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Abstract

Background: The mammalian otoconial membrane is a dense extracellular matrix containing bio-mineralized otoconia. This
structure provides the mechanical stimulus necessary for hair cells of the vestibular maculae to respond to linear
accelerations and gravity. In teleosts, Otolin is required for the proper anchoring of otolith crystals to the sensory maculae.
Otoconia detachment and subsequent entrapment in the semicircular canals can result in benign paroxysmal positional
vertigo (BPPV), a common form of vertigo for which the molecular basis is unknown. Several cDNAs encoding protein
components of the mammalian otoconia and otoconial membrane have recently been identified, and mutations in these
genes result in abnormal otoconia formation and balance deficits.

Principal Findings: Here we describe the cloning and characterization of mammalian Otolin, a protein constituent of
otoconia and the otoconial membrane. Otolin is a secreted glycoprotein of ,70 kDa, with a C-terminal globular domain
that is homologous to the immune complement C1q, and contains extensive posttranslational modifications including
hydroxylated prolines and glycosylated lysines. Like all C1q/TNF family members, Otolin multimerizes into higher order
oligomeric complexes. The expression of otolin mRNA is restricted to the inner ear, and immunohistochemical analysis
identified Otolin protein in support cells of the vestibular maculae and semi-circular canal cristae. Additionally, Otolin forms
protein complexes with Cerebellin-1 and Otoconin-90, two protein constituents of the otoconia, when expressed in vitro.
Otolin was also found in subsets of support cells and non-sensory cells of the cochlea, suggesting that Otolin is also a
component of the tectorial membrane.

Conclusion: Given the importance of Otolin in lower organisms, the molecular cloning and biochemical characterization of
the mammalian Otolin protein may lead to a better understanding of otoconial development and vestibular dysfunction.
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Introduction

The mammalian inner ear is a remarkable sensory structure

consisting of the vestibule, which detects motion and facilitates

vestibular function, and the cochlea, which is dedicated to hearing.

The ability to maintain equilibrium and proper orientation in space

is critical for the survival of motile organisms, and the vestibular

system is highly conserved throughout evolution [1,2]. The vestibule

comprises five separate sensory organs, each containing hair cell

receptors. The utricle and saccule are responsible for sensing linear

acceleration, and the three semi-circular canal cristae detect head

rotation. In each sensory organ the hair cells are covered by an

acellular gel matrix or membrane. The otoconial membrane covers

hair cells in the maculae of the utricle and saccule, and the cupula

surrounds hair cells in each of the cristae. Movements of these

membranes in response to motion deflect the stereocilia bundles on

the underlying hair cells, opening mechanosensitive channels and

leading to the generation of vestibular-evoked potentials [3].

Recently, several protein constituents of the acellular gel matrix

have been identified in mammals, including a- and b-tectorin

[4,5], otogelin [6,7], and otoancorin [8]. In the mouse, a- and b-

tectorin are components of the otoconial membrane and the

tectorial membrane that contacts auditory hair cells in the cochlea,

but are absent from the cupula [5]. Otogelin is present throughout

all of the acellular gels [6], while otoancorin is specifically located

at the interface between the sensory epithelia and the overlying

gel. Thus, otoancorin functions to anchor the gel matrix to the

underlying sensory epithelia [8]. The expression of these genes is
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also highly restricted to the inner ear, and mutations in these genes

result in pronounced hearing and/or balance deficits

[8,9,10,11,12,13].

A unique feature of the otoconial membrane that is absent from

the tectorial membrane or the cupula is the presence of

biomineralized CaCO3 crystals called otoliths, or ear stones, in

teleost fish and otoconia, or ear dust, in mammals [14,15,16]. The

mammalian otoconial membrane holds thousands of otoconia

(,10 mM), and the entire complex is anchored to the hair cell

kinocilia. Teleost fish, by comparison, lack an otoconial mem-

brane; nonetheless, three large otoliths still appear tethered to the

underlying hair cells [17,18,19]. The critical function of otoconia

and otoliths is to impart inertial movements in response to gravity

or linear acceleration, which stimulates the underlying sensory hair

cells by deflecting their stereocilia bundles [3]. Consistent with

this, all mouse mutants lacking otoconia (such as tilted, head slant,

and head tilt mice) have severe balance deficits [20,21,22,23].

Otoconia and otoliths contain an inner core matrix made up of

glycoproteins (termed Otoconins) and proteoglycans, while the

outer surface consists mostly of precipitated CaCO3 [15]. These

CaCO3 crystals exist in three major polymorphs: calcite (found in

mammals and birds), aragonite (found in amphibians and fish),

and vaterite (found in primitive jawfish such as garfish) [24]. It is

generally believed that the different CaCO3 polymorphs in

otoconia and otoliths are determined by the major matrix

proteins, which bind calcium and make up the organic core

[25]. In mammals and birds, the major core protein is a highly

glycosylated glycoprotein named Otoconin 90 (Oc90/95) [26,27];

in amphibians, it is Otoconin 22 [28]; in primitive jawfish, it is

Otoconin 54 [25]; and in teleost fish, it is otolith matrix protein

(Omp) [17,18]. Targeted deletion of Oc90 in mice results in

balance deficits due to absent or abnormal (few and large) otoconia

[29,30]. Similarly, morpholino knockdown of Oc90 orthologs in

fish lead to an aberrant otolith phenotype [31].

How otoconia are formed and subsequently embedded in the

otoconial membrane during inner ear development remains

unclear. In mammals, this process is initiated during embryogen-

esis and is completed during early postnatal maturation [32,33]. In

teleost fish, development of the otolith also initiates early in otic

development, however otoliths continue to grow throughout the

life of the fish [2]. The source of calcium in the endolymph is

thought to be provided by the extrusion of Ca2+ [via the plasma

membrane Ca2+-ATPase isoform 2 (PMCA2)] from the hair cells

[34]. Consistent with this, PMCA2-null mice exhibit severe

balance deficits resulting from the complete absence of otoconia

[34]. During otoconia formation, CaCO3 is precipitated about the

otoconial core matrix proteins. Each matrix protein is expressed in

different regions of the utricular and saccular sensory epithelium,

resulting in a corresponding variation in otoconia size and shape.

One of the most common forms of vestibular dysfunction and

vertigo in humans is benign paroxysmal positional vertigo (BPPV)

[35,36], a condition in which otoconia dislodged from the utricle

become trapped in the semi-circular canals. Approximately 50%

of dizziness or vertigo in the elderly population is attributed to

BPPV [37], representing a major risk factor for falls, bone

fractures, and accidental death [38]. Although BPPV can be

caused by head trauma, inner ear infection, ototoxic drugs, or age-

related degeneration of otoconia, the etiology of the majority of

BPPV cases is unknown. Important underlying factors are the

processes that anchor and embed otoconia within the otoconial

membrane; these likely involve specific interactions between

otoconial proteins and the matrix proteins of the acellular gel.

