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Abstract
Background—Mitral regurgitation (MR) doubles mortality following myocardial infarction (MI).
We have demonstrated that MR worsens remodeling after MI, and that early correction reverses
remodeling. SERCA2a is downregulated in this process. We hypothesized that upregulating
SERCA2a may inhibit remodeling in a surgical model of apical MI (no intrinsic MR) with
independent MR-type flow.

Methods and Results—In 12 sheep, percutaneous gene delivery was performed using a validated
protocol to perfuse both LAD and circumflex coronary arteries with occlusion of venous drainage.
We administered adeno-associated virus 6 (AAV6) carrying SERCA2a under CMV promoter control
in 6 sheep, and a reporter gene in 6 controls. After 2 weeks, standardized apical MI was created, and
a shunt implanted between the LV and LA, producing regurgitant fractions of ~30%. Animals were
compared at baseline, 1 and 3 months using 3D echo, Millar hemodynamics and biopsies. The
SERCA2a group had well-maintained preload-recruitable stroke work at 3 months (decrease by 8
±10% vs. 42±12% with reporter gene controls (p<0.001)). LV dP/dt followed the same pattern (no
change vs. 55% decrease, p<0.001). LVESV was lower with SERCA2a (82.6±9 6 vs 99.4±9.7 ml,
p=0.03); LVEDV, reflecting volume overload, was not significantly different (127.8±6.2 vs 134.3
±9.4 ml). SERCA2a sheep showed 15% rise in anti-apoptotic pAkt vs. 30% reduction with reporter
gene (P<0.001). Pro-hypertrophic activated STAT3 was also 41% higher with SERCA2a than in
controls (p<0.001). Pro-apoptotic activated caspase-3 rose over 5-fold over 1 month in both
SERCA2a and controls (p=NS), and decreased by 19% at 3 months, remaining elevated in both
groups.

Conclusions—In this controlled model, upregulating SERCA2a induces better function and lesser
remodeling, with improved contractility, smaller volume and activation of pro-hypertrophic/anti-
apoptotic pathways. Although caspase-3 remains activated in both arms, SERCA2a sheep had
increased molecular anti-remodeling “tone”. We therefore conclude that upregulating SERCA2a
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inhibits MR-induced post-MI remodeling in this model, and thus may constitute a useful approach
to reduce the vicious cycle of remodeling in ischemic MR.
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Expansion of infarcted tissue begins acutely after myocardial infarction (MI), but a more
gradual remodeling process also involves noninfarcted areas;1 initially compensatory, this
process becomes maladaptive, as the ventricle enlarges and contracts poorly2 with reduced
survival.3

MI also causes ischemic mitral regurgitation (MR) by altering ventricular geometry and
function,4, 5 doubling the risk of death. Severe non-ischemic MR has been shown to promote
LV remodeling and reduce survival.6–8 We have previously demonstrated 9 that moderate MR,
simulated by an LV-to-LA shunt, added to a small antero-apical MI (causing no intrinsic MR)
causes greater ventricular remodeling than a comparable infarction alone, with an earlier
transition to a failure phenotype. We have also shown that repairing the regurgitant-type flow
at an early stage after the MI reverses the remodeling-related processes.10 Whole heart changes
parallel cellular and molecular abnormalities in the non-infarcted myocardium that reflect the
complex remodeling process. These molecular events also progress differently with MR than
with comparable infarction alone, with an initial rise in pro-hypertrophic and anti-apoptotic
signals followed by their exhaustion.

Most experimental models of post-MI remodeling use infero-posterior MIs,11, 12 but this
necessarily links the MI-induced remodeling to the development of MR. The shunt model
allows MR to be varied independently in the presence of MI and without interventions such as
infarct patching13 that might themselves influence remodeling.

