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ABSTRACT

Motivation: According to current consistency metrics such as
percentage of overlapping genes (POG), lists of differentially
expressed genes (DEGs) detected from different microarray
studies for a complex disease are often highly inconsistent. This
irreproducibility problem also exists in other high-throughput post-
genomic areas such as proteomics and metabolism. A complex
disease is often characterized with many coordinated molecular
changes, which should be considered when evaluating the
reproducibility of discovery lists from different studies.
Results: We proposed metrics percentage of overlapping genes-
related (POGR) and normalized POGR (nPOGR) to evaluate the
consistency between two DEG lists for a complex disease,
considering correlated molecular changes rather than only counting
gene overlaps between the lists. Based on microarray datasets of
three diseases, we showed that though the POG scores for DEG
lists from different studies for each disease are extremely low, the
POGR and nPOGR scores can be rather high, suggesting that the
apparently inconsistent DEG lists may be highly reproducible in
the sense that they are actually significantly correlated. Observing
different discovery results for a disease by the POGR and nPOGR
scores will obviously reduce the uncertainty of the microarray studies.
The proposed metrics could also be applicable in many other
high-throughput post-genomic areas.
Contact: guoz@ems.hrbmu.edu.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The reproducibility problem is one of the fundamental issues
in validation of high-throughput biological discoveries (Marshall,
2004; Ransohoff, 2004; Ransohoff, 2005) because it is often
considered that ‘a study that cannot be reliably reproduced has
little value’ (Klebanov et al., 2007). However, lists of differentially
expressed genes (DEGs) detected from different microarray studies
for a disease are often highly inconsistent (Ein-Dor et al., 2005;
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Michiels et al., 2005; Tan et al., 2003), which frequently raises
doubts about the reliability of microarrys (Ein-Dor et al., 2005;
Frantz, 2005; Miklos and Maleszka, 2004). It has been suggested
that many factors such as large biological variations, small sample
sizes (Ein-Dor et al., 2005; Ein-Dor et al., 2006; Zhang et al.,
2008) and improper statistical methods (Klebanov et al., 2007; Shi
et al., 2006; Tong et al., 2006) may produce inconsistent DEG
lists for a disease. Recently, we demonstrated that in the presence
of small technical noise and wide differential expressions in a
cancer, it is still highly likely that the observed percentage of
overlapping genes (POG) of DEG lists from two studies is low,
although each DEG list may comprise mostly true DEGs (Zhang
et al., 2008).

Up to now, the concept of reproducibility of DEG lists for a
disease is often intuitively defined, using terms such as concordance
(Shi et al., 2006), agreement (Shi et al., 2006), stability (Ein-Dor
et al., 2006; Qiu et al., 2006) or rediscovery rate (Xu and Li, 2003).
Most metrics for evaluating the consistency between two gene lists,
including the frequently used POG (Ein-Dor et al., 2006; Irizarry
et al., 2005; Shi et al., 2006), rely on counting gene overlaps and
treat genes as if they would be completely independent with each
other. However, a complex disease is often characterized with many
coordinated molecular changes (Klebanov et al., 2006; Qiu et al.,
2005), which should be taken into account when evaluating whether
different studies have actually detected the same or similar results
for a disease.

In this article, considering the correlated molecular changes in
a complex disease, we propose a novel metric termed percentage
of overlapping genes-related (POGR) and its normalized formation
nPOGR for evaluating consistency between two DEG lists for the
disease. Obviously, to be utilized as a disease marker, a DEG
should have a steady expression pattern in the disease. Thus, we
also consider genes’ upregulated or downregulated status when
evaluating their reproducibility. Based on microarray datasets for
three diseases, we show that though there are few genes shared
between the DEG lists from different studies for a disease, most
of the POGR and nPOGR scores are rather high, suggesting high
reproducibility of the DEG lists in the sense that the apparently
inconsistent DEG lists are significantly correlated.After normalizing
the effects of list lengths and random data correlations in datasets,
the nPOGR metric may be more appropriate for comparing the
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consistency levels of DEG lists with different lengths and from
different studies.