We have recently identified and characterized a family of

secreted glycoproteins belonging to the C1q/TNF family of

proteins [39,40,41]. One novel C1q/TNF family member is

homologous to teleost Otolin, an inner ear-specific, collagenous

protein important for the growth and function of otolith structures

of the vestibular system [17,18,19]. Morpholino knockdown of

otolin transcripts in zebrafish demonstrates that Otolin is required

for the proper anchoring of otoliths onto the sensory epithelium

and for the overall stability of the otolith matrix [17]. Expression of

a mammalian ortholog of Otolin has been reported in mouse inner

ear [30], however otolin cDNA has not been cloned and Otolin

protein has not been characterized biochemically.

In the present study we show that otolin encodes a secreted

multimeric glycoprotein with extensive posttranslational modifi-

cations. Expression of otolin is highly restricted to the inner ear, and

Otolin protein contributes to all extracellular matrices contacting

sensory hair cells, including the otoconial membrane and the

tectorial membrane of the cochlea. Further, Otolin can physically

interact with otoconia proteins such as Oc90 [26,27] and

Cerebellin (Cbln1) [42], suggesting that Otolin is also a component

of protein complexes involved in otoconia formation. Together,

this evidence suggests that Otolin is an important component of

the extracellular matrices of the inner ear and is necessary for

auditory and vestibular function.

Materials and Methods

Identification and cloning of mouse otolin
Multiple C1q/TNF family member cDNAs and protein

sequences were used to query the NCBI GenBank databases

and identify several mouse expressed sequence tags (ESTs) that

encode a novel protein with significant homology to the globular

C1q domain of chum salmon (Oncorhynchus keta) Otolin (GenBank

accession number BAB84561). Based on EST clones and genomic

sequences corresponding to mouse otolin, a nested PCR approach

was used to clone the entire coding region from 17-day mouse

embryo cDNA (Clontech). Primers 59-CAGTGCTGTCCAGGA-

GAAGGATTGG-39 and 59-ATAGGAATAGTTGACACTAT-

GCTGG-39 were used in first round PCR (35 cycles) using a high-

fidelity Pfu DNA polymerase (Stratagene). An aliquot (3 ml) of this

reaction was used as template for a second round of amplifications

(35 cycles) using primers 59-CACCCATAAGCCTCGAATA-

TGTGG-39 and 59-TAGAATAAATCAGAA GTACAGTGTC-

C-39. The resulting PCR product was purified and cloned into the

pCRII TOPO cloning vector (Invitrogen). The entire cDNA insert

was sequenced and results were deposited into GenBank with the

accession number DQ002405.

cDNA constructs
The C-terminal FLAG (DYKDDDDK peptide) and HA-

(YPYDVPDYA peptide) tagged Otolin were generated by PCR

and cloned into the pCRII TOPO vector (Invitrogen). Tagged

cDNAs were excised from pCRII TOPO using EcoRI enzyme

(New England Biolabs) and cloned into the mammalian expression

vector, pCDNA3.1 (Invitrogen). Mouse Oc90 cDNA was cloned

from a mouse embryo (Day-17) cDNA pool (Clontech) using

primers 59-CCTACACCTTGTCCTCTGCACTGC -39 and 59-

ACTGAGGGCCAAAGGGCT CAGACAG -39. A total of 36

rounds of PCR amplification were carried out using a high fidelity

Pfu polymerase (Stratagene) in the presence of 7% DMSO. Mouse

Oc90 protein exists in multiple isoforms due to alternative splicing

[27], and the cDNA we cloned corresponds to the described

version B that lacks the peptide segment ‘‘AGEVRADTL-

TTLSRTK’’ between the two phospholipase A2 domains [27].

Cbln1 and Cbln4 cDNA clones were obtained from Open

Biosystems. The C-terminal HA-tagged Oc90, Cbln1, and Cbln4
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constructs were generated by the same method as described for

epitope-tagged Otolin. All constructs were verified by DNA

sequencing. The mammalian expression vectors encoding C-

terminal HA-tagged Adiponectin, CTRP1, CTRP2, CTRP3,

CTRP5, CTRP6, CTRP9, and CTRP10 used in this study were

described in our previous studies [39,40,41].

Quantitative real time PCR analysis
Quantitative real time PCR was used to screen a mouse multiple

tissue cDNA panel (Clontech, Mountain View, CA, USA) and

RNAs isolated from the inner ear of P0 mouse for the presence of

otolin transcripts. The following q-PCR primers were used in this

study: Otolin forward, 59-AAGGGCTTAAAGCCGTCCAGTGG-

39; Otolin reverse, 59-GTGTCCAGAGAGAAGCTCTCG-39; Oc90

(NM_010953)forward, 59- GCTCAGTCTGGCATCAACTCC-

39; Oc90 reverse, 59- CTGGTATCTGTGGGCTTTTCAG-39;

Cbln1 (NM_019626) forward, 59-CAGGAGGGGAGTGAGAAA-

GAG -39; Cbln1 reverse, 59-GGGAGTGTGCAGAGCTAAGC-39;

Cbln2 (NM_172633) forward, 59-GAGCCCATCGTG CTA-

GAGG -39; Cbln2 reverse, 59-CCTGAGCGCACAGAAATGC-

39; Cbln3 (NM_019820) forward, 59-GGGACGGAATGGCA-

CAAAC -39; Cbln3 reverse, 59-CACTCCCCCTCCAGT AGGAC

-39; Cbln4 (NM_175631) forward, 59- GCCGTTCTGCTGATTC-

TAGTG -39; Cbln4 reverse, 59-CTGGGTTCGAGTCGCACAC-

39; Sparc (NM_009242) forward, 59-GTGGAAAT GGGAGAAT-

TTGAGGA -39; Sparc reverse, 59-CTCACACACCTTGCCATG

TTT-39; SparcL1 (NM_010097) forward, 59-GGCAATCCCGA-

CAAGTACAAG-39; SparcL1 reverse, 59-TGG TTTTCTATG-

TCTGCTGTAGC-39; Chondromodulin-1 (NM_010701)forward, 59-

CCTGAGGA CGTTGAGTTTTGC -39; Chondromodulin reverse,

59-CAGCTCCTACCTTGAGCAGC-39; Otopetrin (NM_172709)

forward, 59- GAAGGGCTGGGTTGCCTTAG -39; Otopetrin

reverse, 59- ACACGTTCAGTCCATACTG GC-39; Collagen II

a1 (Col2a; BC052326) forward, 59- CAGGATGCCCGAAAAT-

TAGGG-39; Col2a reverse, 59- ACCACGATCACCT CTGGGT-

39; otoancorin (NM_139310) forward, 59- TGGAGGTGCCTAT-

CAGAGAGA-39; otoancorin reverse, 59- GTGAGATCCAG-

TAACGCATTCA-39; otogelin (NM_013624) forward, 59-CGTT

GCCAGTTGGTGTATAATGT-39; otogelin reverse, 59- GAAAA-

GTAGTAGTACAGGCC GTC-39; a-tectorin (NM_009347) for-

ward, 59- TTCGCTCTTGTTCGGCACC-39; a-tectorin reverse,

59- CTCAGAGGAGCTTCCGTCATC-39; b-tectorin (NM_009348)

forward, 59- GTCA GGGCCTTCGTTTTGCT-39; b-tectorin

reverse, 59- CTCGGGGATTTTAGTGATGATGG-39; Stereocilin

(NM_080459) forward, 59- CTCAGTCTTTGGATGCTGGTC-39;

Stereocilin reverse, 59- GGAACGCAGAGAACCGTGA-39; 18S RNA

forward, 59-GCAATTATTCC CCATGAACG-39; 18S RNA reverse,

59-GGCCTCACTAAACCATCCAA-39. The default PCR protocol

was used on an Applied Biosystems Prism 7000 Sequence Detection

System. Mouse inner ear cDNAs were synthesized from 1 mg of total

RNA and 200 ng of random hexamers using the Superscript II RNase

H-Reverse Transcriptase (Invitrogen). For quantitative PCR, samples

were analyzed in 25-ml reactions (10 ng of cDNA, 900 nmol of primer,

12.5 ml of master-mix, and water) according to the standard protocol

provided in SyBRH Green PCR Master Mix protocol (Applied

Biosystems).

