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Abstract
Diagnostic accuracy of a genetic test involving multiple disease genes is evaluated using
sensitivity and specificity. For estimation, data from both affected and unaffected subjects are
required. For early onset diseases such as autism spectrum disorder only data from families with
affected offspring is available. To enable estimation of specificity when no data for unaffected
offspring are available (single affected offspring, SAO, data), we combine the pseudocontrol
method of Cordell and Clayton [2002 Am J Hum Genet 70:124-41] with the approach of DeLong
et al. [1985 Biometrics 41:947-58] in a logistic regression model for disease outcome with a risk
score (RS) constructed from genotype information as prognostic variable. The area under the
receiver operating characteristic curve (AUC) is then computed using the nonparametric Mann-
Whitney method. Extensive simulation studies show that, analogously to other approaches
utilizing pseudocontrols, resulting estimates of AUC using SAO data are slightly conservative
when compared to estimates computed using the full population-based data. The method is
illustrated using data from a study of autism spectrum disorder.
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Introduction
Many common complex diseases are influenced by genetic factors, and the recent
identification of some complex disease genes through genome-wide association studies
(GWAs) has resulted in interest in the use of genetic variants for diagnostic and prognostic
purposes. The contribution to disease risk for each identified individual gene is generally
low in common diseases [1], and the predictive power is typically too small to be of clinical
utility. In contrast, multiple studies have shown the potential value of genetic tests that
combine a number of disease genes to a risk score (RS), where the number of risk alleles is
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summed [2-6]. However, before a genetic test may be used in clinical routine, its clinical
validity has to be demonstrated. This includes the validation in a second, independent group
of subjects, i.e., in a replication study [7]. Even more important, reliable and valid estimates
of diagnostic accuracy of the test have to be provided [8]. The two most important measures
for diagnostic accuracy are sensitivity and specificity because they form the basis of further
relevant measures including the receiver operator characteristic (ROC) curve or likelihood
ratios (LR). To estimate sensitivity and specificity, the availability of both affected and
unaffected subjects from an appropriate spectrum of patients is required [7,9]. In some
instances, this is given through cohort or case-control populations from genetic association
studies. However, for other diseases, especially early onset diseases, very few such samples
are available. Instead, nuclear families consisting in one or more affected offspring together
with their parents have been collected for studying transmission disequilibrium tests (TDT)
that jointly test for both linkage and association [10].

In this work, we show how both sensitivity and specificity and subsequently other measures
of diagnostic accuracy for judging clinical validity of a genetic test based on a RS can be
estimated from single affected offspring trio (SAO) data consisting in an affected child and
his/her both parents. To this end, we combine the pseudocontrol approach of Cordell and
Clayton [11] with the method for estimating specificity from sensitivity and odds ratio (OR)
estimates of DeLong et al. [12]. We show the validity in an extensive Monte-Carlo
simulation study and illustrate its application by combining information from four genes for
risk assessment of autism spectrum disorder (ASD). Finally, in the Discussion, we contrast
the RS model with alternative models described in the literature, none of which are capable
of estimating specificity from SAO data.

Material and Methods
Statistical Model

Suppose there is a sample of na affected (y = 1) and nu unaffected (y = 0) subjects. To avoid
haplotyping which would require substantial laboratory efforts for a test to be used in
clinical routine, assume that one SNP per disease susceptibility gene has been selected. Let
gk denote the number of risk alleles of the subject at SNP k, k = 1,…, K, which corresponds
to the additive score coding [13]. For dominant models, gk = 2(0) if the number of risk
alleles at SNP k is at least one (none); for recessive models, gk = 2(0) if the number of risk
alleles at SNP k is two (up to one). For simplicity, we assume that genotypes are available
for all SNPs and all subjects. To combine the information across SNPs, we consider the

 which is the number of risk alleles. Parameters are estimated using the logistic
regression model

(1)

