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Abstract: As many as 20-70% of patients undergoing breast conserving 

surgery require repeat surgeries due to a close or positive surgical margin 

diagnosed post-operatively [1]. Currently there are no widely accepted tools 

for intra-operative margin assessment which is a significant unmet clinical 

need. Our group has developed a first-generation optical visible spectral 

imaging platform to image the molecular composition of breast tumor 

margins and has tested it clinically in 48 patients in a previously published 

study [2]. The goal of this paper is to report on the performance metrics of 

the system and compare it to clinical criteria for intra-operative tumor 

margin assessment. The system was found to have an average signal to 

noise ratio (SNR) >100 and <15% error in the extraction of optical 

properties indicating that there is sufficient SNR to leverage the differences 

in optical properties between negative and close/positive margins. The 

probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-

600 nm which is consistent with the pathologic criterion for clear margins 

of 0-2 mm. There was <1% cross-talk between adjacent channels of the 

multi-channel probe which shows that multiple sites can be measured 

simultaneously with negligible cross-talk between adjacent sites. Lastly, the 

system and measurement procedure were found to be reproducible when 

evaluated with repeated measures, with a low coefficient of variation 

(<0.11). The only aspect of the system not optimized for intra-operative use 

was the imaging time. The manuscript includes a discussion of how the 

speed of the system can be improved to work within the time constraints of 

an intra-operative setting. 
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1. Introduction 

Breast conserving surgery (BCS) is a recommended treatment for early stage breast cancer 

and for breast cancers that have been reduced in size by neoadjuvant therapy. In BCS (also 

known as a partial mastectomy or lumpectomy), the surgeon attempts to excise the tumor 

along with a margin of normal tissue, while preserving as much of the normal breast tissue as 

possible. Approximately 160,000 patients are eligible for breast conserving therapy each year 

and as many as 20-70% of patients undergoing BCS require repeat surgeries due to a close or 

positive surgical margin diagnosed post-operatively [1,3,4]. The pathologic margin status is 

an important predictor of local recurrence of an invasive or in situ cancer after BCS [5,6]. 

Thus, complete excision of the tumor is essential to reduce the risk of recurrence [7]. 

Currently, surgeons do not have adequate intra-operative assessment tools to ensure that 

the cancer has been completely removed at the time of first surgery. The lack of this 

capability represents a significant unmet clinical need. Only a small number of hospitals who 

perform BCS (less than 5%, including the Moffitt Cancer Center in Tampa, FL and the MD 

Anderson Cancer Center in Houston, TX) currently utilize intra-operative cytologic or 

pathologic analysis of tumor margins. Touch-prep cytology is a technique in which cells on 

the surface of the tissue are transferred to glass slides by touching the specimen to the glass, 

and are then stained for pathologic observation. Touch-prep cytology allows for evaluation of 

the whole lumpectomy surface, albeit with a wide range of sensitivities (38-100%) and 

specificities (85-100%) reported in the literature [8–12]. Furthermore, this technique is time 

consuming, requires special expertise by a cytopathologist, and does not detect tumor cells 

close to the lumpectomy surface. Frozen section analysis, in which the tissue is frozen and 

select microscopically thin sections are cut from the specimen for pathologic observation, is a 

technically challenging procedure due to the significant amount of fatty tissue found in breast 

specimens. Sensitivity ranges in the literature from 65 to 91% and specificity ranges from 86 

to 100% [11,13]. 

A fast, non-destructive device that could image breast tumor margins in the operating 

room would be highly desirable to ensure complete removal of the cancer and thus reduce the 

risk of local recurrence. The device needs to 1) be capable of surveying multiple margins in 

an acceptable amount of time (within 20 minutes which is the amount of time it takes frozen 

section) [14], 2) have a sensing depth of 0-2 mm (the accepted criterion for clear margins) 

[15–19], 3) cover a large area (the majority of margin areas range from ~10-20 cm
2
 in our 

study), 4) image with a resolution on the order of millimeters (comparable to the thickness of 

bread loafed slices evaluated by pathology), and 5) effectively detect differences between 

benign and malignant tissues and to do this without the need for pathologic evaluation, or 

tissue processing. 
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Optical imaging of tumor margins is attractive because it can quickly sample an entire 

tumor margin intra-operatively without damaging the tissue. Several groups are working on 

optical techniques for breast tumor margin assessment. Bigio et al used reflectance 

spectroscopy in a preliminary study to look at in vivo sites on the tumor bed in 24 patients (13 

cancer and 59 normal sites). They showed that using hierarchical cluster analysis, cancer and 

normal sites could be separated with a sensitivity of 67% and a specificity of 79% [20]. Haka 

et al recently published on Raman spectroscopy to prospectively examine freshly excised 

lumpectomy specimens, which were sliced to expose tumor sites in 21 patients (123 benign 

and 6 malignant tissue sites) and reported a sensitivity of 83% and a specificity of 93% [21]. 

Their previous retrospective study showed 94% sensitivity and 96% specificity for ex vivo 

measurements of frozen samples [22]. Volynskaya et al demonstrated the ability of diffuse 

reflectance spectroscopy and intrinsic fluorescence spectroscopy to differentiate various 

benign and malignant tissues in breast biopsies from 17 patients (95 benign and 9 malignant 

sites), resulting in a sensitivity of 100% and a specificity of 96% [23]. Nguyen et al 

demonstrated that optical coherence tomography can detect tumor margin positivity in 20 

patients (9 positive and 11 negative margins) with a sensitivity and specificity of 100% and 

82%, respectively [24]. Keller et al recently published work on diffuse reflectance and 

fluorescence spectroscopy to detect cancerous sites on breast tumor margins in 32 patients 

(145 normal and 34 individual tumor sites), and reported a sensitivity and specificity of 85% 

and 96%, respectively, for classifying individual sites [25]. 