Upregulating genes encoding for proteins of interest has been demonstrated to be an effective
approach to modulate and treat heart failure. One candidate for such gene therapy is the
sarcoplasmic (SR) Ca+2-ATPase (SERCA2a), which is down-regulated in that model, and
plays a pivotal role in the regulation of intracellular Ca2+ in cardiomyocytes14. Calcium entry
into the cytosol during systole induces Ca2+ release from the SR through the ryanodyne
receptor, coupling excitation and contraction. During relaxation, Ca2+ is returned to the SR by
the SR Ca2+-ATPase (SERCA2a). Some is also extruded by the sarcolemmal Na+/Ca2+

exchanger (NCX), which is upregulated in cardiac hypertrophy and failure.15, 16 Because
SERCA2a is the major determinant of the amount of Ca2+ available to be released during the
upcoming systole, changes in SERCA function significantly affect cardiac excitation-
contraction coupling. SERCA2a activity also has a major influence on myocardial relaxation,
17, 18 Ca2+ extrusion via SERCA2a being more efficient energetically than the alternative NCX
pathway.19 SERCA2a mRNA levels are reduced in failing hearts.20 Using a gene therapy
approach, up-regulating SERCA2a levels in different models of heart failure resulted in
improvement in systolic21–23 and diastolic function,17 as well as improving metabolism, 24,
25 potentially reducing arrhythmias26, 27 and improving survival.25 We have demonstrated that
SERCA2A is down-regulated in the remote zones of post-MI remodeling ventricles-
significantly more so when MR was also present, accompanied reduction in contractility of the
whole ventricle and of isolated cells, and reduction in single cell calcium transients.9 Pathways
involved in the compensatory hypertrophic response in were initially up-regulated, only to fall
below baseline at 3 months, when severe dilatation and failure were present. As repairing MR
in the early phase, before these processes have been activated, induces reversal of remodeling,
10 SERCA2a may have a unique role in determining this reversibility. This is emphasized by
the recently reported effects of SERCA2a up-regulation in an MR-only pig model of heart
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failure,28 where it induced inhibition of ventricular enlargement and myocardial dysfunction
apparent in the control animals.

This study aims to apply the gene therapy approach in a clinically relevant large-animal model
of actively evolving remodeling induced by the combination of ischemic and valvular lesions
in which a biphasic pattern of compensatory and decompensatory changes has been
demonstrated. An intriguing question to address in this model is whether the potentially
beneficial effects of SERCA2a gene therapy are accompanied by molecular changes typical
of compensated hypertrophy9 as seen early in the course of MR-augmented remodeling, or
only by measurable reductions in ventricular volumes and improvements in contractile
dysfunction without molecular changes in other aspects of the remodeling processes. Genetic
modification of such a key pathway can thereby help dissect its contribution to the entire disease
process,

Thus, we hypothesized that up-regulating SERCA2a levels by gene delivery using a viral vector
may reverse the remodeling process in our model of “ischemic-type” MR. that is, MR
associated with myocardial infarction.9 We also hypothesized that this reversal will be manifest
both in ventricular volumes and function, and in persistent activation of pro-hypertrophic and
anti-apoptotic pathways.

In this context, prolonged and sustained expression of the transgene is critical, as is the lack
of host immune response to the vector. Adeno-associated vector has been demonstrated to
confer prolonged and sustained expression of myocardial transgenes, while lacking
immunogenic and cardiotoxic effects,29 and was therefore used in this study.

METHODS
Animal studies

A total of 12 male Dorsett hybrid sheep (20–30 kg) were included. Our established model of
independent MI and MR-type flow9, 10 was implemented using an 8-cm long, 8-mm diameter
reinforced Teflon (PTFE) graft (Edwards, cross-sectional area 0.50 cm2) implanted under
sterile conditions into the mid-lateral LV and LA appendage with intramuscular portions
stiffened with epoxy resin (Figure 1). The regurgitant flow was confirmed during each
thoracotomy using a Transonic flow probe and color Doppler. The standardized shunt diameter
and length consistently produced moderate MR (regurgitant fractions of ~30%30). Animals
were treated with heparin (3 days) and then oral aspirin.