The test is considered to be positive if the linear predictor η1 exceeds a pre-specified
threshold γ. This model involves only two parameters, the regression constant and the
parameter for the RS, and it has been used in many applications [see, e.g., 4,14-16]. The
disadvantage is that all SNPs are assumed to follow dosage models with identical weights
for all SNPs. Specifically, in a three SNP model with additive coding, two risk alleles at
SNP 1 have the same effect as one risk allele at SNP 2 and another one at SNP 3.
Alternative models are two weighted risk score (WRS) models and the polygenic (PG)
model which are described and compared in detail in the Appendix.
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Measures of Diagnostic Accuracy—The log odds ratios (logOR) β of eq. (1) can be
estimated with standard approaches, and measures of diagnostic accuracy can be derived
from the pre-specified threshold γ for the linear predictor η1 if unrelated affected and
unaffected subjects are available. Specifically, the sensitivity is given by the probability that
the linear predictor exceeds the threshold given the subject is affected sensγ = P(RS > γ|y =
1). Similarly, the specificity, i.e., the probability that the linear predictor does not exceed the
threshold in an unaffected subject is specγ = P(RS ≤ γ|y = 0). From sens and spec, other
measures of diagnostic accuracy can be derived, e.g., the likelihood ratio (LR) of a positive
test result LR+γ = sensγ/(1 − specγ), the likelihood ratio of a negative test result LR−γ = (1 −
sensγ)/specγ, or the ROC curve for which sensγ is plotted against (1 − specγ) for the entire
range of γ. Finally, the C–statistic, i.e., the area under the curve (AUC) can be calculated.
Because SNPs are ordinally scaled at most, the Mann-Whitney approach to the C–statistic
should be used instead of trapezoid methods [17]. Specifically, let Sa and Su be the risk score
values in affected and unaffected subjects, respectively. Then the C-statistic is given by

with I denoting the indicator function.

Estimation of Sensitivity and Specificity in Single Affected Offspring Trio Data
—While sensitivity can be estimated from the affected offspring in SAO data, specificity
cannot be estimated directly because only pseudocontrols and no data from truly unaffected
subjects are available. Since competing methods are lacking, we propose estimation of
specificity as follows. As only one SNP per gene has been selected, phase is irrelevant, and
method 3 of Cordell and Clayton [11] can be used. Here, one matched pair consisting in a
case and a pseudocontrol is formed per family. The case genotypes consist in the genotypes
of the affected offspring, and the pseudocontrol is constructed with the genotypes consisting
in the non-transmitted parental alleles. For example, suppose that a family is typed at two
SNPs, with the father having genotypes (1/1 and 1/2) at loci (1 and 2), respectively; the
mother having genotypes (1/2 and 1/2); and the affected offspring having genotypes (1/1 and
1/2). We have a single case with genotypes (1/1 and 1/2) and form a single matched
pseudocontrol with genotypes (1/2, and 1/2). For estimation of logORs, conditional logistic
regression is used. The sensitivity sensγ is estimated as the proportion of affected subjects
with RS > γ. For every threshold γ, a conditional logistic regression is fitted to obtain
threshold specific odds ratios ORγ = exp(βγ). DeLong et al. [12] have shown that the

specificity can be estimated given the OR and sensitivity as .

Measures of variability can be obtained using the leave-one-out jack-knife approach which
is asymptotically equivalent to the robust estimator of variance [18]. Specifically, let 
denote the specificity estimated at threshold γ when the ith family from a total of n SAO
families is left out from the analysis. Then the asymptotic variance of the specificity is

estimated by . Estimates of likelihood ratios and
the C–statistic estimated by the Mann-Whitney approach are obtained analogously.

Knapp et al. [19] showed that the haplotype relative risk which is estimated from SAO
families is always stochastically closer to 1 than the relative risk estimated from population-
based samples. We demonstrated for the genotype relative risk method that biases may
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occur when marker and trait locus are different [20]. The biases result in conservative
estimates in all practical situations, and it is negligible for practical purposes. We therefore
expect that likelihood ratios should be closer to 1 when estimated from family data
compared to estimates from population-based samples. Similarly, specificities and C-
statistics should be closer to 0.5 for SAO families compared with those from population-
based samples.

Simulation Study
To investigate the validity of our novel approach for estimating sensitivity, specificity, the
positive likelihood ratio LR+, the negative likelihood ratio LR−, and the AUC C as measures
of diagnostic accuracy from SAO families, we performed a Monte-Carlo simulation study.
Parental genotypes were simulated according to specified allele frequencies under the
assumption of Hardy-Weinberg equilibrium. Mendelian transmission was used to generate
genotypes in offspring. The disease risk in a child given his/her genetic profile was
calculated as in Janssens et al. [2,21] by means of the LR under an additive effect of the
deleterious alleles and assuming no statistical interaction between genes. The computed
disease risk was compared to a random variable drawn from a continuous uniform
distribution on the interval [0;1]. A subject was defined as affected when the disease risk
was higher than the value of the random variable, and unaffected, otherwise.

Parent-offspring trios with an affected child defined the SAO samples. To compare the
estimates of diagnostic accuracy from SAO families with a population-based sample
consisting of independent subjects, parental information was discarded, and affected
children were compared with unaffected children. Thus, data from exactly the same affected
subjects were used in the population-based samples and the SAO families.