2 METHODS

2.1 Datasets
For prostate cancer, the cDNA microarray data consist of 62 tumors
and 41 normal prostate samples (Lapointe et al., 2004), while the oligo
microarray (Affymetrix U95Av2) data contain 52 tumor and 50 non-tumor
samples (Singh et al., 2002). A total of 6797 genes were measured by
both platforms. For lung cancer, the cDNA microarray data consist of 13
squamous cell lung cancer and five normal lung specimens (Garber et al.,
2001), while the data by Affymetrix human U95A oligonucleotide arrays
consist of 21 squamous cell lung carcinomas and 17 normal lung specimens
(Bhattacharjee et al., 2001). A total of 5530 genes were measured by
both platforms. The two datasets for Duchenne muscular dystrophy (DMD)
are based on Affymetrix (Santa Clara, CA) HG-U95Av2 and HG-U133A
GeneChip, respectively. One dataset contains 24 samples from 12 DMD
patients and 12 unaffected controls (Haslett et al., 2002) and the other consists
of 36 samples from 22 DMD patients and 14 controls (Pescatori et al., 2007).
A total of 8572 genes were measured by both platforms. For each disease,
we only analyze the genes that are present on both platforms.

The cDNA data is log2 transformed and then normalized as median 0 and
standard deviation 1 per array, as adopted in Oncomine database (Rhodes
et al., 2007). The CloneIDs with missing rates above 20% are deleted, and
the other missing values are replaced by using the kNN imputation algorithm
(k = 15) (Troyanskaya et al., 2001). The Affymetrix GeneChip data are
preprocessed by RMA (Robust Multi-array Analysis). The most recent (July,
2008) SOURCE database (Diehn et al., 2003) is used for annotating CloneIDs
to GeneIDs.

2.2 DEGs and co-expression gene pairs
DEGs are most commonly defined as genes with non-zero expression
difference between two groups. Usually, each gene is tested against the
null hypothesis of equal means of expression levels across groups, while
the multiple tests are controlled by false discovery rate (FDR) (Benjamini
and Hochberg, 1995) loosely defined as the expected percentage of false
positives among the claimed DEGs. When using the conventional t-test to
select DEGs, small per-gene variances could make genes with small fold-
changes statistically significant. To deal with this problem, Tusher et al.
(2001) proposed the significance analysis of microarrays (SAM) method to
select DEGs by adding a small ‘fudge factor’ to the denominator of the t-test
statistic as follows:

d(i)= x1(i)−x2(i)

s(i)+s0
(1)

s(i)=
√

1/n1 +1/n2

n1 +n2 −2
×

{∑
[x1(i)−x1(i)]2 +

∑
[x2(i)−x2(i)]2

}
(2)

where x1(i) and x2(i) are the expression vectors of gene i in n1 disease
samples and n2 control samples, respectively. The ‘fudge factor’ s0 is chosen
to minimize the coefficient of variance of d(i).

Because the FDR estimation procedure of SAM might be overly
conservative (Xie et al., 2005; Zhang, 2007), we apply the FDR estimation
method suggested by (Zhang, 2007) to the SAM program (samr_1.25 R
package).

Similarly as Carter et al. (2005) did, in each dataset, we estimate the
random correlation distribution by independently permuting the sample
labels of each gene and then compute the Pearson correlation coefficients
for all the gene pairs. For an observed correlation r between two genes
in the original data, the P-value is calculated as the percentage of the
permutated correlations exceeding r. The FDR control procedure proposed
by (Benjamini and Hochberg, 1995) is used to select gene pairs with
significantly positive correlation.

2.3 POG and POGR scores
The POG metric is usually used to measure the consistency of gene lists
by simply counting overlapped genes between the lists without considering
the regulation directions of genes (Chen et al., 2007; Shi et al., 2005). We
can evaluate reproducibility of DEG lists in such a broad sense by just
counting the overlapped and related genes, as briefly shown in ‘Results’
section (Section 3.3). However, a DEG for a disease should be regulated
in the same direction (up-regulated or down-regulated) in different datasets.
Thus, strictly, we define a gene is shared by two gene lists only if it is
both overlapped and regulated in the same direction in both datasets. In the
following text, we mainly analyze the reproducibility of gene lists with such
a strict definition.

Suppose k genes are shared between list 1 with length l1 and list 2 with
length l2, then the POG score from list 1 to list 2 is POG12 = k/l1, and the
score from list 2 to list 1 is POG21 = k/l2.