Vector design
Vector production, harvest, purification, and testing were done as previously described.31 The
rAAV6.SERCA2a vector used in this study contains an AAV serotype 6 viral capsid and a
single-stranded ~4.5 kb DNA containing the human SERCA2a cDNA driven by a CMV
immediate-early promoter/enhancer, a hybrid intron, and a bovine growth hormone poly-
adenylation signal, all flanked by 145 nt AAV2 inverted terminal repeat sequences necessary
for replication and packaging of the vector DNA in the capsid. The vector was manufactured
using standard calcium phosphate transfection methods in adherent 293 cells. Three plasmids
were used, 1 containing helper functions from adenovirus, 1 containing the AAV rep2 and cap1
genes, and the third containing the vector genome. Final vector preparations were more than
95% pure as judged by SDS-PAGE (Invitrogen, Carlsbad, California).

Gene delivery
Two weeks prior to the first thoracotomy (in order to obtain significant gene expression at
model creation), antegrade coronary arterial injection with concomitant great cardiac vein
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blockade was performed with AAV6 as a vehicle for the reporter gene β-galactosidase (β-gal-
control) and SERCA2a, each at a titer of 5×1014 genomes/ml. The great cardiac vein was
cannulated via internal jugular access and occluded with a standard balloon-tipped catheter.
The left anterior descending coronary artery (LAD) was cannulated via the femoral artery and
occluded with a standard angioplasty balloon before the first diagonal branch. With both arterial
and venous balloons transiently inflated for 2 minutes, intracoronary adenosine was
administered to increase permeability and prolong dwell time32, followed by 5×1012 genomes
of either AAV6.βgal or AAV6.SERCA2a (six sheep each). This sequence was repeated for the
left circumflex (LCX) artery. Previous work has shown increased tissue expression in the whole
adult heart using this delivery method33.

Model creation
Sheep were loaded for 3 days with amiodarone (200 mg PO BID), anesthetized with
thiopentothal (0.5 ml/kg), intubated and ventilated at 15 ml/kg with 2% isoflurane-oxygen,
receiving glycopyrrolate (0.4 mg IV) and prophylactic vancomycin (0.5 g IV) and amiodarone
(150 mg IV drip). Surface ECG was monitored and a sterile left thoracotomy performed with
pericardial cradle creation. A high-fidelity micromanometer-tipped catheter (Millar, Houston,
TX) was placed into the LV. After baseline 2D and 3D echo imaging, a septal MI was produced
by ligating the mid- to distal left anterior descending coronary artery, known to produce
substantial MIs without MR.34 2D echo confirmed that wall motion abnormality involved
approximately one-third of the anteroseptum from apex to base for standardization. In addition
to analgesia, propranolol, 1 mg IV in two doses, was given for evident stress and tachycardia
(>150) upon extubation. Antibiotics (Cephapirin, 0.5 gm IV) and analgesics (Buprenorphine,
0.3 mg BID) were administered for 5 days, and oral amiodarone (200 mg BID) for three.

During repeat sterile thoracotomy at day 30, 3D echo evaluated LV remodeling and function,
with directed TruCut needle biopsies of the noninfarcted myocardium near and remote from
the border zone. At day 90, 3D echo and blood sampling were repeated at thoracotomy,
followed by euthanasia. Animal studies conformed to NIH guidelines (National Research
Council, Washington, DC, 1996) and were IRB-approved.

3D echo and LV function.35

Rotated apical images were obtained at 10-degree intervals with an epicardial 5MHz TEE probe
(Sonos 7500, Philips, Andover, MA), rotated by software and gated to ECG and respiration.
Digital images were analyzed on a workstation with custom programs, by an operator blinded
to treatment assignment. Endocardial surfaces were traced to calculate LV volumes validated
against a 36-crystal sonomicrometer array. Remodeling was quantified in terms of increasing
LV volumes. Regurgitant fraction was calculated as MR-equivalent flow by Transonic flow-
meter, divided by LV ejection volume, with verification of MR flow by pulsed Doppler time-
velocity integral of shunt flow multiplied by shunt cross-sectional area. LV pressure-volume
loops at the initial and final thoracotomies were obtained using Millar catheters and
subendocardial crystals (Sonometrics, London, ON, Canada), with IVC occlusion to obtain
pressure-volume curves and derive preload-recruitable stroke work.36 Crystals were not placed
at day 30 to maximize sterility and survival. Maximal systolic dP/dt was obtained by the high-
fidelity Millar catheter.