The disease prevalence was assumed to be 0.1. The investigated genetic profiles had 2, 4,
10, 20 and 40 SNPs that were in linkage equilibrium. For stable estimation and for retaining
a high number of events per variable (EPV), the number of SAO families was 200, 400,
1,000, 2000, and 4000, respectively. Because an SAO family consists of one affected subject
and one pseudocontrol, the identical number of affected and unaffected subjects was
simulated for the population-based sample. For each genetic profile, two different scenarios
were studied. In the first (scenario I), all markers had identical deleterious allele frequencies
(MAF) of 0.3 and allelic ORs of 1.3. The second scenario (scenario II) was characterized by
a combination of three different MAFs corresponding to three different ORs. Specifically,
one SNP was assumed to have a MAF of 0.1 and an allelic OR of 1.5, two SNPs were
assumed to have a MAF of 0.3 and an OR of 1.3. All other SNPs were assumed to have a
MAF of 0.5 and an OR of 1.1. In the model with two SNPs only, one SNP had a MAF of 0.1
and an OR of 1.5 and the other a MAF of 0.3 and an OR of 1.3. The number of replicates
was 10,000 for each scenario and genetic profile. All simulations were done in C, and all
calculations were performed in R version 2.4.1.

Application to Autism Spectrum Disorders (ASD)
Families were selected from the Autism Genetic Resource Exchange (AGRE) repository
(www.agre.org), ascertained in the United States of America through a proband with ASD
and a potentially affected sibling. Details of AGRE have been given elsewhere [22]. In this
study, 226 families had complete genotypes at all investigated SNPs, and 159 (69%) of the
families were Caucasian. The AGRE families consisted in families including at least two
affected offspring, and the first sibling to the proband was considered for analysis.

One SNP was chosen per gene. rs2292813 (risk allele C) and rs1861972 (risk allele A) were
selected for SLC25A12 and EN2, respectively, both with an additive 0/1/2 allele coding
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because of the previous positive associations [23-24]. Similarly, rs6872664 (risk allele C)
and rs35678 (risk allele T) were selected from our own findings for PITX1 [25] (replication
unpublished) and ATP2B2 [Pub. No.: WO/2006/100608] with additive and a recessive
codings for the risk allele, respectively. Minor allele frequencies of individual SNPs are
provided in Supplementary Table S1.

Stability of parameter estimates was checked using five-fold cross-validation (5-fold CV)
using the family as unit and a Caucasian families only subgroup analysis.

Extension to the Ascertainment Scheme “Sibling to Proband”
The ascertainment scheme of the AGRE families does not match the situation of SAO
families considered above. In some applications including ASD it is, however, important to
investigate the clinical validity of a test in siblings to probands. Here, families with a first
child that is already diagnosed with ASD present a second child to the physician. The aim is
estimating the risk for ASD in the sibling to the proband without genotyping the proband.
We thus have to consider the prospective model P(y2|g2, y1), where y2 and y1 are the
phenotypes of a second sibling and the proband, respectively, and g2 denotes the vector of
genotypes of the sibling to the proband. The different ascertainment scheme is thus different
to the simpler prospective model P(y|g) from above. Because all information on the
phenotype y2 of the second sibling is contained in his/her genotype g2, the phenotype y1 of
the proband is irrelevant. The prospective model thus reduces to P(y2|g2) if the model is
correctly specified.

Because families with two affected offspring are ascertained in this study, we need to
consider the retrospective model P(g2|y1, y2). Using the same arguments as Prentice and
Pyke [26], it can be shown that the retrospective likelihood from a logistic regression is
identical to the prospective likelihood except for the intercept even under the sibling to the
proband ascertainment scheme.

Results
Simulation Study

Results of the simulation study are displayed in Table 1 for the AUC over all models.
Detailed results for the four SNP model are presented in Table 2. The findings for the
Monte-Carlo simulations involving 2, 10, 20 and 40 SNPs in the genetic profile are given in
Supplementary Tables S2-S5, respectively. The number of NA values increases with the
number of SNPs investigated because the probability to observe a specific number of risk
alleles is low. For example, in the case of 40 independent SNPs, the probability to observe a
subject with RS ≤ 9 is < 10-4 in scenario I. Similarly, the probability of RS ≥ 40 is < 10-4 in
this scenario. We thus expect NA values for 50 out of 80 values in this part of the simulation
study. Furthermore, calculation of both LR values is only possible if sens and spec are not
equal to 0 and 1, respectively

Diagnostic accuracy was always slightly underestimated when determined from SAO
families compared with population-based affected/unaffected data involving the same
affected subjects as the SAO families. This is consistent with our expectations from other
studies involving pseudocontrols [19-20].