Generation of Otolin-specific antibody
The C-terminal FLAG-tagged Otolin was produced and

purified from the supernatants of transiently transfected

HEK293T cells. Briefly, 24 h after transfection, DMEM media

containing 10% FBS were replaced by serum-free Opti-MEM I

media supplemented with vitamin C (0.1 mg/mL). Supernatants

were collected 3 times, every 48 h, pooled and purified using the

anti-FLAG affinity gel (Sigma), and eluted with 150 mg/mL of

FLAG peptide (Sigma). Purified proteins were dialyzed against

20 mM HEPES buffer (pH 8.0) containing 135 mM NaCl in a

10 kDa cut-off Slide-A-Lyzer dialysis cassette (Pierce). Rabbit

polyclonal antibody directed at purified recombinant Otolin was

produced by immunizing NZW rabbits as described previously

[39]. Sera were collected and tested for their ability to recognize

HA-tagged Otolin by Western blot analysis.

HEK293T Cell Transfection
HEK293T were cultured in DMEM containing 10% fetal calf

serum supplemented with 2 mM L-glutamine, 100 units/mL

penicillin, and 100 mg/mL streptomycin. Transient transfections

were performed in HEK293T cells using lipofectamine 2000

reagent (Invitrogen). Twenty-four hours after transfection, cells

were washed and cultured in serum-free Opti-MEM I medium

(Invitrogen) supplemented with vitamin C (0.1 mg/mL) for 24–

48 h before the conditioned media was collected for Western blot

analysis using the anti-FLAG M2 (Sigma) or anti-HA (clone 3F10 -

Roche) monoclonal antibody. A sample of the supernatant from

Otolin transfectant was incubated with PNGaseF (New England

Biolabs), chondroitinase ABC, or O-glycosidase (Sigma) to

determine the presence of N-linked glycans, chondroitin sulfate

proteoglycans, or O-linked glycans, respectively.

Western blotting
Supernantants (25 ml) from transfected cells were suspended in

60 ml NuPAGE LDS sample buffer (Invitrogen) containing

reducing agent (b-mercaptoethanol), heated at 90uC for 10 min,

and separated on 10% NuPAGE Bis-Tris gel (Invitrogen). Proteins

from gels were transferred to 0.2 mm Protran BA83 nitrocellulose

membrane (Whatman), blocked in 5% non-fat milk for 1 h, and

probed overnight with the mouse anti-FLAG M2 (1:5000), rat

anti-HA (1:2000) monoclonal antibody, or polyclonal rabbit anti-

Otolin antibody (1:5000) in the presence of 5% non-fat milk.

Immunoblots were washed 36 (5–10 min each) in PBS containing

0.1% Tween 20 and incubated with the sheep anti-mouse-HRP or

the goat anti-rat-HRP (Amersham Biosciences) (1:5000) for 1 h.

Blots were washed 36 (10 min each) in PBS containing 0.1%

Tween 20, developed in ECL reagent (Millipore) for 2–5 min, and

exposed to Blue XB-1 film (Kodak).

Co-immunoprecipitation Analysis
An aliquot of supernantants (250–350 ml) collected from transfect-

ed cells was combined with 500 ml of IP buffer (150 mM Tris-HCL,

pH 7.4, 150 mM NaCl, 1 mM EDTA, and 1% Triton X-100) and

subjected to immunoprecipitation using the anti-FLAG M2 affinity

gel (Sigma) or rabbit anti-Otolin antibody in the presence or absence

of 5 mM EDTA. Samples were rotated for 4 h or overnight at 4uC,

washed 4 times with IP buffer, resuspended in SDS-PAGE loading

buffer containing b-mercaptoethanol, and subjected to Western blot

analysis. For native gel electrophoresis, immunoprecipitates were

eluted with either FLAG peptide (150 mg/ml) or 0.1 M glycine buffer

(pH 3.5) and immediately resuspended in 26Novex Native TrisGly

sample buffer (Invitrogen), followed by non-reducing, non-denatur-

ing, native gel electrophoresis.

Reducing and non-reducing gel electrophoresis
Protein samples (recombinant Otolin and ground-up P0 mouse

inner ear) were suspended in NuPAGE LDS sample buffer

(Invitrogen) in the presence or absence of reducing agent (b-

mercaptoethanol), heated at 90uC for 10 min, and separated on 4–

12% NuPAGE Bis-Tris gels in NuPAGE MOPS SDS running
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buffer at 195 volts for 4 hr. Separated proteins were transferred

onto 0.2 mm Protran BA83 nitrocellulose membrane (Whatman)

and subjected to Western Blot analysis.

Native Gel Electrophoresis
Protein samples (recombinant Otolin, immunoprecipitates, and P0

mouse inner ear) in Novex Native TrisGly sample buffer (Invitrogen)

were separated on 4% Novex Tris-Glycine gels (Invitrogen) in Novex

Tris-Glycine native running buffer (Invitrogen) at 125 volts for 4 hr,

transferred onto PVDF membrane (Bio-Rad) in Novex Tris-Glycine

transfer buffer (Invitrogen), and subjected to immunoblot analysis using

the anti-FLAG or anti-Otolin antibody. NativeMark protein standard

(Invitrogen) was used in native gel electrophoresis to estimate the

apparent molecular weight of native Otolin. In the case of P0 mouse

inner ear, the excised tissues were rapidly frozen in liquid nitrogen and

ground to powder. The powder was resuspended in 26Novex Native

TrisGly sample buffer (Invitrogen) prior to separation in 4% Novex

Tris-Glycine gel. Because Otolin is tightly associated with otolith, the

very mild method we used only extracted a very small percentage of the

total native Otolin.

Glycoprotein detection
Approximately 50 ng of purified recombinant FLAG-tagged

Otolin were separated on SDS-PAGE gels, transferred to PVDF

membrane, and subjected to ECL glycoprotein detection protocol

according to the manufacturer’s instructions (GE Health Sciences).

Briefly, any carbohydrate moiety on recombinant Otolin was

oxidized with sodium metaperiodate and the oxidized sugar

aldehyde group was labeled with biotin using biotin-hydrazide

[43]. The presence of carbohydrate moiety was then detected

using streptavidin conjugated to horseradish peroxidase (HRP)

and chemiluminescence substrate (Millipore).