Molecular assays
We measured levels of several molecular species associated with remodeling that modulate
cell hypertrophy and death and are responsible for extracellular matrix turnover.9, 10 All protein
assays were performed for each treatment group and stage on each individual sheep separately,
and the results were averaged.
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Calcium cycle
Sarcoplasmic reticulum (SR) membrane was obtained using sucrose gradient centrifugation.
37 Proteins were separated and an immunoblot using monoclonal anti-SERCA2 and anti-
phospholamban (Santa Cruz Biotechnology, Santa Cruz, CA) was performed, normalized to
total protein. Na+/Ca2+ exchanger (NCX) levels were measured by Western blot, using
monoclonal anti-NCX antibodies (Santa Cruz Biotechnology, Santa Cruz, CA).

Pro-hypertrophic and pro-apoptotic cascades
We measured levels of Akt (protein kinase B) and gp130, which are both at their respective
levels (cytosol and membrane) important crossroads in pro-hypertrophic signaling;
phosphorylated (activated) STAT3, an important downstream effector of gp130; and activated
caspase-3, the final common pathway for intra-cellular apoptosis signaling. Western blot
analysis was performed on cell lysates from biopsies at baseline and days 30 and 90. Anti-
gp130, anti-phosphoAkt, anti-phospho STAT3 and anti-activated caspase-338 (Santa Cruz
Biotech-nology, Santa Cruz, CA) were detected with peroxidase-conjugated anti-mouse IgG
and chemiluminescence, with α-actin as housekeeping control. Integrated blot pixel density
was assessed using standard software (ImageJ, NIH) by an operator blinded to treatment
assignments.

Statistics
All values are reported as mean±SD. Statistical analysis used 2-tailed Student’s t-test for
continuous variables compared at specific time-points; the Bonferroni correction was applied
when appropriate. Repeated measures over time were analyzed with repeated-measures
ANOVA (JMP 8, SAS Institute). P<0.05 was considered significant. Inter- and intra-observer
variability for 3D echo-measured LV volumes in our lab were 3.5% as previously reported.9

RESULTS
Infarct size, traced and integrated by 3D echo, was 12–22% of the endocardial surface area,
with a mean of 17±3% (n=12).

Function and volumes
The SERCA2a group had well-maintained preload-recruitable stroke work at 3 months
sacrifice (decrease by 8±10%) vs. a 42±12% decrease with reporter gene controls (p<0.001,
Fig. 2). Peak systolic LV dP/dt followed the same pattern (no change vs. 55% decrease,
p<0.001, Fig. 2). Although 3D echo-derived LVEF was decreased in both groups beginning
with the post-MI baseline, it was better maintained at sacrifice with SERCA2a (35.2±4.0% vs.
26.1±3.5%, p=0.01, Fig. 2). This was accompanied by a lower LVESV with SERCA2a (82.6
±9.6 ml vs 99.4±9.7 ml, p=0 03, Fig. 3); LVEDV, reflecting the volume overload, was not
significantly different at sacrifice (127.8±6.2 ml vs 134.3±9.4 ml, p=NS, Fig. 3).

Although no quantitative assessment of animal well-being could be performed, the animals in
the control group were less active and seemed more short of breath.

Molecular pathways of remodeling
As expected, in the SERCA group there was a very significant increase in SERCA2a protein
levels in both remote and border zones at sacrifice, which was already apparent at 1 month,
follow up, while control sheep demonstrated a sharp reduction in SERCA2a levels at 1 month
follow-up (average integrated density 85.6±15.2 vs 54.2±10.8 p<0.001, Fig. 4) and even more
so at sacrifice (average integrated density 93.6±20.1 vs 34.2±6.3, p<0.001, Fig. 4). Of note, no
significant change was noted in regulatory phospholamban levels (Fig. 4). NCX levels were
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significantly more elevated in the control sheep as compared with the SERCA sheep at
sacrifice, consistent with a more active remodeling process39 (P=0.025, Fig. 5).