The bias increased with the number of SNPs involved, but even for the 40 SNPs scenarios,
difference in the mean AUC from 10,000 replicates was only 0.02 (0.767 for affected/
unaffected data; 0.741 for SAO families).
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Application to Autism Spectrum Disorders (ASD)
For the RS model, the increase per risk allele was 1.35 (95% confidence interval (CI):
1.16-1.58) for ASD. Sensitivities, ORs and 1 minus specificities for the binary tests on the
RS are shown in Table 3. Figure 1 depicts the ROC curve which was constructed from the
estimates of Table 3. The estimated AUC was 0.61 (95% CI: 0.59 – 0.64; p = 1.4 × 10-6 for
test of random guessing). Test performance of single SNPs is given in Supplementary Table
S6. Stability of estimated sensitivities, specificities and ORs was investigated using 5-fold
CV (Table S7) and a subgroup analysis in Caucasian families only (Table S8).

Discussion
The contribution of a single gene to the disease risk is generally low in complex diseases but
the use of a combination of a number of SNPs from different genes generally improves risk
prediction. This holds true for both genomic profiling and the analysis of multiple genes
added to traditional clinical risk factors [3-6]. The addition of classical clinical variables is
not only reasonable but strongly indicated for some diseases including coronary artery
disease in which well-established risk scores based on clinical features are already available.
Genetic profiles that do not incorporate clinical variables could, however, be particularly
useful for early onset diseases such as ASD, where reliable clinical measures are not
available when first clinical signs become apparent and early therapeutic intervention can
improve long-term outcome [27].

Irrespective of the question whether only genetic variables or both genetic and clinical
variables are to be included in a risk model, an important question is how the best model is
selected and validated. This issue has been discussed in detail in several articles in this
journal, see, e.g., Refs. [28-30]. However, in the area of genetics an important different
aspect needs to be considered. A genotype-phenotype association is only credible if the
initial association has been reproduced in follow-up studies and/or in different study groups
within the same study [31]; this process is termed replication [32]. The replication should be
considered a sine qua non condition before a SNP is included in a risk score model. As a
result, we have included four SNPs in our application that have been shown to be associated
with ASD in at least two studies. Currently, we recommend to include as many replicated,
i.e., truly associated SNPs as possible in the RS model for the following reasons:

• The effect size of different SNPs is weak but similar for complex genetic diseases.

• Results from several simulation studies indicate that the performance of a risk score
model improves with the number of SNPs [2,21].

• The genotyping cost of an additional SNP is substantially lower than 50 cents when
genotyping is done on a customized array, thus practically negligible.

Although we recommend adding as many SNPs as possible, this need not improve the
classification.

To combine the information across the available SNPs, four standard models are considered
in the literature, and all of them are based on the logistic regression because of its simple
interpretation, and the possibility of estimating parameters from a retrospective likelihood
[26]. A detailed description and a comparison of the four models is given in the Appendix.

One approach that has received great interest is the polygenic (PG) model, where two
dummy variables are used per SNP. However, with four diallelic SNPs as in the ASD study,
one in recessive coding, there are 54 different genotype combinations. Thus, risk assessment
and interpretation of results are difficult. Even worse, the complexity increases
exponentially with the number of SNPs. The PG model is, however, an appropriate choice
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for large data sets because these allow stable risk assessments for a large number of SNP
combinations. Nevertheless, in the illustrative example only 25 of the 54 possible
combinations were observed. A risk assessment of new subjects having one of the non
observed SNP combinations would be impossible because no estimates of sensitivity and
specificity are available. These concerns against the use of the PG model are analogous to
those against subgroup analyses in clinical trials where decisive conclusions often cannot be
achieved.

The stable estimation of measures of diagnostic accuracy is important for early onset
diseases such as ASD, where very few cohort or case-control populations are available. We
therefore developed an approach allowing estimation of measures for judging diagnostic
accuracy from SAO trio data for the simple RS model. We are not aware of further methods
for estimating measures of diagnostic accuracy from SAO families. The novel method
should not be considered a replacement for cohort or case-control studies for final clinical
validation because SAO trio data need not represent an appropriate spectrum of patients to
whom the test may be applied. Because findings need replication in an independent study,
we propose that the SAO data are used as first stage and that the replication is performed in
an appropriate study of independent subjects.