Gel Filtration Analysis
The supernatant (500 ml) from transfected HEK293T cells,

containing FLAG-tagged Otolin, was loaded into an AKTA FPLC

and fractionated through a Superdex 200 HR 10/30 column (GE

health science) in PBS. The internal diameter of the HR 10/30

column is 10 mm and the height of the packed bed is 30 cm. The

total bed volume is 24 ml and the void volume of the column is

,7.5 ml. In the default setting, the first two fractions (1 ml) were not

collected. Aliquots of the collected fractions (0.5 ml each) were

subjected to Western blot analysis using the anti-FLAG M2 antibody.

Mass spectrometry analysis
Purified recombinant Otolin was fractionated on an SDS-

PAGE gel, and a single band corresponding to Otolin was excised

and subjected to trypsin, chymotrypsin, or AspN digestion. Peptide

fragments were then loaded onto the Waters Nano Acquity HPLC

coupled to Thermo LTQ linear ion trap mass spectrometer for

Figure 1. Cloning of the mouse otolin cDNA. A, The deduced mouse and human otolin proteins consist of four domains— a signal peptide (S),
an N-terminal region with four Cys residues, a collagen domain with 75 Gly-X-Y repeats, and a globular C1q domain. All Cys residues with their amino
acid positions are indicated with a ball-and-stick. Note that human otolin has three more Cys residues located in the collagen domain compared to
mouse otolin. B, The exon/intron structures of human and mouse otolin gene. Dashed boxes indicate 59 and 39UTR that cannot be determined due to
lack of homology between the human and mouse gene. The size of each exon and intron are indicated. The region of the cDNA encoded by each
exon is indicated by dash line.
doi:10.1371/journal.pone.0012765.g001
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ms/ms analysis. The resulting collision-induced-dissociation spectra

were compared against a protein database using SEQUEST

(Thermo) to identify the individual peptide and the modified

residue as previously described [40].

Immunofluorescent and Immunohistochemical labeling
of inner ear sensory epithelia

Embryonic (E18.5) and early postnatal tissues (P2) from CD-1

mice (Charles River) were prepared for immunofluorescent

labeling by immersion fixation in a solution of 4% paraformal-

dehyde prepared in 67 mM Sorensons’ phosphate buffer (pH 7.4)

on ice for 2 hours. For immunohistochemistry, P2 ears were

dissected to expose the bony labyrinth then immersion fixed using

4% paraformaldehyde and 0.1% glutaraldehyde. After fixation all

samples were washed extensively in PBS and cryoprotected by

saturation in a series of 10%, 20%, and 30% sucrose prepared in

PBS, and then frozen in a block of Neg-50 (Richard Allen

Scientific, Kalamazoo, MI) using a dry-ice ethanol bath. Sections

were cut from frozen blocks at 20 microns using a Micron Cryostat

and collected onto Fisher SuperFrost Plus glass slides.

Figure 2. Alignment of otolin sequences from multiple species. ClustalW alignment of Otolin protein sequences extracted from the draft
genome sequences of human (Homo sapiens; accession number NP_001073909), mouse (Mus musculus; DQ002405), cow (Bos taurus; XP_603387.3),
opossum (Monodelphis domestica; XP_001369147), chicken (Gallus gallus; XP_426716.2), platypus (Ornithorhynchus anatinus; XP_001512453), and
zebrafish (Danio rerio; NP_001093211). Identical amino acids are shaded and gaps are indicated by a dash line. All the conserved Cys residues are
indicated by a green ball-and-stick. Signal peptide (yellow line), N-terminus (purple line), collagen domain (blue line), and globular C1q domain (red
line) are indicated. Conserved residues found in all C1q/TNF family members [46] are indicated by arrows.
doi:10.1371/journal.pone.0012765.g002
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For immunofluorescent labeling sections were blocked and

permeabilized for 30 minutes at room temperature using 5%

donkey serum, 1% bovine serum albumin (BSA), and 0.5% Triton

X-100 in PBS. Primary antibodies were prepared in blocking

solution (5% donkey serum, 1% BSA in PBS) and incubated on

the sections overnight at 4uC in a humidified chamber. Slides were

washed 4610 minutes in PBS, treated with species-specific, Alexa-

fluor-conjugated secondaries (Invitrogen, Carlsbad, CA) prepared

in blocking solution, and incubated for 2 hours at room

temperature. Slides were washed again and mounted using

Biomeda Gelmount. For immunohistochemical detection P2 tissue

was sectioned, blocked, and labeled overnight with the Otolin

antibody, followed by detection using Vectashield ABC Elite

labeling kit (Vector, Burlingame, CA) per manufacturer’s

recommendations, then histochemical detection using ImmPACT

DAB substrate (Vector).

For whole mount labeling of E18.5 organ of Corti, tissue was

fixed using 4% paraformaldehyde as described and cochleas were

dissected to remove the tectorial membrane and expose the sensory

epithelia. Samples were blocked and permeabilized as described

and incubated with primary antibodies diluted in 5% donkey serum,

1% BSA, and 0.1% Tween20 prepared in PBS at 4uC overnight.

Samples were washed 4630 minutes with PBS supplemented with

0.05% Tween 20, followed by incubation with species-specific Alexa

Fluor-conjugated secondary antibodies (Invitrogen) for 3 hours at

room temperature. Tissue was washed again, mounted on slides

using Biomeda GelMount, and imaged by confocal microscopy

using a Zeiss LSM 510 confocal microscope. The following

antibodies and reagents were used in this study: rabbit anti-Otolin

(this study), goat anti-Calretinin (Millipore, Bedford, MA), donkey

anti-goat AlexaFluor488, donkey anti-rabbit AlexaFluor594, phal-

loidin AlexaFluor488 (Invitrogen, Carlsbad, CA).

Results

The mouse ortholog of otolin was identified based upon

expressed sequence tags (ESTs) and mouse genomic sequences

in the NCBI GenBank database with significant homology to the

chum salmon (Oncorhynchus keta) otolin gene (accession number

BAB84561). The mouse otolin gene is ,21 Kb in size, located on

chromosome 3E12, and consists of 5 exons and 4 introns (Fig. 1B).

Comparisons of mouse and human genomic sequences revealed

that the exon/intron structure of otolin is conserved between these

species (Fig. 1B). A nested PCR approach was used to clone the

entire otolin coding region (,1.5 Kb) from embryonic day 17.5

(E17.5) mouse embryo cDNAs (Fig. S1). The mouse otolin mRNA

Figure 3. Expression of otolin transcripts in mouse tissues. A, The expression profile of otolin mRNA in various mouse tissues as revealed by a
semi-quantitative PCR. B, Real time PCR analysis of the expression profiles of otolin and other known inner ear genes during development. All
expression data are normalized to 18S RNA.
doi:10.1371/journal.pone.0012765.g003
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is 2157 bp in size, and consists of a 129 bp 59UTR, a 1449 bp

coding region, and 579 bp of 39UTR sequences. The deduced

Otolin protein is 482 amino acids long, with a signal peptide, four

conserved Cysteines in the N-terminus at positions 109, 110, 112,

and 113, a collagen domain with 74 Gly-X-Y repeats, and a C-

terminal globular domain that is homologous to the immune

complement C1q (Fig. 1A). Therefore, Otolin is a new member of

the expanding C1q/TNF family of proteins [44,45].