Then, considering the correlated molecular changes in a disease, we define
the POGR metric to evaluate the consistence between two DEG lists. Let
Or12 (or Or21) represent the number of genes in list 1 (or list 2) which are
not shared but significantly positively correlated with at least one gene in
list 2 (or list 1), then the POGR scores are calculated as:

POGR12 = (k+Or12)/l1 or POGR21 = (k+Or21)/l2 (3)

Both the POG and POGR scores take values ranging from 0 to 1. Usually,
a high POG or POGR score is desired for two discovery lists for a disease.
However, both metrics are dependent on the list lengths (see ‘Results’
section) and thus lack statistical significance. Also, when expressions of
genes are widely correlated in a disease, the POGR score between two
gene lists randomly extracted from the original datasets may be high. To
partially solve this problem, for an obtained POGR score, we can estimate
the probability (P-value) of observing the score in the original datasets by
random chance. The null hypothesis is that the POGR score of two DEG lists
(with lengths l1 and l2) is the same as the expected score for pairs of gene
lists (with lengths l1 and l2) randomly extracted from the original datasets.
Here, the P-value is calculated as, among the scores of the 10 000 random
pairs of gene lists, the proportion of the scores exceeding the observed one.
Similarly to the basic idea of gene set enrichment analysis (GSEA) (Klebanov
et al., 2007; Subramanian et al., 2005), which tests whether the members of
a gene set are randomly distributed throughout all ranked genes according
to correlations of their expressions with the sample labels, we test whether
the expression correlations are randomly distributed throughout all genes or
primarily among DEGs.

Here, two genes are defined as a correlated pair if and only if they
are significantly positively correlated in both datasets. We note that other
choices exist. For example, for a DEG list reported in a previous study,
it is reasonable to evaluate its reproducibility in a new study by only
requiring significant correlation in the new dataset, especially when the
original data of the previous study are unavailable. The negatively correlated
gene pairs are excluded because we specifically require that the related
genes should be regulated in the same direction. However, negatively
correlated genes may be also biologically meaningful, which warrants further
investigation.

2.4 Normalization of the POG and POGR scores
Because the POG and POGR scores depend on list length, both metrics
cannot be applied to compare the consistence levels of pairs of gene lists
with different lengths. Thus, we propose an approach to normalize the
effect of list lengths on POG and POGR scores. Additionally, we also
normalize the POGR scores to reduce the effects of general data correlations
in datasets.

For two lists (with lengths l1 and l2) randomly extracted from two datasets,
suppose E(k) is the expected number of their shared genes, then the POG
expectation is E(POG12)= E(k)/l1 or E(POG21)= E(k)/l2. Similarly to the
kappa metric (Fleiss, 1971), we normalize the POG score between two DEG
lists (with lengths l1 and l2) as the proportion of the observed scores beyond
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chance to the corresponding maximum potential scores beyond chance as
follows:

nPOG12 = POG12 −E(POG12)

1−E(POG12)
= k−E(k)

l1 −E(k)

nPOG21 = POG21 −E(POG21)

1−E(POG21)
= k−E(k)

l2 −E(k)
(4)

where k is the observed number of the shared genes between the two DEG
lists. The E(POG12) [or E(POG21)] can be estimated by the average of the
scores for10 000 pairs of random lists (with lengths l1 and l2).

We normalize the POGR in a similar way. For two lists (with lengths l1
and l2) randomly extracted from two datasets, suppose E(Or12) [or E(Or21)]
is the expected number of genes in list 1 (or list 2), which are not
shared but significantly correlated with at least one gene in list 2 (or
list 1), then the POGR score expected by random chance is E(POGR12)=
[E(k) + E(Or12)]/l1 [or E(POGR21)= [E(k)+E(Or21)]/l2]. The POGR score
can be normalized as:

nPOGR12 = POGR12 −E(POGR12)

1−E(POGR12)
= k+Or12 −E(k)−E(Or12)

l1 −E(k)−E(Or12)

nPOGR21 = POGR21 −E(POGR21)

1−E(POGR21)
= k+Or21 −E(k)−E(Or21)

l2 −E(k)−E(Or21)
(5)

where E(Or12) [or E(Or21)] can be estimated as the average number of genes
in list 1 (or list 2). which are not shared but significantly positively correlated
with genes in list 2 (or list 1) in 10 000 pairs of gene lists (with lengths
l1 and l2) randomly extracted from two datasets.

When the POGR score of two DEG lists (with lengths l1 and l2) is less than
the expected score for pairs of gene lists (with lengths l1 and l2) randomly
extracted from the original datasets, the nPOGR score will be negative. In
this situation, we set the score as 0. Thus, the nPOGR score achieves 0 if
and only if POGR ≤E(POGR) < 1. It achieves 1 if and only if POGR = 1
and E(POGR) < 1. Note that the score is invalid when E(POGR) = 1, such
as in the extreme situation that all genes are significantly correlated in both
datasets for a disease. However, this does not appear in the datasets for
the three diseases under this study and would rarely appear in other real
applications. Because an nPOGR score is a ratio, it is better to interpret
the score together with the maximum potential agreement beyond chance
[1 – E(POGR)] it can achieve for pairs of lists with the same lengths from
the original datasets.