The low flexibility of the simple RS model may on the one hand be considered a weakness
because all SNPs contribute equally to the score, irrespective of their true effect. On the
other hand, the simple RS model is explicitly not considered an in vitro diagnostic
multivariate index assays (IVDMIA) according to the Food and Drug Administration (FDA)
[33]. IVDMIAs are developed based on multivariate data and clinical outcome, and the
claim of their clinical validity is not transparent to patients, laboratorians, and clinicians who
order these tests. Since the FDA has to ensure that an IVDMIA has been clinically validated,
it regulates these devices to ensure that the IVDMIA is safe and effective for its intended
use. As a result, pre- and postmarket requirements differ substantially between IVDMIAs
and an assay not considered to be an IVDMIA. Simply speaking, an IVDMIA needs
premarket approval by the FDA so that developing costs are substantially higher for an
IVDMIA compared to other genetic tests not considered to be IVDMIAs.

In summary, we developed a novel approach based on the simple RS model that is
appropriate for estimating measures of diagnostic accuracy from SAO families. It was
contrasted with the PG model, validated in an extensive Monte-Carlo simulation study and
illustrated using ASD families. In line with other studies utilizing pseudocontrols that are
constructed from non-transmitted alleles our novel approach yields valid estimates that are
slightly conservative.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

Weighted Risk Score Model I
Weighted risk score (WRS) models are natural extensions of the RS model because different
weights are assigned to the SNPs. Two different WRS models have been proposed in the
literature. The simpler WRS (WRSI) model assumes pre-specified fixed weights wk

(2)

This model involves only two parameters but requires weights for the index 
which need to be defined externally. Because the specification of external weights is almost
impossible in practice, this approach has rarely been followed in applications.

Weighted Risk Score Model II
The second WRS (WRSII) model involves K + 1 parameters and is given by

(3)

It relies on the dosage effects of all SNPs and excludes the possibility of statistical
interactions between SNPs. It has therefore rarely been employed in practice.

Polygenic Model
The polygenic (PG) model with or without interactions can be considered the natural
competitor of the simple RS model. In the PG model, there are multiple genes with varying
effects, and the effect of the genes need not be additive in nature. The PG model allows for
non-additive and non-standard effects of genotypes, and this means that a dosage effect of
each SNP is not assumed. Usually, two dummy variables are considered per SNP if the
mode of inheritance is unknown. Specifically, xk1 = 1 if a subject is heterozygous at SNP k,
0 otherwise, and xk2 = 1 if a subject is homozygous for the risk allele at SNP k, 0 otherwise.
A general discussion of codings can be found in the literature [11,34-35]. Genotypes and
dummy variables are collected in column vectors. g = (g1,…, gK)′ and x = (x11, x21,…, xK1,
xK2)′.

The PG model without interaction involves 2K + 1 parameters, has been employed in
applications [36-37], and it is given by

(4)

A further generalization of Eq. (4) is to allow for pair-wise and higher-order statistical
interactions between SNPs which has often been considered [21,38-41], and this model may
lead to a total of 2K − 1 parameters.
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Comparison of Models
To compare the different sketched methods, a number of criteria need to be considered.
First, the greatest flexibility is offered by the PG model, where single locus genotypes are
combined into a polygenic profile. Therefore, the prediction of the risk of affection is
assumed to be more accurate in the PG compared with both WRS approaches and the simple
RS method.

Second, the methods differ greatly regarding their complexity. Specifically, the RS model
requires the estimation of only one logOR and one specificity per threshold γ, whereas the
complexity of the PG model increases exponentially with the number of SNPs. For instance,
with only four diallelic SNPs there are 81 different possible genotype combinations. This
has profound implications for the sample sizes required for risk assessments and reasonable
interpretations. Specifically, several authors advocated that the minimum number of EPV
required in logistic regression analyses should be 10-20 [28,42]. While the number of SNP
parameters to be estimated in a logistic regression is independent from the number of SNPs
considered and therefore always identical to one in the RS model, the number of parameters
increases linearly for the WRS models and exponentially for PG (Table A.1). According to
this, for the setting of four diallelic SNPs, the simple RS model and the WRS I model
require 160 SAO families for estimation of both sensitivity and specificity (2 parameters × 8
thresholds × 10), but the PG model 1600 – and the PG model still does not allow estimation
of specificity. Clearly, such large data sets are hardly available in family analysis. To obtain
reliable parameter estimates, the required sample size thus is only a third for the simple RS
model and the WRS I model when compared with the full PG model even when only four
SNPs are considered. This advantage of the simple RS model increases with the number of
SNPs because the RS model increases exponentially with the number of SNPs.
Compromises are the WRSII model and the PG model without interaction.

Finally, as discussed in detail in the Discussion, the simple RS approach has one further
general advantage when aimed at use in clinical routine. In contrast to the PG and the WRS
II models, the simple RS model is not considered to be an IVDMIA.