The primary sequence of Otolin is highly conserved throughout

evolution (Fig. 2 and Fig. S3 and Table S1). This is particularly

evident in the C-terminal globular domain, with 86, 83, 87, 81, 79,

79, 75, 77, and 53% amino acid identity between mouse and its

corresponding counterparts in human, dog, cat, cow, opossum,

horse, platypus, chicken, and zebrafish, respectively. This region is

thought to be a significant functional domain for interactions with

other proteins and receptors. In addition, structure based

alignments of Adiponectin, complement C1q, and TNF family

members (TNF-a, TNF-b, and CD40L) revealed four highly

conserved residues (Gly-159, Tyr-161, Phe-237, and Leu-241 in

Adiponectin) that are important in the packing of the protomer’s

hydrophobic core [46]. These residues are conserved in Otolin

(Fig. 2, arrow), as are Cys residues located in the N-terminus (Cys-

109, 110, 112, and 113), the collagen domain (Cys-211), and the

C-terminal globular domain (Cys-387) (Fig. 2, ball-and-stick). Of all

the C1q-domain containing proteins, mouse Otolin shares the

highest degree of amino acid identity (52%) in the globular domain

with fish sacullar collagen [47], a protein found only in the inner

ear of fish (Fig. S2).

A semi-quantitative PCR analysis revealed that mouse otolin

expression is restricted to the inner ear (Fig. 3A). A 40-cycle semi-

quantitative PCR reaction failed to detect otolin transcripts from

seventeen major adult mouse tissues (heart, brain, spleen, lung,

liver, muscle, kidney, testis, placenta, eye, lymph node, smooth

muscle, prostate, thymus, stomach, uterus, adipose tissue).

Consistent with these real-time PCR results, a survey of otolin

EST distributions in GenBank indicated that otolin transcript is

present only in the inner ear (data not shown). Further, the time

course of otolin expression during inner ear development was

similar to genes encoding otoconial membrane constituents,

including Oc90, otogelin, otoancorin, a-tectorin, b-tectorin, and sparc

(Fig. 3B).

An Otolin-specific antibody was generated and used to

determine the distribution of Otolin within the inner ear and to

identify the cells producing this predicted extracellular glycopro-

tein. This antibody does not cross-react with other members of the

C1q/TNF family (Fig. 4A) and labels a single ,65 kD protein in

postnatal day 4 (P4) mouse inner ear lysate (Fig. 4B). The

contribution of Otolin protein to the composition of the otoconial

membrane was determined by preparing P2 inner ear tissue using

fixation protocols optimized to preserve these extracellular

matrices (see methods). Immunohistochemical detection revealed

Otolin protein throughout the otoconial membrane located above

the utricle (Fig. 5B,C). Labeling was also present in the sensory

epithelia, indicating that cells in this region synthesize and secrete

Otolin into the extracellular matrix. To determine whether Otolin

protein is produced by hair cells or support cells, we immuno-

fluorescently labeled the vestibular maculae from P2 mouse for

Otolin and the hair cell marker Calretinin. Lighter fixation

protocols that are compatible with immunofluorescence, but are

not sufficient to preserve the otoconial membrane, were used for

these experiments. We found no overlap between Otolin and

Calretinin immunofluorescent signals, indicating Otolin produc-

tion by support cells and not vestibular hair cells (Fig. 5D).

Additionally, in the vestibular maculae, hair cells and support cells

formed pseudostratified epithelia with hair cells positioned above

the support cell soma and apical support cell processes extending

between neighboring hair cells to contact the lumenal surface

(Fig. 5E). When viewed at higher magnification using confocal

microscopy, Otolin immunofluorescence was detected in these

support cell processes, but not in calretinin-labeled hair cells

Figure 4. Specificity of Otolin Antibody. A, Western blot analysis of the HA-tagged adiponectin, CTRP1, CTRP2, CTRP3, CTRP5, CTRP6, CTRP9,
CTRP10, and otolin proteins using an anti-otolin (top panel) or an anti-HA antibody (bottom panel). B, Western blot analysis of mouse kidney, eye,
inner ear, and heart tissue lysates using the anti-otolin antibody.
doi:10.1371/journal.pone.0012765.g004
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(Fig. 5F,F’). A similar distribution of Otolin protein in support cells

and not hair cells occurred in cristae, the sensory epithelia housed

in the ampullae of the semi-circular canals (Fig. 5G).

Using histochemical detection methods, we also found Otolin

reactivity in the tectorial membrane, an extracellular matrix that

contacts auditory hair cells of the cochlea (Fig. 6D,E). The

tectorial membrane was easily visualized in cross-sections cut

through the cochlea, as indicated in Figure 6A. To identify the

source of Otolin production in the cochlea, we evaluated Otolin

distribution by confocal imaging of surface preparations of

cochleas dissected from E18.5 embryos. In these preparations

the tectorial membrane was removed during dissection to

facilitate imaging of the hair cell stereocilia. The position and

orientation of this ‘en face’ view relative to cochlear cross sections

is illustrated schematically in Figures 6A–C. At this stage, Otolin

immunofluorescence labeled two populations of support cells that

are adjacent to the inner hair cells (IHCs); these are the

interphalangeal cells and the border cells (Fig. 6F). Otolin was

also present in non-sensory epithelia cells of the cochlea,

including the marginal cells of the stria vascularis and a small

population of cells distributed throughout the outer sulcus. These

are likely a subset of Claudius cells (Fig. 6F). It is interesting to

note that at higher magnification Otolin was also detected at the

tips of the outer hair cell (OHC) stereocilia (Fig. 6G, G’,

arrowheads). Because Otolin protein cannot be detected in OHC

soma (Fig. 6F), this fluorescence is likely an artifact resulting from

natural contacts that occur in vivo between the stereocilia and the

tectorial membrane. In summary, using histochemical and

immunofluorescent labeling, we found that Otolin is not

restricted to the vestibular apparatus of the inner ear. Instead,

Otolin protein is present in all extracellular matrices contacting

hair cell stereocilia.