Our group has developed a first-generation optical spectral imaging platform that operates 

in the visible spectral range (450-600 nm) to rapidly and non-destructively create molecular 

composition maps of the tumor margin. The technologies presented above are restricted to 

sampling a very small area of the margin and therefore do not have the capability to image 

full tumor margins which is critical for a margin assessment device. We believe that this is a 

differentiating feature of our technology. The optical spectral imaging platform is based on 

diffuse reflectance spectroscopy. Diffuse reflectance spectroscopy measures the remitted light 

as a function of wavelength and the magnitude and shape of the spectrum is reflective of the 

absorption and scattering properties of the tissue. Our group has also developed a fast, 

scalable Monte Carlo model [26,27] to reliably and quantitatively determine the wavelength 

dependent absorption and reduced scattering coefficients of the tissue (µa and µ s’ respectively) 

from the diffuse reflectance spectra measured with the optical spectral imaging system. The 

concentration of the absorbers can be easily derived from the absorption coefficient spectra 

using the Beer-Lambert equation. The primary absorbers in the breast over the visible spectral 

range are oxygenated hemoglobin, deoxygenated hemoglobin, and β-carotene. The primary 

scatterers reflected by the scattering coefficient are cells and sub-cellular organelles. These 

extracted parameters can be used to create maps of tissue composition of the breast tumor 

margins. 

The optical spectral imaging device was used in a clinical study from December 2007 to 

June 2009 on 120 patients undergoing BCS. The purpose of the study was to determine the 

feasibility of the device for the detection of close/positive tumor margins in an intra-operative 

setting. In this study, optical spectral images were collected from 1 to 2 margins per patient. 

The four corners of each imaged margin were inked such that the extracted parameter maps 

for each margin could be compared to the overall diagnosis of that margin, based on routine 

margin-level pathology (this is referred to as margin-level analysis). At Duke University 

Medical Center (DUMC), a margin is considered positive if there are tumor cells touching 

ink, close if there are tumor cells within 2 mm of the ink, and negative (or clear) if tumor cells 

are > 2mm. In addition, 6-10 sites within each imaged margin were also randomly inked such 

that the extracted parameters collected from those 6-10 pixels could be directly compared 

with pathology (this is referred to as site-level pathology). 

Wilke et al [2] reported on an initial subset of patients (n = 48) from the above study 

where the extracted parameter maps were used as the basis for a classification scheme to 
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detect margin positivity. The gold standard in this case was margin-level pathology. The 

classification scheme based on the extracted parameter maps accurately identified 79.4% of 

the pathologically close/positive margins and had a specificity of 66.7%. These close/positive 

margins included several types of malignancies, mainly ductal carcinoma in situ and invasive 

ductal carcinoma but also lobular cancer, lobular carcinoma in situ, and tubular cancer. This 

initial study showed that the sensitivity of the technology is comparable to currently available 

intra-operative margin assessment tools such as frozen section but has the benefits of not 

requiring any type of tissue cutting, preparation, or a pathologist in the operating room. 

The goal of this paper was to establish the performance metrics of the optical spectral 

imaging system we have developed in a manner that is relevant to breast tumor margin 

assessment. Specifically, this paper quantifies important sources of systematic and random 

errors that could arise when the system is used in a clinical setting. The endpoints 

characterized in this paper are, the SNR of the system, the accuracy with which the device 

characterizes the composition of tumor margins, the sensing depth, the amount of crosstalk 

between adjacent channels of the probe, and reproducibility. The optical properties of 

histologically normal and malignant breast tissues obtained from the randomly inked sites 

(site-level analysis) served as the basis for characterizing the instrument performance metrics 

enumerated above. Since the clinical aspects of the study are already described by Wilke et al 

[2], this paper will focus more on the technological aspects of the intra-operative margin 

assessment project. The methods section is organized by a description of the instrumentation, 

as well as the clinical and pathological procedures. Next, the data analysis, experiments and 

simulations specifically addressed in this paper are described. 

2. Methods 

2.1 Instrumentation and imaging probe 

A block diagram of the current clinical instrument is shown in Fig. 1. The instrument consists 

of a 450 Watt Xenon lamp coupled to a monochromator (Gemini 180 - Jobin Yvon Horiba) 

set for zero-order diffraction, a multi-channel fiber-optic imaging probe (custom built by 

RoMack Inc.) interfaced to a plexi-glass tissue specimen box, an imaging spectrograph (Triax 

320 – Jobin Yvon Horiba), and a 2D CCD camera (CCD-1024x256-OPEN-STE – Jobin Yvon 

Horiba). There are 8 channels on the multi-channel probe. Each channel has a core of 19, 200 

µm (NA = 0.22) illumination fibers surrounded by 4, 200 µm (NA = 0.22) collection fibers 

with source-detector separations spanning 0.23-1.10 mm. The typical power output at the 

probe tips is ~3 µW and 25 µW within a 10 nm band pass at 450 and 600 nm, respectively. 

The probe tips of the 8 channels are arranged in a 4x2 array with a 10 mm spacing (center to 

center) between each channel. The illumination fibers within each channel are continuously 

illuminated regardless of whether data collection is taking place. 

A photo of the instrument along with a computer for instrument control and data analysis 

is in Fig. 2A. A tumor specimen can be placed inside the plexi-glass box and interfaced with 

the fiber optic probe from the side (Fig. 2B). Each hole of the plexi-glass box is 5 mm apart 

(center to center) and has a diameter of 3.75 mm. The imaging probe placement can be shifted 

by 5 mm to sample inter-leaving holes between the 10 mm channel to channel spacing. The 

probe covers an area of approximately 2 cm x 4 cm in 4 consecutive placements of the probe. 

The plexi-glass slides in 1-dimension to conform to different sized specimens. 
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Fig. 1. Block diagram of the clinical instrument and the fiber arrangement of the multi-channel 

probe. Each channel has 4, 200 µm collection fibers and a central bundle of 19, 200 µm 

illumination fibers. All 8 channels are arranged in a 4x2 array with a separation distance of 10 

mm (center to center). 

 

Fig. 2. A) Picture of the clinical instrument. B) Picture of the fiber optic probe in an aluminum 

adaptor to space each of the 8 probes 10 mm apart in a 4x2 array and the two pieces of the 

plexi-glass box that slide together to hold the specimen in place. C) A specimen in the plexi-

glass box with light gray dots (green ink) indicating the margin border and black-white striped 

dots (orange ink) indicating specific sites for pathology. 