Table A1

Number of SNPs (# SNPs) used for risk prediction, number of parameters in a logistic
regression required for SNP modeling, required number of single affected offspring trios
(SAO) for estimating sensitivity in a logistic regression required to obtain 10 events per
variable (EPV; # SAO for sens), and required number of single affected offspring trios for
estimating specificity using the risk score (RS) and WRS I model to obtain an EPV of 10 (#
SAO RS for spec). Specificity cannot be estimated for the second weighted risk score (WRS
II) and the polygenic (PG) models from SAO.

# SNPs # SNP parameters # SAO for sens # SAO for spec

RS WRS II PG RS WRS II PG RS

1 1 1 2 20 20 40 40

2 1 2 8 20 40 160 80

4 1 4 80 20 80 1,600 160

10 1 10 6,560 20 200 > 105 400

20 1 20 59,048 20 400 > 105 800

50 1 50 3.5·107 20 1,000 > 108 2,000

100 1 100 5.2·1047 20 2,000 > WP 4,000

Carayol et al. Page 9

Stat Med. Author manuscript; available in PMC 2011 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



# SNPs # SNP parameters # SAO for sens # SAO for spec

RS WRS II PG RS WRS II PG RS

500 1 500 3.6·10238 20 10,000 > WP 20,000

1,000 1 1,000 > 1·101,000 20 20,000 > WP 40,000

*
WP: world population

References
1. Janssens AC, Gwinn M, Bradley LA, Oostra BA, van Duijn CM, Khoury MJ. A critical appraisal of

the scientific basis of commercial genomic profiles used to assess health risks and personalize
health interventions. American Journal of Human Genetics. 2008; 82:593–599.10.1016/j.ajhg.
2007.12.020 [PubMed: 18319070]

2. Janssens AC, Aulchenko YS, Elefante S, Borsboom GJ, Steyerberg EW, van Duijn CM. Predictive
testing for complex diseases using multiple genes: fact or fiction. Genetics in Medicine. 2006;
8:395–400.10.1097/01.gim.0000229689.18263.f4 [PubMed: 16845271]

3. Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, Pankow JS, Devlin JJ,
Willerson JT, Boerwinkle E. Prediction of coronary heart disease risk using a genetic risk score: the
Atherosclerosis Risk in Communities Study. American Journal of Epidemiology. 2007; 166:28–
35.10.1093/aje/kwm060 [PubMed: 17443022]

4. Weedon MN, McCarthy MI, Hitman G, Walker M, Groves CJ, Zeggini E, Rayner NW, Shields B,
Owen KR, Hattersley AT, Frayling TM. Combining information from common type 2 diabetes risk
polymorphisms improves disease prediction. PLoS Medicine. 2006; 3:e374.10.1371/journal.pmed.
0030374 [PubMed: 17020404]

5. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G, Adami HO, Hsu FC, Zhu Y, Balter K, Kader
AK, Turner AR, Liu W, Bleecker ER, Meyers DA, Duggan D, Carpten JD, Chang BL, Isaacs WB,
Xu J, Gronberg H. Cumulative association of five genetic variants with prostate cancer. New
England Journal of Medicine. 2008; 358:910–919.10.1056/NEJMoa075819 [PubMed: 18199855]

6. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, Hirschhorn JN, Berglund G,
Hedblad B, Groop L, Altshuler DM, Newton-Cheh C, Orho-Melander M. Polymorphisms
associated with cholesterol and risk of cardiovascular events. New England Journal of Medicine.
2008; 358:1240–1249.10.1056/NEJMoa0706728 [PubMed: 18354102]

7. Sackett, DL.; Straus, SE.; Richardson, WS.; Rosenberg, W.; Haynes, RB. Evidence-based Medicine:
How to Practice and Teach EbM. Churchill Livingstone; Edinburgh: 2000.

8. The European Agency for the Evaluation of Medicinal Products - Human Medicines Evaluation
Unit. Points to consider on the evaluation of diagnostic agents. CPMP/EWP/1119/98. 2001 [Feb 1,
2010]. http://www.ema.europa.eu/pdfs/human/ewp/111998en.pdf

9. Zakowski L, Seibert C, VanEyck S. Evidence-based medicine: answering questions of diagnosis.
Clinical Medicine & Research. 2004; 2:63–69. [PubMed: 15931337]

10. Ziegler, A.; König, IR. A Statistical Approach to Genetic Epidemiology: Concepts and
Applications. 2nd. Wiley-VCH; Weinheim: 2010.