Figure 5. Distribution of Otolin protein within the vestibular sensory epithelia of the inner ear. A, Hair cell receptors are located in one of
six sensory epithelia as indicated by blue shading in this illustration of the mouse inner ear. Vestibular hair cells are found in the maculae of the utricle
and saccule and the cristae of the semi-circular canal ampullae. Auditory hair cells are found exclusively in the cochlea. Red lines indicate the relative
position of the tissue sections illustrated in the remaining panels. Dashed box indicates the auditory region described in greater detail in Fig. 6B,
Histochemical detection of Otolin protein in P2 utricle. Otolin is present in the extracellular matrix of the otoconial membrane and within cells of the
sensory epithelia. C, No signal is present in control experiments lacking Otolin antisera. D, Immunofluorescent labeling of Otolin (red) and the hair cell
marker Calretinin (green) reveals little colocalization in the P2 saccule, indicating that Otolin is synthesized by support cells. Note that the otoconial
membrane is not preserved during this labeling protocol. E, Vestibular hair cells and support cells form a pseudostratified epithelium, with the
support cell nuclei located below the hair cells and support cell processes surrounding individual hair cells. F&F’, High power confocal image
demonstrating Otolin immunofluorescence (red, arrowheads) in support cell processes located between neighboring hair cells (green, F). G, In the
semi-circular canal cristae, Otolin is expressed in support cells surrounding the hair cells (green) and located adjacent to the hair cell regions
(arrowheads). Scale bars: 50 mm B,C,G; 25 mm D, 10 mm F,F’.
doi:10.1371/journal.pone.0012765.g005
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The biochemical characteristics of Otolin were determined by

expression in mammalian HEK293T cells that secrete recombi-

nant Otolin (Fig. 7A), consistent with this protein having a signal

peptide. We observed Otolin isoforms of different apparent

molecular weights in the cell pellet fraction versus the conditioned

medium suggesting that the mature, secreted Otolin contains

posttranslational modifications. Otolin contains two potential N-

linked glycosylation sites (Asn-213 and Asn-386). However, when

treated with N-glycanase (PNGase F), no shift in the apparent

molecular weight of secreted Otolin was observed on immunoblot,

indicating the absence of N-linked glycans (Fig. 7B). An in silico

search of putative O-glycosylation sites (http://www.cbs.dtu.dk/

services/NetOGlyc/) [48] in the mouse Otolin protein predicted

ten putative residues (Ser-72 and Thr-60, 62, 69, 70, 81, 135, 138,

146, and 147) that can be potentially modified with the attachment

of O-linked glycans. To determine if Otolin is posttranslationally

modified with the attachment of proteoglycans or O-linked

glycans, recombinant Otolin was enzymatically treated to remove

proteolgycans (chondroitinase ABC) or O-linked glycans (O-

glycosidase). Neither treatment changed the apparent molecular

weight of Otolin on immunoblot (Fig. 7C), indicating the absence

of chondroitin sulfate proteoglycans, hyaluronic acids, and O-

Figure 6. Distribution of Otolin protein in the cochlea. A–C, The distribution of Otolin in the auditory system was evaluated in cross sections
cut through the cochlea (as indicated by a red line) or whole mount surface preparations (outlined by a red box). (B) In cross section the profile of
cochlear cell types and overlying tectorial membrane are visible. (C) Surface preparations provide a view of the apical surface of cochlear cells without
the tectorial membrane. The relative position and organization of cochlear cells in these two views are illustrated using inner hair cells (IHCs) and
outer hair cells (OHCs) for reference. (D) Histochemical detection of Otolin in neonatal (P2) mouse cross sections reveals Otolin protein throughout
the tectorial membrane that contacts auditory hair cells. A subset of cochlear support cells is labeled surrounding the IHCs (asterisk) in addition to
marginal cells and the outer sulcus. (E), No signal is present in control experiments lacking Otolin antisera. (F) In surface preparations prepared from
E18.5 mouse, Otolin (red) can be visualized in inner phalangeal cells (IP) and border cells (BC), two classes of support cells located adjacent to the
IHCs. The positions of individual examples are indicated. Although the IHCs are not labeled in this image the position of two IHCs are marked by
asterisks. Additional non-sensory cells producing Otolin that contribute to formation of the tectorial membrane can also be visualized in cochlear
whole mounts. This includes marginal cells of the stria vascularis and a small population of cells in the outer sulcus. (G), High magnification confocal
imaging of OHC stereocilia labeled with phalloidin (green) also shows Otolin protein (red) at the tips of the stereocilia bundle (one example marked
by arrowhead) resulting from contact between the stereocilia and the Otolin-rich tectorial membrane. (G’) Otolin immunofluorescence detected in
the red channel from panel G. The region being imaged is indicated by the dashed box in F. TM (Tectorial Membrane), MCs (Marginal Cells), IHC (Inner
Hair Cell), OHC (Outer Hair Cell), IP (Inter Phalangeal Cell), BC (Border Cell), OS (Outer Sulcus). Scale bars: 100 mm D,E; 20 mm F, 10 mm G,G’.
doi:10.1371/journal.pone.0012765.g006
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linked glycans. However, recombinant Otolin clearly contains

carbohydrate moieties, as revealed by the metaperiodate oxida-

tion-based glycoprotein detection method (Fig. 7D). Proteins with

collagen domains (e.g., Collagen) contain posttranslational mod-

ifications that enhance the stability of their triple helical collagen

structure [49]. Typically, proline on the third position of the Gly-

X-Pro repeat is hydroxylated [49], and lysine within the consensus

GXKG(E/D) is hydroxylated and glycosylated with a-1,2-

glucosyl-galactosyl disaccharide moieties [40,50,51]. Mouse Otolin

contains 10 proline residues (Pro-123, 141, 144, 174, 177, 180,

222, 234, 288, and 306) that can potentially be hydroxylated and

14 lysine residues (Lys-120, 132, 156, 162, 189, 207, 216, 219,

237, 261, 297, 300, 315, and 339) that can potentially be

hydroxylated and glycosylated (Fig. 7E). The modification state of

each of these residues was analyzed by mass spectrometry, and

nine out of the ten proline residues were found to be hydroxylated

(Fig. 7E)- the lone exception was Pro-123. Within the collagen

domain, two of the fourteen lysine residues (Lys-189 and Lys-315)

were hydroxylated and glycosylated with a glucosyl-galactosyl

group. The remaining lysine containing peptides were too small to

be detected on the mass spectrometer, and their posttranslational

modification status remains to be determined.

All members of the C1q/TNF family of proteins form a trimer as

their basic structural unit [44]. Some of the trimers are further

assembled into higher order structures corresponding to the

hexameric and HMW oligomeric forms [41,52,53,54]. Gel filtration

analysis revealed that Otolin also forms higher order multimeric

complexes (Fig. 8A). Although we presumed that Otolin forms

trimers and possibly higher order structures similar to other C1q/

TNF family members, due to the low resolution of the Superdex 200

HR 10/30 column, we cannot distinguish different oligomeric

structures of Otolin. Additionally, all the proteins used to calibrate

the FPLC column consist of spherical/globular proteins. In contrast,

Otolin has a rigid triple helical collagen domain consisting of 75 Gly-

X-Y repeats; hence, Otolin has a much larger Stoke’s radius

compared to the globular molecular standards. Consequently,

Otolin oligomers eluted from the gel filtration column with an

apparent molecular size much greater than the globular protein

Figure 7. Otolin is a secreted glycoprotein with extensive posttranslational modifications. A, Western blot analysis of the cell pellets (P)
and supernatant (S) from transfected HEK293T cells using the anti-FLAG antibody. B, Recombinant otolin-FLAG was incubated with (+) or without (2)
peptide, N-glycosidase F (PNGaseF), to determine the presence of N-linked glycans. Proteins were immunoblotted with the anti-FLAG antibody. C,
Recombinant otolin-FLAG was incubated with (+) or without (2) chondroitinase ABC or O-glycosidase to determine the presence of chondroitin
sulfate proteoglycans and O-linked glycans, respectively. Chondroitinase ABC preferentially digests hyaluronic acid at pH 6.8 and chondroitin sulfate
at pH 8. Proteins were immunoblotted with the anti-FLAG antibody. D, A metaperiodate oxidation-based method was used to detect the presence of
carbohydrate moieties on recombinant otolin (See Materials and Methods). E, Mass spectrometry analyses of recombinant otolin. All lysine residues
that lie within the consensus sequence [GXKG(E/D)] are highlighted in blue, and those that are glycosylated are indicated with a square-and-stick. All
proline residues (in the Gly-X-Pro context) that lie within the collagen domain are highlighted in red, and those that are hydroxylated are indicated
with a ball-and-stick.
doi:10.1371/journal.pone.0012765.g007
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standards of the same molecular weight. In an orthogonal approach,