2.2 Clinical procedure 

A Duke Institutional Review Board approved clinical study (protocol ID – Pro00007857) to 

image breast tumor margins was performed on patients undergoing BCS. Partial mastectomy 

specimens were excised and oriented by the surgeon. For the purposes of specimen 

orientation, the partial mastectomy specimen was viewed as a cube. The surgeon oriented the 

specimen by putting sutures and/or surgical clips at the center of 4 of the 6 margins (anterior, 

posterior, inferior, superior, medial, and lateral). The specimen was then sent to x-ray 

mammography as part of the routine standard of care. After x-ray examination, the specimen 

was placed in the plexi-glass box (approximately 10-15 minutes post-excision) with the clip 

or suture at the center of the box face to maintain surgical orientation for each margin of the 

specimen. Diffuse reflectance measurements were collected from sites 5 mm apart until the 

entire margin had been scanned, taking 8 measurements simultaneously with each placement. 

CCD integration time was automatically set to be at the maximum end of the dynamic range. 
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Diffuse reflectance measurements were collected over the visible wavelength range. After all 

measurements were completed, the four corners of the measured margin were inked green 

(light gray dots in Fig. 2C) for pathological correlation with the imaged area to obtain a 

margin-level diagnosis by a board certified pathologist (JG). In addition, between 6 and 10 

individual sites were inked orange (black-white striped dots in Fig. 2C) for separate 

pathological evaluation for a site-level diagnosis for use in the retrospective characterization 

of the instrument performance metrics. To preserve the inked areas for accurate pathological 

co-registration, acetic acid was applied to the specimen after inking and the specimen was 

wrapped in gauze to maintain the integrity of the inked areas. 

2.3 Pathological evaluation 

Post-operative pathology was used as the gold standard to classify each margin as negative 

(malignant tissue > 2 mm from tissue surface), close (malignant tissue < 2 mm from tissue 

surface), or positive (malignant tissue at surface). From a patient management perspective, 

both a positive and a close margin require re-excision. The pathologic margin status is an 

important predictor of local recurrence of an invasive or in situ cancer after BCS. The above 

approach is sufficiently effective to ensure complete excision of the positive margin in the 

second surgery in the majority of cases [19,28,29]. After the specimen was marked with ink, it 

was sent to surgical pathology where it was fixed overnight in 10% buffered formalin and 

processed in standard fashion. Specimens were bread loafed into 3 mm slices and the paraffin 

blocks containing the inked sites were specifically identified in the gross description. 5 µm 

thick sections of the partial mastectomy specimen were stained with hematoxylin and eosin 

(H&E) and examined by the pathologist of record, who provided a diagnosis for each 

measured margin (as is standard of care). In addition, the study pathologist (JG) also reviewed 

the inked sites microscopically to provide a histologic assessment of the underlying tissue 

composition of the individual sites. A qualitative assessment of the various types of tissues 

(fat, stroma, benign glandular tissue, carcinoma in situ, invasive carcinoma) was given for 

each site. 

2.4 Data analysis for accuracy, sensing depth and crosstalk determination 

Diffuse reflectance spectra were collected for two separate wavelength ranges (381-511 nm 

and 500-630 nm) and spliced together by averaging an 11 nm overlap to cover the entire 381-

630 nm wavelength range. Diffuse reflectance spectra (450-600 nm) were corrected by CCD 

integration time and for daily variations in optical throughput using a Spectralon reflectance 

standard (LabSphere). An inverse Monte Carlo model developed by our group and described 

previously [26,27,30], was used to extract the optical properties (absorption and scattering) of 

the tissues from the integration time corrected and calibrated diffuse reflectance spectra. The 

inverse Monte Carlo model minimizes the sum of square of errors between a predicted diffuse 

reflectance spectrum and the measured spectrum by iteratively updating the optical properties. 

Once the sum of square errors has been minimized the concentration of absorbers, scatter size, 

and scatter density that are most representative of the measured tissue are computed. Using 

the extracted optical properties, important tissue parameters including total hemoglobin (THb) 

concentration, β-carotene concentration and the wavelength averaged reduced scattering 

coefficient from 450 to 600 nm (<µ s’>), were calculated for each measured site on the 

specimen surface. It took approximately 15 seconds to image and 10 seconds to process the 

data per placement of the probe. 

The site-level data and corresponding pathology served as the basis for the retrospective 

characterization of the optical spectral imaging device described in this manuscript. The site-

level data was used in two ways. First, the range of the tissue parameters (<µ s’>, THb, β-

carotene, THb/<µ s’>, β-carotene/<µ s’>, and β-carotene/THb) was determined for all measured 

sites (854 sites from 104 patients). These ranges were used to make tissue mimicking 

phantoms to retrospectively determine the accuracy of the technology for the specific optical 
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properties seen in partial mastectomy specimens. Second, sites were separated by specific 

tissue type: positive malignant (n = 10), adipose (n = 323), fibro-glandular (n = 24), and fibro-

adipose (n = 59), and the median µa and µ s’ at 450, 500, 550, and 600 nm were determined. 

This set of site-level data was used to simulate the sensing depth of the multi-channel probe 

and the percentage cross-talk between adjacent channels. Positive malignant sites consisted of 

either ductal carcinoma in situ (DCIS) or invasive ductal carcinoma (IDC). Close sites 

(disease < 2 mm from the margin) were not considered in the characterization of the system 

(sensing depth and cross-talk) because of their mixture of both malignant and non-malignant 

tissue. Close sites were considered however for the phantom studies because they are part of 

the full range of the measured data. The rationale for characterizing the ratios of parameters in 

addition to the individual parameters was that the ratios of parameters were in the 

classification scheme for the 48-patient study described by Wilke et al [2]. 

2.5 Signal-to-noise-ratio (SNR) 

The signal-to-noise-ratio (SNR) of the system was calculated by taking repeated 

measurements (n = 6) of a Spectralon reflectance standard (LabSphere). Diffuse reflectance 

spectra were collected for all 8 channels. The signal level was comparable to the signal levels 

of the diffuse reflectance spectra collected from tissue. Spectra were corrected by integration 

time. The signal was calculated as the mean of the 6 measurements and noise was calculated 

as the standard deviation of the measurements. For each of the 8 channels, the SNR was 

calculated at 450 and 600 nm. 