11. Cordell HJ, Clayton DG. A unified stepwise regression procedure for evaluating the relative effects
of polymorphisms within a gene using case/control or family data: application to HLA in type 1
diabetes. American Journal of Human Genetics. 2002; 70:124–141.10.1086/338007 [PubMed:
11719900]

12. DeLong ER, Vernon WB, Bollinger RR. Sensitivity and specificity of a monitoring test.
Biometrics. 1985; 41:947–958. [PubMed: 3913467]

13. Zheng G, Freidlin B, Li Z, Gastwirth JL. Choice of scores in trend tests for case-control studies of
candidate-gene associations. Biometrical Journal. 2003; 45:335–348.10.1002/bimj.200390016

14. Lango H, Palmer CN, Morris AD, Zeggini E, Hattersley AT, McCarthy MI, Frayling TM, Weedon
MN. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type
2 diabetes risk. Diabetes. 2008; 57:3129–3135.10.2337/db08-0504 [PubMed: 18591388]

Carayol et al. Page 10

Stat Med. Author manuscript; available in PMC 2011 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ema.europa.eu/pdfs/human/ewp/111998en.pdf


15. van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, Hofman A,
Sijbrands EJ, Janssens AC. Predicting type 2 diabetes based on polymorphisms from genome-wide
association studies: a population-based study. Diabetes. 2008; 57:3122–3128.10.2337/db08-0425
[PubMed: 18694974]

16. Vaxillaire M, Veslot J, Dina C, Proenca C, Cauchi S, Charpentier G, Tichet J, Fumeron F, Marre
M, Meyre D, Balkau B, Froguel P. Impact of common type 2 diabetes risk polymorphisms in the
DESIR prospective study. Diabetes. 2008; 57:244–254.10.2337/db07-0615 [PubMed: 17977958]

17. Hanley JA, McNeil BJ. The meaning and use of the area under the a receiver operating
characteristic (ROC) curve. Radiology. 1982; 143:29–36. [PubMed: 7063747]

18. Lipsitz SR, Dear KB, Zhao L. Jackknife estimators of variance for parameter estimates from
estimating equations with applications to clustered survival data. Biometrics. 1994; 50:842–846.
[PubMed: 7981404]

19. Knapp M, Seuchter SA, Baur MP. The haplotype-relative-risk (HRR) method for analysis of
association in nuclear families. American Journal of Human Genetics. 1993; 52:1085–1093.
[PubMed: 8503442]

20. Franke D, Philippi A, Tores F, Hager J, Ziegler A, König IR. On confidence intervals for genotype
relative risks and attributable risks from case parent trio designs for candidate-gene studies.
Human Heredity. 2005; 60:81–88.10.1159/000088528 [PubMed: 16192736]

21. Janssens AC, Moonesinghe R, Yang Q, Steyerberg EW, van Duijn CM, Khoury MJ. The impact of
genotype frequencies on the clinical validity of genomic profiling for predicting common chronic
diseases. Genetics in Medicine. 2007; 9:528–535.10.1097/GIM.0b013e31812eece0 [PubMed:
17700391]

22. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P, Ducat L, Spence SJ. The
autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric
conditions. American Journal of Human Genetics. 2001; 69:463–466.10.1086/321292 [PubMed:
11452364]

23. Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, Buxbaum JD. Linkage
and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism.
American Journal of Psychiatry. 2004; 161:662–669. [PubMed: 15056512]

24. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S, Bruse SE, Tischfield S, Smith
BJ, Zimmerman RA, Dicicco-Bloom E, Brzustowicz LM, Millonig JH. Support for the Homeobox
Transcription Factor Gene ENGRAILED 2 as an Autism Spectrum Disorder Susceptibility Locus.
American Journal of Human Genetics. 2005; 77:851–868.10.1086/497705 [PubMed: 16252243]

25. Philippi A, Tores F, Carayol J, Rousseau F, Letexier M, Roschmann E, Lindenbaum P, Benajjou
A, Fontaine K, Vazart C, Gesnouin P, Brooks P, Hager J. Association of autism with
polymorphisms in the paired-like homeodomain transcription factor 1 (PITX1) on chromosome
5q31: a candidate gene analysis. BMC Medical Genetics. 2007; 8:74.10.1186/1471-2350-8-74
[PubMed: 18053270]

26. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika.
1979; 66:403–411.