we employed a non-reducing, non-denaturing native gel immuno-

blot technique to confirm that recombinant Otolin, and endogenous

Otolin from P0 mouse inner ear, form higher order multimeric

complexes (Fig. 8B). It appears that both recombinant and

endogenous otolin exist in two distinct complexes with different

sizes. The diffuse band of recombinant Otolin on native gel is due to

variable degrees of glycosylation (Fig. 7). In the presence of reducing

agent, the higher order multimeric complexes of both recombinant

and endogenous otolin collapsed to a single or doublet band around

,65 KDa on an SDS-PAGE immunoblot (Fig. 8C). In the absence

of reducing agent, both recombinant and endogenous otolin

migrated as 160 and 190 kDa bands, indicating that they have

similar disulfide linkages (Fig. 8C).

Otoconin-90 (Oc90), Sparc/Osteonectin, and Cerebellin (Cbln)

are recently identified protein constituents of mammalian otoconia

[26,27,42]. Cerebellins also belong to the C1q/TNF family of

proteins similar to Otolin [44]. Human and mouse have four

Cerebellins (Cbln1–4), which are all secreted proteins [55], and

Cbln3 requires Cbln1 for secretion [56]. Our observation of

Otolin protein in the otoconial membrane of P2 mouse suggests

that this group of molecules may interact during formation of the

otoconial complex. To determine if Otolin physically interacts

with these proteins, epitope-tagged Oc90 and Cbln-1 were co-

expressed with Otolin in HEK293T cells, and the secreted

proteins were subjected to co-immunoprecipitations (Fig. 9A).

These analyses revealed that Otolin can form physical complexes

with Oc90 and Cbln-1 but not with other related C1q-containing

proteins (Fig. 9A). Further, we observed weak interactions of otolin

with Cbln-4 and CTRP3, indicating that otolin may interact with

these two proteins as well. Because variations were observed in the

co-expressions of epitope-tagged proteins, and due to the inability

to mimic in vitro the native condition (i.e., the inner ear) in which

these proteins may physically associate, we cannot rule out the

possibility that otolin may interact with Cbln-4 and/or CTRP3 in

vivo. The presence of 5 mM EDTA did not affect the ability of

Otolin to interact with Cbln-1 or Oc90, suggesting that the

physical interactions do not require calcium (data not shown).

Additionally, using Tris-Glycine native gel immunoblot analysis,

we show that Cbln-1 and Oc90 interact with the oligomeric form

of Otolin (Fig. 9B–C).

Discussion

When expressed in mammalian cells, secreted Otolin forms

higher order multimeric structures. As revealed by reducing and

Figure 8. Otolin assembles into higher order multimeric complexes. A, Supernatant containing FLAG-tagged otolin was loaded onto
superdex 200 FPLC column and 0.5 ml fractions were collected. Fractions 10 to 27 were analyzed by immunoblot analysis using the anti-FLAG
antibody. Arrows with the molecular weight markers of 669, 440, 232, and 158 kDa correspond to the peak elution fraction of molecular standard
thyroglobulin, ferritin, catalase, and aldolase, respectively. B, 4% Tris-Glycine native gel immunoblot analysis [see MATERIALS AND METHODS] of
purified recombinant otolin and endogenous otolin (indicated by arrows) present in the P0 mouse inner ear, detected with anti-otolin antibody. C,
Recombinant otolin and endogenous otolin present in the P0 mouse inner ear were subjected to reducing (+) and non-reducing (2) SDS-PAGE and
Western blot analysis using the anti-otolin antibody. B-ME, b-mercaptoethanol.
doi:10.1371/journal.pone.0012765.g008
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non-reducing SDS-PAGE and native gel immunoblots, both

recombinant and endogenous otolin have similar disulfide

linkages. The formation of multimeric complexes likely underlies

interactions between Otolin and other glycoproteins and proteo-

glycans to regulate the process of otoconia growth and adherence

to the otoconial membrane, as well as formation of the otoconial

and tectorial membranes. Two major types of posttranslational

modifications of the collagen domain that are known to be

important for protein structure, stability, and function are proline

hydroxylation [49] and lysine glycosylation [57,58]. Using mass

spectrometry, we demonstrated that nine out of the ten proline

residues (within the sequence Gly-X-Pro) of the mouse Otolin

protein are hydroxylated, consistent with similar modifications

seen in other collagen proteins. Further, all 14 lysine residues

[within the sequence GXKG(E/D)] in mammalian Otolin

proteins are conserved from platypus to humans. Interestingly,

only 7 of these 14 lysine residues are conserved in zebrafish.

Because lysine glycosylation within the collagen domain has been

shown to be important for the proper assembly of HMW

oligomeric forms of Adiponectin [58], fish and mammalian Otolin

may differ in their oligomeric structures due to differences in the

extent of posttranslational modifications. These differences may be

reflected in the unique characteristics of otoconial crystals

compared to otoliths. Overall, the ability of mammalian Otolin

to form higher order multimeric structures that are .600 kDa in

size is likely to be important for its role in regulating otoconia

seeding and growth, and assembly of the otoconial membrane.

The major core protein of mammalian otoconia is Otoconin-90

(Oc90/Oc95) [26,27]. Oc90 is expressed at E9.5 in the mouse

otocyst, approximately five days before the onset of otoconial

mineralization, and provides organic matrix scaffolding for

calcium carbonate deposition. Consistent with this, Oc90-null

mice have normal hearing but possess balance deficits due to the

absence or improper formation of otoconia [29,30]. Interestingly,

in the absence of Oc90, there is a dramatic reduction of Otolin

protein in mutant otoconia [30]. This supports our finding that

secreted Otolin physically interacts with Oc90 when the two

proteins are co-expressed. Thus similar phenotypes might be

predicted to occur as a result of mutations or targeted mutagenesis

of otolin. Likewise, in teleosts Otolin is a major constituent of the

otoliths, along with a secreted glycoprotein that is similar to Oc90,

called otolith matrix protein (OMP-1). Morpholino knockdown of

otolin mRNA in zebrafish demonstrates that Otolin is required to

anchor the otoliths onto the sensory epithelium and maintain the

Figure 9. Otolin forms physical complexes with Cbln1 and Oc90. A, Supernatants from transfected HEK293T cells co-expressing HA-tagged
otolin with different FLAG-tagged proteins were subjected to immunoprecipitation (IP) with the anti-FLAG affinity gel followed by immunoblot (IB)
analysis using the anti-HA antibody (top panel). Middle and bottom immunoblot panels indicate the presence of HA- or FLAG-tagged proteins in the
input media. B, Otolin co-immunoprecipitated (IP) with FLAG-tagged Cbln1 and Oc90 were analyzed by 4% Tris-Glycine native gel immunoblot (IB)
analysis. C, Cbln-1 and Oc90 co-immunoprecipitated (IP) with otolin were analyzed by 4% Tris-Glycine native gel immunoblot (IB) analysis. IP,
immunoprecipitation; IB, immunoblot.
doi:10.1371/journal.pone.0012765.g009
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overall stability of the otolith matrix [17]. Zebrafish Otolin is also

synthesized and secreted by a group of non-sensory cells located

next to the marginal zone of the sensory epithelium [17]. We

similarly found that mouse Otolin is expressed by support cells in

the utricle and saccule and is not produced by vestibular hair cells.