SERCA2a sheep showed at 3 months’ sacrifice a 15% rise in anti-apoptotic phospho-Akt vs.
30% reduction with reporter gene (P<0.001, Fig. 5). The sample mean of STAT3 was also 41%
higher at sacrifice with SERCA2a than reporter gene (p<0.001, Fig. 5). In contrast, gp130 fell
by 25%–26% in both groups (p=NS by repeated-measures ANOVA), raising the possibility
that improved contractility blunted the stimulus for pro-hypertrophic compensation, or
alternatively, that SERCA2a over-expression compensates for but does not entirely eliminate
the remodeling drive. Pro-apoptotic activated caspase-3 rose over 5-fold and to a comparable
extent over 1 month in both SERCA2a and reporter gene animals (p=NS, Fig. 5), and decreased
by only 19% from 1 to 3 months, remaining elevated in both groups at sacrifice.

DISCUSSION
A large number of patients with MI develop MR and progress to congestive heart failure. Our
previous results9 have shown that, for a comparable infarct size, the presence of MR-type
volume over-load leads to greater LV dilatation and dysfunction and to more severe changes
at a cellular and molecular level. Molecular changes are biphasic, with initial upregulation and
subsequent exhaustion of pro-hypertrophic and anti-apoptotic pathways that otherwise remain
elevated when MI is not accompanied by MR. Maintained elevation of caspase-3 and
extracellular matrix turnover lead to a failure phenotype with abnormal cellular morphology,
decreased calcium cycling, and reduced sarcoplasmic reticulum Ca+2-ATPase (SERCA2a).9
This reduction was more pronounced in the border zones of the infarction, reflecting a probable
larger element of cell loss through ischemic damages, but was also significant in the remote
zones, possibly reflecting stretch-induced activation of the fetal program in these myocytes,
resulting in diminution of SERCA2a levels. We have also demonstrated the corollary that early
repair of such moderate MR-type volume overload reverses these progressive remodeling
processes, and activates intracellular signals promoting hypertrophy, opposing apoptosis, and
inhibiting matrix proteolysis.10 Manipulating the expression of key proteins and the activity
of specific down-stream signaling pathways involved in cardiac hypertrophy and failure will
allow us to understand their contribution to the disease process.

AAV (adeno-associated virus) is a gene therapy vector that provides gene expression lasting
more than a year in muscle and brain with little or no immune reaction.40–42 SERCA2a was
chosen as transgene because its expression is reduced in our MI+MR model9, and its
overexpression improves contractility21, 23, 43 and might also decrease apoptosis by reducing
intracellular diastolic Ca2+ concentrations.44, 45 In fact, a phase 1 clinical trial using
AAV1.SERCA2a has been completed in patients with severe heart failure showing safety and
positive biological effects (albeit in an open label trial) 46.

In our model, using a percutaneous delivery system for AAV6 encoding SERCA2a, we
managed to secure robust transduction, as manifested by sustained elevation of SERCA2a
levels as compared with a significant reduction in controls. We did not detect a compensatory
increase in inhibitory pospholamban expression. This up-regulation translated into preserved
LV contractility as measured by preload-recruitable stroke work, a relatively load-independent
measure of LV function; LV dP/dt was also preserved, while these measurements where
significantly depressed in the control animals. Morphologically, there was less evidence of
remodeling in the SERCA animals, manifested as relatively preserved LV end-systolic
volumes throughout the experiment. On the other hand, we did not detect a significant change
in activated-caspase3 levels - suggesting that while the net tone in the cell is shifted to anti-
apoptosis, as demonstrated by Akt and STAT3 activation, upregulating SERCA might not
ablate all aspects of the intracellular remodeling cascade. One interesting aspect of the