27. Johnson CP, Myers SM. Identification and evaluation of children with autism spectrum disorders.
Pediatrics. 2007; 120:1183–1215.10.1542/peds.2007-2361 [PubMed: 17967920]

28. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine.
1996; 15:361–387.10.1002/(SICI)1097-0258(19960229)15:4<361∷AID-SIM168>3.0.CO;2-4
[PubMed: 8668867]

29. König IR, Malley JD, Weimar C, Diener HC, Ziegler A. Practical experiences on the necessity of
external validation. Statistics in Medicine. 2007; 26:5499–5511.10.1002/sim.3069 [PubMed:
17907249]

30. Harrell, FE., Jr; Margolis, PA.; Gove, S.; Mason, KE.; Mulholland, EK.; Lehmann, D.; Muhe, L.;
Gatchalian, S.; Eichenwald, HF. Statistics in Medicine. Vol. 17. 1998. Development of a clinical
prediction model for an ordinal outcome: the World Health Organization Multicentre Study of
Clinical Signs and Etiological agents of Pneumonia, Sepsis and Meningitis in Young Infants.
WHO/ARI Young Infant Multicentre Study Group; p. 909-944.

Carayol et al. Page 11

Stat Med. Author manuscript; available in PMC 2011 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



31. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, Hirschhorn JN,
Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD, Cardon LR, Daly M, Donnelly P,
Fraumeni JF Jr, Freimer NB, Gerhard DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh
J, Hoover R, Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP, Roberts J,
Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM, Winn DM, Collins FS. Replicating
genotype-phenotype associations. Nature. 2007; 447:655–660.10.1038/447655a [PubMed:
17554299]

32. Igl BW, König IR, Ziegler A. What do we mean by “replication” and “validation” in genome-wide
association studies? Human Heredity. 2009; 67:66–68.10.1159/000164400 [PubMed: 18931511]

33. Food and Drug Administration. Draft Guidance for Industry, Clinical Laboratories, and FDA Staff
In Vitro Diagnostic Multivariate Index Assays. 2007 [Feb 1, 2010].
http://www.fda.gov/OHRMS/DOCKETS/98fr/06d-0347-gdl0001.pdf

34. Schaid DJ. General score tests for associations of genetic markers with disease using cases and
their parents. Genetic Epidemiology. 1996; 13:423–449.10.1002/(SICI) 1098-2272(1996)13:5&lt;
423∷AID-GEPI1&gt;3.0.CO;2-3 [PubMed: 8905391]

35. Schaid DJ, Sommer SS. Comparison of statistics for candidate-gene association studies using cases
and parents. American Journal of Human Genetics. 1994; 55:402–409. [PubMed: 8037216]

36. Wang J, Ban MR, Zou GY, Cao H, Lin T, Kennedy BA, Anand S, Yusuf S, Huff MW, Pollex RL,
Hegele RA. Polygenic determinants of severe hypertriglyceridemia. Human Molecular Genetics.
2008; 17:2894–2899.10.1093/hmg/ddn188 [PubMed: 18596051]

37. Humphries SE, Cooper JA, Talmud PJ, Miller GJ. Candidate gene genotypes, along with
conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy
UK men. Clinical Chemistry. 2007; 53:8–16.10.1373/clinchem.2006.074591 [PubMed: 17130180]

38. Demchuk E, Yucesoy B, Johnson VJ, Andrew M, Weston A, Germolec DR, De Rosa CT, Luster
MI. A statistical model for assessing genetic susceptibility as a risk factor in multifactorial
diseases: lessons from occupational asthma. Environmental Health Perspectives. 2007; 115:231–
234.10.1289/ehp.8870 [PubMed: 17384770]

39. Yang Q, Khoury MJ, Botto L, Friedman JM, Flanders WD. Improving the prediction of complex
diseases by testing for multiple disease-susceptibility genes. American Journal of Human
Genetics. 2003; 72:636–649.10.1086/367923 [PubMed: 12592605]

40. Podgoreanu MV, White WD, Morris RW, Mathew JP, Stafford-Smith M, Welsby IJ, Grocott HP,
Milano CA, Newman MF, Schwinn DA. Inflammatory gene polymorphisms and risk of
postoperative myocardial infarction after cardiac surgery. Circulation. 2006; 114:I275–
281.10.1161/CIRCULATIONAHA.105.001032 [PubMed: 16820586]

41. Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, Seddon JM. Common variation
in three genes, including a noncoding variant in CFH, strongly influences risk of age-related
macular degeneration. Nature Genetics. 2006; 38:1055–1059.10.1038/ng1873 [PubMed:
16936732]

42. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of
events per variable in logistic regression analysis. Journal of Clinical Epidemiology. 1996;
49:1373–1379.10.1016/S0895-4356(96)00236-3 [PubMed: 8970487]

Carayol et al. Page 12

Stat Med. Author manuscript; available in PMC 2011 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fda.gov/OHRMS/DOCKETS/98fr/06d-0347-gdl0001.pdf


Figure 1.
Receiver operating characteristic associated with the risk score. Specificity was estimated
using sensitivity and the odds ratio. The estimated area under the curve (AUC) was 0.61
(95% CI: 0.59 – 0.64).
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