2.6 Phantom studies to determine accuracy in quantifying tissue optical properties 

A tissue phantom study, as detailed by Bender et al [30] and Palmer et al [26], was conducted 

to assess the Monte Carlo model accuracy for extracting <µ s’> and the concentrations of THb 

and β-carotene seen in the breast tumor margins. Liquid phantoms consisted of hemoglobin 

(H0267 Ferrous Hemoglobin, Sigma-Aldrich), 1.025µm diameter polystyrene spheres 

(Polysciences), and crocin (17304 Standard Fluka, Sigma-Aldrich) diluted with distilled 

water. Crocin (Cr) was used to mimic β-carotene since the latter is not soluble in water. As 

described in the Data Analysis section, the extracted tissue optical properties from all 

measured sites served as the basis for the absorption and scattering levels in the phantoms. 

Three different levels of hemoglobin concentration, β-carotene concentration and scattering 

were identified from the extracted optical properties measured from all sites. A total of 36 

phantoms were made that represented 3 scattering levels, 3 THb concentrations at each 

scattering level; and 4 levels of Cr (one with no Cr) at each THb and scattering level. Diffuse 

reflectance measurements were made with a single channel of the probe. The purpose of this 

experiment was to show that tissue parameters can be extracted with reasonable accuracy for 

a single site on the tissue, therefore, only a single channel was used to demonstrate this, since 

all 8 channels have nearly identical probe geometries. The phantoms were mixed with a stir 

bar and plate between each measurement to maintain the homogeneity of the phantom. The 

data was normalized by CCD integration time, calibrated using the Spectralon standard and 

processed using the inverse Monte Carlo model described in the Data Analysis section. The 

tissue parameters (THb, <µ s’>, Cr, THb/<µ s’>, Cr/<µ s’>, and Cr/THb) extracted using the 

inverse Monte Carlo model were compared to expected values of the tissue parameters to 

assess model accuracy. 

2.7 Monte Carlo simulations of sensing depth 

In the ex vivo margin assessment study the sensing depth is a key factor in determining the 

feasibility of using this optical instrument as a surgical tool for detecting close and positive 

margins. At DUMC a clear margin is one that has a 2 mm or greater rim of normal tissue 

between the margin and the cancerous cells. The multi-channel probe was designed to 

evaluate tissue composition within 2 mm of the surface. The design was based on Monte 
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Carlo simulations of a previous fiber optic probe designed by our group which was found to 

have a sensing depth of 0.5-2 mm within homogenous tissues having a range of 0.3-20 cm
−1

 

for µa and a range of 8.4-18 cm
−1

 for µ s’ [30,31]. In this paper, the sensing depth of each 

channel of the multi-channel probe was re-simulated with Monte Carlo modeling for the 

specific tissue optical properties of benign and positive margins as well as for non-

homogeneous, layered tissue sites that are representative of close margins, by combining the 

optical properties of the individual tissue types. These simulations were carried out using a 

weighted photon Monte Carlo model, previously described by Liu et al [32,33] and Zhu et al 

[31]. The model records the visiting history, exit weight and maximum depth, of each photon 

that is detected by the collection fibers. The multi-channel probe geometry was modeled with 

a central illumination fiber (the composition of all the illumination fibers bundled together as 

one) of r = 0.515 mm, an r = 0.100 mm collection fiber, and a source-detector separation of 

0.636 mm (based on the actual distance from the center of the illumination core to one of the 

collection fibers from a channel in the multi-channel probe). The single illumination fiber 

used in these simulations is equivalent in size to the 19 hexagonally packed illumination 

fibers of the actual multi-channel probe. An index of refraction (n) of 1.45 for the fibers and n 

= 1.37 for the tissue was used. The simulated homogenous medium had a thickness of 3 cm, 

radius of 3 cm, and was divided into grids of 0.01 cm (r) x 0.01 cm (z). Weighted visiting 

frequency as a function of depth was used to determine the theoretical sensing depth of the 

probe for the wavelengths of 450, 500, 550, and 600 nm. Visiting frequency refers to the 

number of times a photon visits a grid divided by the total attenuation coefficient at that grid. 

In order to get weighted visiting frequency, the visiting frequency is multiplied by the survival 

weight of the photon. Weighted visiting frequency was further normalized by the peak and 

sensing depth was defined as the depth at which 90% of the photons visit before being 

collected by the detection fiber. 

Two separate simulations were run; the first was for a single-layer tissue model to 

determine the range of sensing depths at various wavelengths for malignant, adipose, and 

fibro-glandular tissue types. The optical properties for the positive sites (malignant tissue), 

adipose, and fibro-glandular sites were used. Fibro-adipose tissue was not used due to its 

similarity to adipose tissue. Close sites were excluded due to their mix in tissue composition 

(non-malignant and malignant tissue within the region of interest). 

A second simulation was carried out for a two-layer tissue model. This model was 

intended to model a “close” site where there is non-malignant tissue at the margin with 

underlying disease less than 2 mm from the margin. Two different non-homogenous tissues 

were modeled with either adipose or fibro-glandular tissue for the first 1 mm layer, and both 

with malignant tissue for the second layer (1 mm-3 cm). Although the definition of close is 

between 0 and 2 mm, an average of 1 mm was used to approximate a typical close margin. 

2.8 Monte Carlo simulations of cross-talk 

A potential source of error arises with the simultaneous use of 8 channels and the possibility 

of cross-talk from adjacent channels. The current multi-channel probe was designed to have 

minimal cross-talk. Cross-talk can be defined in terms of a signal-to-noise ratio (SNR) and is 

depicted in Fig. 3. The signal is defined as the sum of the diffuse reflectance collected at C1, 

C2, C3, and C4 for photons launched from I6. The noise is the sum of the diffuse reflectance 

collected at C1, C2, C3, and C4 launched from the illumination fibers (I1-I5, I7-I8) of the 7 

adjacent channels. An SNR > 100 is equivalent to less than 1% cross-talk from the adjacent 

channels, and is considered to be comparable to the inherent SNR of the system. Tissue cross-

talk was also simulated with a Monte Carlo model [32,33]. Cross-talk is going to be worst 

when the tissue has a low µa, for any given scattering coefficient. Channels must be spaced far 

enough apart at the tissue surface in order to minimize cross-talk for the worst case scenario. 