Beeri et al. Page 6

Circ Heart Fail. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



molecular changes was the effect on NCX expression in our model. An increase in NCX
expression has been observed in a number of models of heart failure and has been associated
with an increased risk of ventricular arrhythmias.47 In our model, NCX was increased in the
control group but was remained at baseline levels with overexpression of SERCA2a. Likewise,
we did not detect increased levels of gp130, as we have previously seen with MR repair;10

however, activated STAT3, downstream from gp130, was significantly increased, suggesting
the possibility of greater activation of gp130-containing cytokine receptors, STAT3 activation
by an alternative pathway, or decreased feedback inhibition. The results suggest that improving
contractility and relaxation is insufficient to reverse the remodeling process completely at a
molecular level. Nonetheless, the improvement in contraction, volumes and intracellular pro-
hypertrophic pathways suggests that SERCA2a upregulation does at least strongly inhibit the
remodeling process. As SERCA2a upregulation has been demonstrated, in different models,
to improve function and retard progression to heart failure,17, 23, 26, 33, 43, 48, 49 our results
are consistent with previously reported data.

This study has several limitations: Ischemic MR affecting a native valve often progressively
increases,11, 50–52 but is inherently linked to the underlying MI and not standardized. Based
on the study motivation, it was critical to separate the two processes of infarction and
regurgitation to determine the incremental role of MR and to do so with a standardized orifice,
which provided stable regurgitant fractions of ~30% throughout the study. In the clinical
situation of the tethered mitral valve, SERCA2a may have an even more pronounced effect by
reducing the severity of this dynamic MR: increased LV contractility and decreased LV
volumes will increase the closing forces and decrease the tethering forces on the mitral valve,
thereby improving coaptation and reducing MR.49 This will be examined in a separate study.
We performed gene delivery 2 weeks before induction of MR+MI. This was done in order to
have an established up-regulation of SERCA2a coincident with the initiation of the remodeling
process, which starts immediately after infarction, to provide a proof of concept about the role
of SERCA2a in this situation. Variations in timing of SERCA2a therapy relative to MR repair
will also be assessed, for example, in the fully dilated remodeling state, as there may be a “point
of no return” beyond which these interventions may be ineffective.53

In conclusion, we have demonstrated that up-regulating SERCA2a in a model of MR+MI may
inhibit the remodeling process, as manifested by ventricular function, volumes, and intra-
cellular pathways of hypertrophy. This may constitute a potentially useful approach to reduce
the vicious cycle of remodeling in ischemic MR.
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Figure 1.
Model of apical MI and independent MR: LV-to-LA shunt (arrows).
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Figure 2.
LV functional parameters: Preload recruitable stroke-work (PRSW), maximal systolic
derivative of pressure development (max dP/dT) and 3D echo-derived LV ejection fraction
(LVEF). A significantly better global LV function is noted in the SERCA (solid lines) group
as compared with controls (dashed lines) (p<0.001 by repeated-measures ANOVA), which is
apparent already at 1 month follow-up (*:P<0.001, #:P=0.002, ¶:P=0.003, $:P=0.01).
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Figure 3.
LV end-systolic and end-diastolic volumes from 3D echo analysis. There is a lower end-systolic
volume at sacrifice in the SERCA group (solid lines, P=0.001 by repeated measures ANOVA)
as compared with controls (dashed lines) while no difference was found in end-diastolic
volumes. (*=P:0.03)

Beeri et al. Page 14

Circ Heart Fail. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Enhanced widespread expression of SERCA2a protein in AAV. SERCA2a (black) sheep at 1
month follow-up and 3 months sacrifice as compared with reduced expression in controls
(white). Note that there was no change in phospholamban levels in both groups. (*:p<0.0005
vs baseline, #:p<0.0001 vs SERCA group at 3 months)
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Figure 5.
Levels of pAKT, STAT3, Caspase3, gp130 and Na+/Ca2+ exchanger (NCX) at baseline, 1
month follow-up and 3 months sacrifice at the remote zone. Note that pAKT and STAT3 levels
are significantly more elevated at sacrifice in the SERCA2a group (solid lines) as compared
with controls (dashed lines), while NCX levels are more elevated significantly in the control
group (P<0.05 by repeated-measures ANOVA). No significant difference between the groups
in caspase3 and gp130 mean levels was detected. (*:P<0.001, #:P<0.03)
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