limbic brain regions such as the amygdala, NAc and

hippocampus [27,28,29], and previous studies have suggested a

role for DA in Pavlovian fear conditioning [13]. Previously, we

demonstrated that DA is critical for stabilizing the memory trace

in a FPS paradigm [12]. Furthermore, restoration of DA function

to the mesocorticolimbic circuit emanating from the VTA was

sufficient to restore STM and LTM for FPS, yet restoration to the

BLA alone only restored STM [12]. However, the sites of DA

action required for formation of LTM in this type of learning was

unknown. Here, we demonstrate that restoration of DA synthesis

to the NAc and BLA is sufficient for LTM for FPS. We also find

that restoration of TH to DA neurons projecting to the NAc was

not as effective at rescuing STM as BLA restoration [12], or

restoration to both the BLA and NAc. This suggests that the NAc

might be more important for the formation of LTM than STM.

One potential caveat to the viral restoration approach is that

DA neurons could send collateral projections to more than one

target. Thus, injecting virus into the NAc could restore TH, and

thereby DA, to the BLA. Our immunohistochemistry results

Table 1. HPLC Quantification of DA, NE, and DA metabolites.

Group n Region DA DA HVA DOPAC 3-MT NE

(%Control) (ng/mg) (ng/mg) (ng/mg) (ng/mg) (ng/mg)

Control 3 NAc 100 71.564.64 6.1360.67 10.362.09 7.4762.50 0.3460.22

Control 3 AMYG 100 16.066.44 2.5660.62 2.2960.5 2.7960.63 0.9560.46

DD 4 NAc 0.51 0.3760.15 0.8460.40 0.6360.62 1.1760.26 0.9460.27

DD 4 AMYG 1.39 0.2260.03 0.6260.06 0.0860.04 1.9961.10 2.1961.21

NAc-Rescue 4 NAc 34.0 24.363.01 1.760.21 3.1760.63 2.5060.52 0.4760.32

NAc-Rescue 4 AMYG 1.57 0.2560.02 0.3360.10 0.1060.04 1.6460.39 1.4360.15

AMYG-Rescue 4 NAc 0.46 0.3360.08 1.6861.35 1.2461.23 2.2860.11 0.6960.32

AMYG-Rescue 4 AMYG 38.4 6.1263.19 1.4860.52 0.6860.23 2.2160.87 1.7960.25

DA, dopamine; HVA, homovanillic acid; DOPAC, 3.4-dihydroxyphenylacetic acid; 3-MT, 3-methoxytyramine. Data presented as means 6 SEM.
doi:10.1371/journal.pone.0012751.t001
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suggest that the DA neurons innervating the NAc are a distinct

population from those innervating the BLA because injecting the

virus in one brain region enhanced TH staining only in that

region. The HPLC results strengthen this argument because DA

levels are elevated in the NAc of NAc-rescued DD mice and not in

the amygdala. These findings are consistent with numerous studies

that have explored the heterogeneity of DA neurons based on

projection target [30,31,32,33].

The circuitry and mechanisms underlying the need for DA in

both the NAc and BLA for Pavlovian fear conditioning remain

unresolved. Intriguingly, the BLA sends projections to the NAc

[16,34] and these synapses can undergo long-term potentiation, a

key cellular correlate of learning and memory [35]. Moreover, DA

facilitates LTP in the BLA and NAc [18,21]. Thus, during

Pavlovian fear conditioning, it is possible that DA in the BLA

facilitates glutamatergic pyramidal cell activity [19,20,36], includ-

ing those cells which project to the NAc [34], while DA in the NAc

facilitates LTP of BLA to NAc synapses, thereby promoting the

formation of LTM. Determining the precise timing of DA-

dependent events in the BLA and NAc for FPS will enhance our

understanding of this process.

Materials and Methods

Ethics Statement
All mice were treated in accordance with guidelines established

by the National Institutes of Health and procedures with mice

were approved by the University of Washington Institutional

Animal Care and Use Committee (2183-02).

Animals and treatments
DD mice were generated as described [22]. Briefly, DD (Thfs/fs;

DbhTh/+) mice carry two inactivated tyrosine hydroxylase (Th)

alleles which can be conditionally reactivated by Cre recombinase.

DD mice have one intact dopamine b-hydroxylase (Dbh) allele,

and one Dbh allele with targeted insertion of the Th gene to allow

for normal production of norepinephrine [24,25]. Control animals

carry at least one intact Th allele and one intact Dbh allele. Male

and female mice were subjected to behavioral testing between the

ages of 2–6 months. All mice were housed under a 12:12

(light:dark) cycle in a temperature-controlled environment with

food (5LJ5; PMI Feeds, St. Louis, MO) and water available ad

libitum. All behavioral experiments were conducted during the light

cycle. Because DD mice are severely hypophagic, they were

injected daily (intraperitoneally)with 3, 4-dihydroxy-L-phenylala-

nine (L-Dopa)at 50 mg/kg at a volume of 33 ml/g, starting at

approximately post-natal day 10 [25]. After viral injection, DD

mice were maintained with daily injections of L-Dopa until they

could eat adequately without further L-Dopa treatment.