The optical properties used in the simulation represented the lowest µa (found at 600 nm), 

along with µ s’ at the same wavelength for positive, adipose, and fibro-glandular tissue. An 
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illumination source (r = 0.515 mm) was modeled with 4 collection fibers (r = 0.100 mm) and 

separation distances (S.D.) between channels was varied from 3 to 10 mm. SNR was 

calculated for each separation distance for the 3 different tissue types. 

C1

C2

C3

C4

I1 I2 I3 I4

I5 I6 I7 I8

S.D. C1

C2

C3

C4

I1 I2 I3 I4

I5 I6 I7 I8

S.D.

 

Fig. 3. The 4x2 arrangement of the fibers in the multi-channel probe to show how SNR arising 

from cross-talk was calculated for a channel with varying separation distances (S.D.) between 

channels. Light gray circles represent the illumination (I) fibers, black circles represent 

collection fibers for channels that contribute to the noise, and dark gray circles represent the 

collection (C) fibers for the channel that contributes to the signal. 

2.9 Reproducibility 

To test the reproducibility of the probe-tissue interface, the multi-channel probe was secured 

in the 4x2 array with channels spaced 10 mm apart and a partial mastectomy specimen was 

placed in the plexi-glass box (Fig. 2). The multi-channel probe was then interfaced with the 

specimen via the holes of the plexi-glass box in three different orientations: from the top of 

the box, the side, and bottom. Diffuse reflectance spectra were collected for each of the 8 

channels. The probe was removed and placed back into the same location as the first 

measurement and another diffuse reflectance measurement was made. This was repeated 10 

times over a period of less than 5 minutes. THb, <µ s’>, β-carotene, THb/<µ s’>, β-

carotene/<µ s’>, and β-carotene/THb were extracted according to the procedures described in 

the Data Analysis section. 

3. Results 

3.1 SNR 

The SNR of the clinical system is seen in Table 1. Average SNR across all channels is >100 

at both 450 nm and 600 nm. 

Table 1. Signal to noise ratio of each channel at 450 and 600 nm. 

Channel # SNR @ 450 nm SNR @ 600 nm 

1 340.97 45.12 

2 238.46 44.58 

3 162.81 113.82 

4 292.61 133.56 

5 167.14 97.08 

6 137.08 68.29 

7 131.95 248.83 

8 87.62 85.75 

Mean 194.83 104.63 

3.2 Optical properties of breast tissue used in phantom study 

The extracted values of THb, <µ s’>, β-carotene, THb/<µ s’>, β-carotene/<µ s’>, and β-

carotene/THb from all measured sites (n = 854) are shown in the boxplots of Fig. 4. These 

plots show the empirical distribution of the data for sites on breast tumor margins, regardless 
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of pathology. To cover the range of data seen in the boxplots, three different levels were 

defined as shown in Table 2. These values were used to create the 36 phantoms with varying 

absorption and scattering properties which mimic the optical properties of the breast tissue. 

Since β-carotene is not soluble in water, crocin was used as a substitute. The extinction 

coefficients of β-carotene and crocin are not identical; β-carotene is ~11.6 times larger than 

crocin. Therefore, the absorption coefficients rather than the concentrations of β-carotene and 

crocin were designed to match in this study. The 3 hemoglobin levels (42.09, 64.22, and 99.81 

µM) are in the upper range of the boxplot. Bender et al [30] tested phantoms with hemoglobin 

concentrations ranging from 1 to 35 µM and showed that the model can accurately extract 

absorption and scattering with accuracies of 9.8 ± 8.2% and 7.68 ± 6.3%, respectively [30]. 

Therefore, in this phantom study we wanted to look at higher concentrations of hemoglobin 

since previous studies have characterized the accuracy at lower concentrations. 
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Fig. 4. Box and whisker plots of THb (µM), β-carotene (µM), <µ s’> (cm−1), β-carotene/<µ s’> 

(µM-cm), THb/<µ s’> (µM-cm), and β-carotene/THb (a.u.) for the site-level data (n = 854). The 

two dark gray boxplots use the y-axis on the left and the light gray boxplots use the y-axis on 

the right. The box represents the median, 25th percentile, and 75th percentile; the whisker 

represents values within 1.5 times the interquartile range. 

Table 2. Values of the expected optical properties for the phantom study. β-carotene 

concentrations were converted into Cr concentrations by matching µa. 

<µ s’> (cm−1) THb (µM) β-carotene (µM) 
4.85 42.09 0 
6.68 64.22 10.29 
9.15 99.81 16.29 

  24.37 

3.3 Phantom studies 

The overall instrument and Monte Carlo model accuracy were assessed by evaluating the 

errors between the extracted and expected values seen for clinically relevant tissue 

parameters, taken from Table 2. The accuracy of the model at extracting hemoglobin (Hb) 

concentration (Fig. 5A), crocin (Cr) concentration (Fig. 5B), and <µ s’> (Fig. 5C), along with 

the concentrations divided by <µ s’> (Fig. 5D and Fig. 5E), and the ratio of crocin 

concentration to hemoglobin concentration (Fig. 5F) were plotted as expected data versus 

extracted data. As described by Palmer et al [26], the inverse Monte Carlo model uses a 

reference phantom to put the experimental and simulated diffuse reflectance spectra on the 

same scale prior to the extraction of optical properties. The best reference phantom was the 

one that most accurately extracted all other phantoms across a range of optical properties. In 

all of the plots, each circle corresponds to one phantom inverted against the best reference 

phantom (µa = 5.25, µ s’ = 5.75) from the set of 36 phantoms. The solid line in each figure 
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Fig. 5. Average percent error and standard deviation of expected versus extracted plots of Hb 

concentration (A), Cr concentration (B), <µ s’> (C), the ratio of Hb concentration to <µ s’> (D), 

the ratio of Cr concentration to <µ s’> (E), and the ratio of Cr to Hb concentration (F). Each 

circle refers to one phantom extracted from the best reference phantom. The solid line shows 

the line of perfect agreement between the expected and extracted values and the dashed lines 

represent the 95% prediction interval. 

shows the line of perfect agreement between the expected and extracted values and the dashed 

lines represent the 95% prediction interval. The average percent error and standard deviation 

for all 36 phantoms are also shown in each plot. Table 3 shows the bias (mean of the 

difference between expected and extracted data) and precision (standard deviation of the 

differences) for each parameter. Taking ratios of the parameters improves the precision of the 

model and also decreases the percent error. Interestingly in the 48-patient clinical study, the 

ratios of THb/<µs’> and β-carotene/<µs’> showed the greatest statistical differences between 

negative and positive margins and these were used in the classification algorithm for margin 

detection. 
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Table 3. Mean difference (bias) and standard deviation of differences (precision) between 

the expected and extracted phantom data. 