We can estimate the significance level (P-value) for an observed nPOGR
score of two DEG lists (with lengths l1 and l2) to test the null hypothesis
that this score is the same as the expected score for pairs of gene lists (with
lengths l1 and l2) randomly extracted from the original datasets. This P-value
can be calculated from the same set of 10 000 pairs of random gene lists
for calculating the P-value of the corresponding POGR score. According to
formula (5), for a pair of gene lists randomly extracted from the original
datasets, its nPOGR score will be larger than the observed nPOGR score if
and only if its POGR score is larger than the observed POGR score, since
the E(POGR) is a constant estimated from the 10 000 random gene list pairs.
Thus, estimated as the proportion of the random nPOGR scores exceeding
the observed nPOGR score, the P-value of the observed nPOGR score is the
same as the P-value of the corresponding POGR score.

After excluding the effects of list lengths and general data correlations on
chance agreement, the nPOGR score may be more appropriate for comparing
the consistency levels of DEG lists with different lengths and from different
studies. On the other hand, because the nPOGR score measures the relative
agreement beyond chance, it should be necessary to use the POGR scores
to reflect the apparent agreement of DEG lists based on the original data
correlation.

3 RESULTS

3.1 Reproducibility of studies for three diseases
For prostate cancer, by SAM with 1% FDR control, we detect 1054
and 1343 DEGs in the datasets of oligo and cDNA microarrays,

respectively. The reproducibility of the two studies is measured in
two directions. In one direction, for the list of DEGs detected in the
oligo microarray data, we measure its reproducibility in the cDNA
microarray data as the percentage of these DEGs, which also appear
in the cDNA result. The POG12 score is as low as 38% and the
nPOG12 score is only 30%, intuitively suggesting that most of the
results from the oligo microarray data are irreproducible in the cDNA
microarray result. Then, considering significantly co-expressed gene
pairs with 0.1% FDR control, the POGR12 score achieves 90%,
intuitively suggesting that the DEG list from the oligo microarray
data may be highly reproducible in the cDNA microarray data
when considering correlated molecular changes. The corresponding
nPOGR is 74%, indicating that after subtracting the POGR score by
random chance, the observed score achieves a high proportion of
the maximum potential agreement beyond chance (0.38). In another
direction, for the DEG list detected in the cDNA data, we measure
its reproducibility in the oligo microarray data as the percentage of
the detected DEGs, which also appear in the oligo microarray result.
For the full DEG lists, although the POG21 score is only 30% and the
nPOG21 is as low as 23%, the POGR21 score reaches 90% and the
nPOGR is as high as 76%, with the maximum potential agreement
value as 0.40.

Similar results can be observed for the lists of the top-ranked
DEGs from the two studies. For example, although the two lists of
the top-10 DEGs from the two datasets share only three genes, the
POGR12 score is as high as 90%. The corresponding nPOGR12 is
89%, reaching a high proportion of the maximum potential value of
0.94. In another direction, both the POGR21 and nPOGR21 scores
are 100%, indicating that the list of the top 10 DEGs from the oligo
microarray data is fully reproducible in the cDNA microarray data
when considering correlated molecular changes.

Then, we study the reproducibility of two relatively small-scaled
experiments for lung cancer. By SAM with 1% FDR control, we
detect 2157 DEGs in the oligo microarray data with 38 samples
and only 336 DEGs in the cDNA microarray data with 18 samples.
Finding significant correlations with 0.1% FDR control, most of the
POGR and nPOGR scores are low and only slightly higher than
the corresponding POG and nPOG scores (Table 1). Loosening
the FDR level to 5% for significant correlations, the DEG lists
from the cDNA microarray data are highly reproducible in the
larger oligo microarray data, with all the POGR scores and most
of the corresponding nPOGR scores reaching above 90% (all with
P<2×10−3) (see Supplementary Table S1). In another direction,
all the POGR and nPOGR scores for the lists of the top-ranked 10,
50 and 100 DEGs increase to above 70%. However, for the list of all
the 2157 DEGs from the larger oligo microarray data, the POGR12
and nPOGR12 scores measuring its reproducibility in the smaller
cDNA microarray data are only 40% and 34%, respectively. This
could be explained by the fact that the smaller samples of the cDNA
microarray data may have insufficient statistical power in identifying
enough DEGs to characterize the disease.