Viral Injections
Isoflurane (1.5–5%)-anesthetized mice were placed into a

stereotaxic instrument (David Kopf Instruments, Tujunga, CA).

For restoration of Th gene function in the nucleus accumbens

Figure 2. Restoration of DA to both the NAc and BLA is sufficient for LTM for FPS. A) Startle response curves for all three groups of mice
(control, n = 24; NAc alone, n = 13; Nacc+BLA, n = 9) illustrating intact startle responses in all rescue groups. B) Prepulse inhibition is intact in all groups
of mice. C) LTM for fear-potentiated startle is restored to control levels in NAc and BLA-rescued DD mice but not in NAc-alone rescues. * = p,0.05,
Bonferroni post-test. D) Behavioral response to footshock was the same in all groups.
doi:10.1371/journal.pone.0012751.g002
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alone, recombinant CAV2-Cre virus (titered at 2.161012 particles/

ml) was injected bilaterally (coordinates in mm: 1.7 anterior to

Bregma, 0.75 lateral to midline, 4.75 ventral to Bregma; 0.5 ml/

hemisphere) into DD and control mice. For double restoration of

DA to the NAc and BLA, CAV2-Cre virus was injected bilaterally

into the NAc, as above, and the BLA (coordinates in mm: 1.5

posterior to Bregma, 3.25 lateral to midline, 5 ventral to Bregma;

0.5 ml/hemisphere) in DD and control mice. Detailed description

of this viral vector has been published [22]. Viruses were injected

over a 10-min period using a 32-gauge syringe needle (Hamilton,

Reno, NV) attached to a micro-infusion pump (WPI, Sarasota,

FL). Control mice from NAc alone and double rescue cohorts were

compiled into one group and did not differ in any behavioral

parameter.

Apparatus
Sound-attenuating startle chambers (SR-Lab, San Diego

Instruments, San Diego, CA) were used to measure prepulse

inhibition, startle responses, and fear-potentiated startle, as

described [12]. The peak amplitude of the response was used to

calculate prepulse inhibition, startle responses, fear-potentiated

startle, and shock reactivity. Sound levels were verified using a

sound level reader (RadioShack, Fort Worth, TX). A calibration

unit was used to ensure the integrity of the startle response

readings (San Diego Instruments, San Diego, CA). An 8-watt light

was mounted on the rear wall of the startle box for use as a cue.

Startle response curves
Following a 5-min habituation period, animals were presented

with 10 series of trials with escalating sound pulse levels: from null,

in which there was no sound, to 105 dB, with an ITI of 30 sec. All

sound pulses were 40 msec.

Pre-pulse inhibition
PPI was measured as described [12]. Briefly, following a

habituation period, mice were presented with 5, 40-msec, 120-dB,

pulse-alone trials. Mice were then presented with 50 trials of either

a startle pulse-alone trial, one of three prepulse trials (5, 10, and

15-dB above background), or a null trial in which there was no

acoustic stimulus. Prepulse inhibition was calculated for each

prepulse level using the following formula: % inhibition = [(aver-

age startle response on prepulse trial/average startle response on

pulse-alone trial) 6100].

Fear-potentiated startle
All mice were tested using the 3-day FPS paradigm as described

[12]. Briefly, on baseline, mice were given a pseudo-randomly

ordered series of 20 trials, split evenly between cue and no-cue

conditions. On day 2, mice received 30 pairings (2 min mean ITI)

of the 10-sec cue light with a 0.2-mA, 0.5-sec footshock. The mice

were then placed into their home cages for 10 min before testing

for short-term memory. On day 3, LTM was assessed. The

following formula was used to calculate fear-potentiated startle:

%potentiation = [(average of responses on cue trials/average of

responses on no-cue trials-1) 6100].

Immunohistochemistry
Mouse brain tissue was prepared for histological analysis using

standard techniques, as described [12]. Free-floating coronal

sections (30 mm) were immunostained with rabbit anti-TH

(1:2000, Millipore) and rat anti-DAT (1:1000, Millipore) antibod-

ies. Secondary antibodies were either Cy2- or Cy3- conjugated

(1:200, Jackson ImmunoResearch). Photographs were taken with

an upright brightfield microscope (Nikon).

High-performance liquid chromatography
Mice were euthanized with Beuthanasia (250 mg/kg) and then

brains were removed and placed on an ice-cold marble plate.

Using a mouse brain matrix (Activational Systems, Warrren, MI),

1-mm thick slices were taken through the NAc or amygdala.

Tissue punches (1-mm diameter) were then taken, placed into

1.7 mL microcentrifuge tubes, and quickly frozen in liquid

nitrogen. Samples were stored at 280uC until they were shipped

on Dry Ice to Neurochemistry Core Lab (Venderbilt University

Center for Molecular Neuroscience Research) for analysis.

Statistical Analyses
Statistical analysis was performed using GraphPad Prism

software (La Jolla, California).
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