 Bias Precision 

<µa> (cm−1) 0.06 0.40 

[Hb] (µM) 0.96 4.33 

[Cr] (µM) −2.80 37.95 

<µ s'> (cm−1) −0.36 0.71 

[Hb]/<µ s'> (µM-cm) 0.31 0.75 

[Cr]/<µ s'> (µM-cm) 1.55 6.26 

[Cr]/[Hb] (a.u.) 0.03 0.57 

3.4 Optical properties of malignant and non-malignant tissue for sensing depth and cross-talk 

simulations 

The site-level data was separated into malignant and non-malignant tissue types based on 

pathologic assessment by a board-certified pathologist (JG). This data was used to simulate 

the sensing depth and cross-talk at the tissue surface. Malignant tissue consisted of positive 

and close sites, however, for the retrospective characterization of the system only positive 

sites were used. Non-malignant tissue was divided into adipose, fibro-glandular, and fibro-

adipose tissues since these three tissue types make up the majority of the sites measured. 

Table 4 shows the optical properties at various wavelengths for the different tissue types. The 

fibro-adipose category was excluded from the sensing depth and cross-talk calculations since 

the optical properties fall between the optical properties of adipose and fibro-glandular tissue 

and therefore, the sensing depth and cross-talk of fibro-adipose tissue would be between that 

of adipose and fibro-glandular tissue. 

Table 4. Median values of the extracted absorption and reduced scattering coefficients at 

specific wavelengths for various tissue types from the site-level data. FA = fibro-adipose, 

FG = fibro-glandular. 

  Malignant Non-Malignant 

  
Positive 

(n = 10) 
Adipose 

(n = 323) 
FA 

(n = 59) 
FG 

(n = 24) 

Absorption 

Coefficient 

(cm−1) 

450 nm 20.34 11.29 10.92 10.50 

500 nm 5.54 3.33 3.26 3.15 

550 nm 9.77 3.29 2.90 3.66 

600 nm 1.42 0.55 0.43 0.92 

Reduced 

Scattering 

Coefficient 

(cm−1) 

450 nm 9.55 7.44 9.20 13.01 

500 nm 9.12 6.92 8.48 12.18 

550 nm 8.82 6.75 7.95 11.98 

600 nm 8.47 6.45 7.82 11.28 

3.5 Monte Carlo simulations of sensing depth 

The sensing depth of the multi-channel probe was simulated using the extracted optical 

properties for various tissue types confirmed by site-level pathology. Figure 6 shows an 

example image of the weighted visiting frequency in each grid at 450 nm and 600 nm for 

positive tissue. To obtain a single value of weighted visiting frequency at each depth, the 

weighted visiting frequency was summed across the grids at that depth. This plot also shows 

how the sensing depth of the probe can change depending on the definition and the percentage 

used. 
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Fig. 6. Example images of the weighted visiting frequency in each grid separated by depth 

versus radial distance from the center of the illumination fiber. White lines represent the depth 

where a percentage (50% or 90%) of the detected photon weight distribution is contained 

within. 

Figure 7 shows normalized weighted visiting frequency versus penetration depth for 

malignant, adipose, and fibro-glandular tissue at the wavelengths of 450 nm and 600 nm to 

show the full range of the sensing depths across the wavelengths of interest. From the plot it is 

apparent that sensing depth increases with wavelength, as expected. Although sensing depth 

was only calculated to be about 1.5-2.2 mm at 600 nm, there are actually photons capable of 

reaching greater depths, since sensing depth was defined as the depth at which 90% of 

photons reach before being collected. Therefore, we may be capable of probing tissue slightly 

deeper than what this figure depicts. Malignant tissue has the shallowest sensing depth while 

adipose has the greatest. This could be due to the increased number of blood vessels (and 

hence hemoglobin absorption) present in malignant tissues. 
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Fig. 7. Simulated weighted visiting frequency as a function of depth for various tissue types (P 

= positive, A = adipose, FG = fibro-glandular) in a single layer model. Black circles 

correspond to the depth at which 90% of the photons reach and are collected. 

Close margins do not have disease at the surface of the specimen but rather below a layer 

of benign tissue. To calculate the sensing depth of these close sites adipose or fibro-glandular 

tissues were considered to be the first layer of the two-layer tissue model, while the malignant 

tissue was designated as the second layer. Figure 8 shows normalized weighted visiting 

frequency versus penetration depth for a tissue with an adipose/malignant combination along 

with a fibro-glandular/malignant combination. The top layer thickness is set at 1 mm. 

Wavelengths of 450 nm and 600 nm are shown. At 450 nm there is very little difference in the 

sensing depth for the two different tissue models. However, at 600 nm, there is a greater 

difference in sensing depth; specifically the adipose/malignant combination has a much larger 
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sensing depth than the fibro-glandular/malignant combination. Table 5 shows the range of 

90% sensing depths from 450 to 600 nm for the single layer model and the two-layer model. 
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Fig. 8. Simulated weighted visiting frequency as a function of depth for a two-layer tissue 

model. The first layer is either adipose (A) or fibro-glandular (FG) tissue with a 1 mm 

thickness and the second layer is positive (P) with a 29 mm thickness. Black circles correspond 

to the depth at which 90% of the photons reach and are collected. 

Table 5. The simulated 90% sensing depth of the 8-channel probe for various tissues in a 

single layer model and two-layer model. In the two-layer model, the first layer was 

simulated with a thickness of 1 mm and the second layer with a 29 mm thickness. FG = 

fibro-glandular. 