Together these data are consistent with a general function for

Otolin as a large extracellular scaffolding protein that connects the

core matrix proteins of the otoconia and otoliths to the acellular

gel matrix and sensory epithelia of the inner ear.

One remarkable aspect of otoconia development is that protein

components of the otoconia, including Oc90 and Otolin, are

expressed throughout the membranous labyrinth of the inner ear-

including the cochlea- while otoconia formation is restricted to the

utricle and saccule. Thus, it has been postulated that one or more

maculae-specific protein(s) interact with Oc90 to catalyze otoconia

formation specifically within these compartments [59]. Indeed, it is

likely that the same proteins that initiate biomineralization also

determine the final crystal structure and size of the otoconia. In

one effort to identify such factors, Nagasawa and co-workers

cloned a novel otolith matrix protein in Rainbow trout

(Oncorhynchus mykiss), designated as otolith matrix macromolecule-

64 (OMM-64) [60]. OMM-64 is homologous to Starmaker, a

zebrafish otolith matrix protein that has been shown to play a role

in controlling the shape and size of otoliths [61]. In addition to

binding calcium and heparin glycosaminoglycan chains, OMM-64

binds Otolin. Together these complexes form ring-like structures

in the otolith matrix that have been suggested to regulate crystal

morphology during otolith biomineralization [60]. Although

Starmaker is required for normal otolith formation in the zebrafish

[61], targeted deletion of its mammalian ortholog, dentin

sialoprotein (DSP), in mice revealed no vestibular dysfunction

thus far [62], suggesting that the function of Starmaker may be

specific to the fish otolith. Additional molecules that may interact

with Otolin to direct otoconia development are the C1q/TNF

domain-containing Cerebellin proteins. Although the role of

Cerebellin (Cbln)-like proteins in fish otolith is not known, we

show that mouse Otolin can physically interact with one of the

known Cerebellins, Cbln1, when co-expressed. It remains to be

determined which Cerebellin isoform is found in mammalian

otoconia matrices, but recently Cbln1-null mice were generated

[63] and no inner ear defects have been reported.

The size and density of otoconial crystals dictate the extent of

hair cell stereocilia bundle deflection and hence the amplitude of

the input stimulus to the underlying vestibular hair cells [15].

Consequently, changes in the size and location of otoconial

crystals often result in balance deficits [12,34,64,65,66,67,68]. Also

significant from a clinical standpoint, otoconial crystals may

become dislodged from the acellular gel matrix and become

trapped by gravitational pull in the semicircular canals. These

conditions are referred to as canalithiasis when the otoconia is

misplaced in the canal itself, and cupulothiasis when it is located

adjacent to the cristae. Individuals with these conditions suffer

from BPPV, the most common cause of vertigo [35,36]. The

molecular underpinning of BPPV is currently unknown; however,

Otolin is a significant candidate because its physical association

with otoconial matrix proteins and distribution throughout the

otoconial matrix suggest that it has an important role in

embedding otoconia crystals. Consistent with this is the otolin

morphant phenotype in zebrafish, in which otoliths are detached

from the sensory epithelia. Thus, cloning of the otolin cDNA will

allow us to assess if mutations in this gene give rise to vestibular

dysfunction in patients and is associated with balance deficits such

as BPPV.

Supporting Information

Figure S1 Cloning of the mouse otolin cDNA. A, Based upon

ESTs and genomic sequences corresponding to mouse otolin, a

nested PCR approach was used to clone the entire coding region.

The position of primer pairs 56F1/56R3 and 56F2/56R4 used in

the nested PCR are indicated by the arrows. B, The entire coding

region (,1.5 kb) of mouse otolin was amplified from 17-day mouse

embryo cDNA (Clontech) using a nested PCR approach.

Found at: doi:10.1371/journal.pone.0012765.s001 (0.85 MB

EPS)

Figure S2 Phylogentic analysis of otolin. A phylogenetic tree was

generated using ClustalW and MEGA program version 4 based on

alignment of the globular domain of otolin and other C1q/TNF

family members. Percent amino acid identity of each protein to the

globular domain of otolin is indicated on the right. GenBank

accession number for each of the proteins is: chipmunk (Tamias

sibiricus) hibernating protein of 20 kDa (HP-20, BAB68362), HP-

25 (BAA02352), HP-27 (AAB20866), C1q-A chain (NP_031598),

C1q-B chain (NP_033907), C1q-C chain (NP_031600.2), multi-

merin-1 (XP_284198), multimerin-2 (NP_878260), emilin-1

(NP_598679), emilin-2 (NP_660140), CTRP1 (NP_064343),

CTRP2 (NP_081255), CTRP3 (NP_112150), CTRP4-1 (first

globular domain, NP_080437), CTRP4-2 (second globular

domain, NP_080437), CTRP5 (AAY21930), CTRP6

(NP_082607), CTRP7 (NP_780634), CTRP9 (DQ002401),

CTRP10 (AAY21934), adiponectin/Acrp30 (Q60994), collagen-

X (NP_034055), collagen-VIII (NP_031765.2), cerebellin-1 (Cbln-

1, NP_062600.2), Cbln-2 (NP_766221), Cbln-3 (NP_062794),

Cbln-4 (NP_783439), Lepomis macrochirus saccular collagen

(P98085), and otolin (DQ002405). All are mouse proteins except

chipmunk HP-20, HP-25, and HP-27, and fish saccular collagen.

Found at: doi:10.1371/journal.pone.0012765.s002 (1.11 MB EPS)

Figure S3 Comparison of the domain structures of otolin found

in different vertebrate species. The deduced human (Homo

sapien), mouse (Mus musculus), opossum (Monodelphis domes-

tica), platypus (Ornithorhynchus anatinus), chicken (Gallus gallus),

and fish (Danio rerio) otolin proteins consists of four domains - a

signal peptide (S), an N-terminal region with four Cys residues, a

collagen domain with 69-74 Gly-X-Y repeats, and a C-terminal

globular domain that is homologous to immune complement C1q.

All the Cys residues are indicated by ball-and-sticks. Note that

different vertebrate species have different numbers of Cys residues

in their collagen domain.

Found at: doi:10.1371/journal.pone.0012765.s003 (1.30 MB EPS)

Table S1 Amino acid sequence comparison between mouse

otolin and its vertebrate orthologs.

Found at: doi:10.1371/journal.pone.0012765.s004 (0.03 MB

XLS)
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