  90% Sensing Depth (mm) 

  450 nm 500 nm 550 nm 600 nm 

Single Layer Positive 0.50 0.90 0.70 1.50 

 Adipose 0.70 1.20 1.20 2.20 

 FG 0.60 1.00 0.90 1.50 

Two-layer Adipose-Positive 0.70 1.20 1.00 1.70 

 FG-Positive 0.60 0.80 0.70 1.10 

3.6 Sensing depth of tissue data 

Figure 9 shows the distribution of optical properties stratified by distance of cancerous cells 

from the inked margin. The extracted µa (Fig. 9A,B) and the µ s’ (Fig. 9 C,D) from the site-

level tissue data are plotted. For sites where the disease depth was reported, the sites were 

grouped into different depths: 0 mm (n = 10), 0-1 mm (n = 17), 1-2 mm (n = 10), and greater 

than 2 mm (n = 406) which are considered negative. A depth of 0 mm is considered positive 

while depths of 0-1 mm and 1-2 mm are considered close. For each range of depths, µa and 

µ s’ for all sites were plotted at 450 and 600 nm. Absorption is highest for the positive sites 

and decreases with increasing disease depth. At both 450 nm and 600 nm there is a significant 

difference in µa between disease at 0 mm and disease 1-2 mm away, as well as between 0 mm 

and negative sites. At 450 nm there is a drop in the median value of µa from the positive sites 

(0 mm) to the other distances. However, the median value is roughly the same for the close 

(0-1 mm and 1-2 mm) and negative sites, 10.69, 13.78, and 11.09 respectively. At 600 nm, the 

median value of µa also decreases from positive to the other distances. The median value of µa 

also slightly decreases from the close sites (0-1 mm) to the negative sites, 0.68 and 0.54 

respectively; and from the close sites (0-1 mm) to the close sites (1-2 mm), 0.68 and 0.51 

respectively. At both 450 and 600 nm scattering is highest in the close sites between 0 and 1 

mm. Scattering decreases in the close sites 1-2 mm and is lowest in the negative sites. The 

lower scattering in the positive sites (0 mm) is most likely due to the various tissue types that 
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make up the close sites. Fibrous tissue shows higher scattering values than malignant tissue as 

see in Table 4. 
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Fig. 9. Box and whisker plots of site-level data. µa (A,B) and µ s’ (C,D) coefficients at 450 nm 

and 600 nm as a function of depth. Positive sites correspond to a depth of 0 mm. Close sites are 

0-1 mm and 1-2 mm. Negative sites are greater than 2 mm. P-values are only shown for 

categories with significant differences. The box represents the median, 25th percentile, and 

75th percentile; the whisker represents values within 1.5 times the interquartile range. 

3.7 Monte Carlo simulations of cross-talk 

The amount of cross-talk between individual channels was calculated for the worst case 

scenario, a low absorbing tissue for a channel in the center of the multi-channel probe array. 

Table 6 represents the SNR for 8 different separation distances between channels for the three 

different tissue types. The optical properties at 600 nm (the wavelength with lowest 

Table 6. SNR due to cross-talk calculated using MC simulation. Simulations are based on 

radius = 0.515 mm for illumination core and 200 µm collection fibers. 

 

Tissue Type Positive Adipose Fibro-glandular 

µa (cm−1) 1.42 0.55 0.92 

µ s’ (cm−1) 8.47 6.45 11.28 

S
ep

ar
at

io
n

 D
is

ta
n
ce

 (
S

.D
.)
 3 mm 5.48 2.38 5.98 

4 mm 16.58 5.24 18.07 

5 mm 43.80 10.57 49.16 

6 mm 107.81 19.87 125.43 

7 mm 277.27 37.10 287.63 

8 mm 700.97 68.78 635.52 

9 mm 1545.29 114.04 1751.43 

10 mm 3945.91 203.93 3276.21 
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absorption) from Table 4 were used for the cross-talk simulations. In order to have less than 

1% cross-talk between channels an SNR greater than 100 is necessary. The current multi- 

channel probe has little to no cross-talk and that each channel is capturing information about a 

specific site. With these optical properties and fiber geometry it is possible to reduce the 

channel spacing and still minimize cross-talk from adjacent channels. 

3.8 Reproducibility 

The reproducibility of the clinical data can be seen in Fig. 10. The coefficient of variation 

(standard deviation / mean) was calculated from 10 serial measurements of the extracted 

parameters from each site. The median coefficient of variation was calculated over all 

channels (a total of 32 sites from 4 specimens) for each of the three orientations (Fig. 10). The 

median coefficient of variation is well below 1 for all extracted parameters (β-carotene, <µ s’>, 

THb, β-carotene/<µ s’>, THb/<µ s’>, and β-carotene/THb) indicating that there is little 

deviation from the mean in all measurements. This data also shows that the side orientation is 

better than the top or bottom orientations with the median coefficient of variation being less 

than 0.11 for all extracted parameters. This was the orientation used in all of the clinical 

studies on tumor margins to date. 
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Fig. 10. This plot shows the median coefficient of variation for the 32 sites which was 

calculated from 10 measurements on 4 separate lumpectomy specimens. β = β-carotene. 

4. Discussion 

In this paper we have looked at the performance metrics of our clinical instrument for 

application to intra-operative imaging of partial mastectomy margins. Our measured SNR 

results show that average SNR across all channels is >100. The channels with the lowest SNR 

are at the edge of the CCD. There is a possibility that some of the signal collected from these 

channels is being lost because they are on the edge. A CCD with a few more pixels in the 

vertical direction could fix this problem. 

The phantom study results showed that the extracted data is fairly accurate over a wider 

range of optical properties than our group has previously explored. Although, the errors are 

slightly higher than previously reported we do not think it will have much impact on the 

optical contrast seen between malignant and non-malignant tissues. The percent difference 

was calculated between the medians of positive and adipose tissue as well as the medians of 

positive and fibro-glandular tissue. Table 7 compares these percent differences to the average 

percent errors from the phantom results for the extracted parameters. For all of the 

parameters, with the exception of β-carotene, the percent difference is much larger than the 

average percent error in extraction accuracy. The small percent difference between positive 

and fibro-glandular tissue for β-carotene is probably due to the fact that both malignant tissue 

and purely fibro-glandular tissue have small amounts of fat present in the measurement site; 

β-carotene is likely not a good variable to differentiate these two particular tissue types. It is 

#121809 - $15.00 USD Received 21 Dec 2009; revised 19 Mar 2010; accepted 20 Mar 2010; published 1 Apr 2010

(C) 2010 OSA 12 April 2010 / Vol. 18,  No. 8 / OPTICS EXPRESS  8074



  

interesting to note that β-carotene/<µ s’> was a significant source of contrast in our previously 

published 48-patient clinical study [2]. However, here it appears that the accuracy with which 

β-carotene concentrations can be measured does not allow for separation between positive and 

adipose tissue. We believe this is likely due to propagation of errors in the actual phantom 

studies. Previously, we have shown that crocin concentrations can be extracted with an 

accuracy of 4.4% ± 4.0% in a turbid phantom containing hemoglobin, polystyrene spheres, 

and crocin [30]. In the previous study, the hemoglobin concentration ranged from 6.47 to 

11.77 µM and crocin concentration ranged from 0 to 468.50 µM; the ranges for the phantom 

study in this paper were 41.13-96.88 µM for hemoglobin and 0-337.32 µM for crocin. The 

higher β-carotene errors seen in the phantom study reported here are likely due to the lower 

ratio of crocin to hemoglobin concentrations in this set of phantoms. This is supported by the 

fact that in the current phantom study when the ratio of crocin to hemoglobin concentration 

increases, the percent error in crocin decreases. 

Table 7. Comparison of the percent error in accuracy versus percent differences between 

tissue types for the extracted parameters. 

  % Difference 

 % Error Positive vs. Adipose Positive vs. Fibroglandular 

[THb] 5.57 ± 3.89 101.18 92.26 

[β-carotene] 14.99 ± 13.6 29.91 9.69 

<µ s'> 9.81 ± 6.89 28.11 29.81 

[THb]/<µ s'> 6.07 ± 4.02 92.09 108.27 

[β-carotene]/<µ s'> 11.76 ± 12.3 14.14 88.30 

[β-carotene]/[THb] 13.21 ± 12.6 107.67 80.68 

Based on the simulations, we have found that the sensing depth of the multi-channel probe 

ranges from 0.5 to 2.2 mm over the wavelength range of 450-600 nm. There are variations in 

the literature of the definition of a clear margin. DUMC uses < 2 mm to define a close margin, 

however, other institutions range from < 1 mm to < 1 cm in their definitions [34], with the 

majority of pathologists using 2 mm as the pathologic criteria for clear margins [15–19]. With 

the sensing depth of the probe being ~1-2 mm we hope to compromise between the number of 

false positives and false negatives. If the mean sensing depth of the probe were 2 mm we may 

end up with more false positives because the probe could potentially sense positive tissue 

beyond the depth that pathology samples. In our previous 48-patient clinical study the 

sensitivity of the device was 82.4% for positive margins and 76.5% for close margins. The 

comparable sensitivities suggest that although the simulated sensing depth was < 2mm for 

fibro-glandular and positive tissue, the clinical results suggest that the probe has a sufficient 

sensing depth that is consistent with the pathologic criterion for clear margins. Compared to 

touch-prep we are capable of probing tissue at greater depths since this technique only looks 

at the cells directly at the surface of the margin. In the future, it is possible to change the 

sensing depth of the probe by altering the probe geometry and/or wavelength range if a 

greater sensing depth is desired. 

With Monte Carlo simulations we showed that cross-talk is minimal (<1%) with the 

current separation distance between adjacent channels. Therefore, we are confident that the 

photons captured for a single channel pertain only to the tissue directly underneath it and not 

from tissue underneath a neighboring channel. With the optical properties found in the ex vivo 

breast tissue it may be possible to decrease the separation distance between channels even 

further and still maintain <1% cross-talk. 

The reproducibility experiment from partial mastectomy specimens showed that in all 

possible probe orientations the median coefficient of variation is less than 0.17, meaning that 

all orientations are fairly reproducible. Of the three possible orientations, the side orientation 
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showed the lowest coefficient of variation for all extracted parameters (<0.11). Therefore, all 

measurements of partial mastectomy specimens utilized the side orientation. The side 

orientation may be the most reproducible because it is least affected by pooling of blood. 

With the desired margin at the top of the box, blood may drain to the bottom of the specimen, 

thereby decreasing the total hemoglobin concentration over time. With the desired margin on 

the bottom of the box the opposite effect would take place and total hemoglobin may increase 

with time. It is also inconvenient to interface the probe to the specimen via the bottom of the 

box. 

The current version of the probe has 8 channels and covers an area of ~2 x 4 cm with 5 

mm resolution for 4 consecutive placements of the probe. It takes ~15 seconds to image and 

10 seconds to process the data for a single placement of the probe. The majority of margins 

we have imaged range from 3.1 x 3.1 cm (10 cm
2
) to 4.5 x 4.5 cm (20 cm

2
). The speed of the 

system could be significantly improved if it could be designed to cover a margin as large as 

20 cm
2
 (the large end of margin sizes) with millimeter resolution (comparable to the thickness 

of each bread loafed pathology specimen) with just a single placement. The number of 

channels needed to image the largest sized specimen can be determined as follows. The 

diameter of the sampling area of each channel is typically comparable to the sensing depth 

and should be between 1 and 2 mm, which is the accepted criterion for clear margins. If there 

are multiple channels in the device, intuitively, one would minimize spacing between 

channels and determine the number needed to ensure the entire tissue area is covered. 

However, because tissue is highly scattering, there should be spacing between channels to 

minimize cross-talk between adjacent pixels, thus minimizing the sampling of redundant 

information. To achieve a cross-talk of 5% or less (using the cross-talk of the multi-channel 

optical spectral imaging system as a benchmark), a minimum center to center channel spacing 

of 7 mm is desired, as shown in our cross-talk simulation results. Assuming each channel has 

an active area that is approximately 2 mm in diameter and the center to center channel spacing 

is 7 mm, a 49 channel device would cover a 4.5 x 4.5 cm (20 cm
2
) margin with a single 

placement of the imaging probe. The scaling of the imaging probe from 8 channels to 49 

channels can be readily achieved by incorporating a larger CCD that can resolve more 

channels, reducing the number of collection fibers to a single fiber per channel to minimize 

the number of pixels on the CCD occupied by each channel, and by illuminating every other 

channel at any given time such that with sequential illumination, twice as many channels can 

be imaged without the issue of cross-talk between adjacent channels. 
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