Finally, for a non-cancer disease (DMD), by SAM with 1% FDR
control, we detect 805 and 800 DEGs in two datasets, respectively.
For the full lists, the POG and nPOG scores are at a rather high
level around 50%. Considering significant correlations with 0.1%
FDR control level, the POGR and nPOGR scores in both directions
increase to above 60%. Notably, for the top-ranked DEG lists, most
POGR and nPOGR scores are above 80%, much higher than the
corresponding POG and nPOG scores (Table 1). For example, for the
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Table 1. Consistence scores between DEG lists for the same disease when using 0.1% FDR control for significant correlations

Datasets DEGs POG nPOG POGR nPOGR Maxa DEGs POG nPOG POGR nPOGR Maxa

From 102 samples to 103 samplesb From 103 samples to 102 samplesb

Prostate
cancer

Top 10 0.30 0.30 0.90 0.89 0.94 Top 10 0.30 0.30 1.00 1.00 0.94
Top 50 0.14 0.14 0.78 0.69 0.70 Top 50 0.14 0.14 0.92 0.89 0.73
Top100 0.15 0.14 0.80 0.66 0.60 Top100 0.15 0.14 0.94 0.90 0.63
1054 vs. 1343 0.38 0.30 0.90 0.74 0.38 1343 vs. 1054 0.30 0.23 0.90 0.76 0.40

From 38 samples to 18 samplesb From 18 samples to 38 samplesb

Lung
cancer

Top 10 0.00 0.00 0.00 0.00 1.00 Top 10 0.00 0.00 0.00 0.00 1.00
Top 50 0.20 0.19 0.20 0.19 0.99 Top 50 0.20 0.19 0.20 0.19 0.99
Top100 0.31 0.30 0.32 0.31 0.99 Top100 0.31 0.30 0.31 0.30 0.99
2157 vs. 336 0.13 0.09 0.13 0.09 0.96 336 vs. 2157 0.82 0.75 0.82 0.75 0.72

From 24 samples to 36 samplesb From 36 samples to 24 samplesb

DMD
Top 10 0.20 0.20 0.70 0.70 1.00 Top 10 0.20 0.20 0.80 0.80 1.00
Top 50 0.42 0.42 0.92 0.92 0.99 Top 50 0.42 0.42 0.80 0.80 0.99
Top100 0.54 0.54 0.94 0.94 0.98 Top100 0.54 0.54 0.85 0.85 0.98
805 vs. 800 0.53 0.50 0.72 0.68 0.89 800 vs. 805 0.53 0.49 0.65 0.61 0.89

aMax means the maximum potential agreement beyond chance (see ‘Methods’ section).
bTwo datasets for each disease are marked by their sample sizes. ‘From dataset1 to dataset2’ means that the reproducibility of a DEG list detected in dataset1 is evaluated in dataset2.

list of the top 10 DEGs from the dataset with 24 samples, the POG
and nPOG scores for evaluating its reproducibility in the dataset
with 36 samples are both 20%, while the corresponding POGR and
nPOGR scores are both 70%. In another direction, the corresponding
POGR and nPOGR scores are both 80%. Thus, the DEG lists from
one of the two studies are highly reproducible in another from the
view of correlated molecular changes.

Here, all the POG and POGR scores in Table 1 are significantly
higher than the average POG and POGR scores of the random
list pairs extracted from the corresponding original datasets
(P<1×10−4).

3.2 Factors affecting the scores
As shown in Figure 1, for 10 000 pairs of lists with the same length
randomly selected from each dataset, both of the average POG and
POGR scores increase as the list length increases.

On the other hand, both the corresponding nPOG and nPOGR
scores fluctuate around zero as the list length increases (Fig. 1). Thus,
compared with their non-normalized counterparts, the normalized
metrics nPOG and nPOGR are more stable and independent of
the list lengths and general data correlations in the datasets. For
randomly extracted lists, when using less stringent FDR control
levels for selecting significant correlations, the nPOGR scores are
still around zero though the POGR scores may increase (Fig. 2).

As shown in Figure 3, in each of the datasets for prostate cancer,
the correlation distribution for all gene pairs is similar to the
correlation distribution for DEG pairs selected by SAM with 1%
FDR control, indicating that the expressions of genes in the prostate
cancer data tend to be widely correlated. In such a situation,
the nPOGR scores decrease obviously from the POGR scores
(Table 1). In the two datasets for lung cancer, the distributions of
the correlations of DEG pairs are distinct from the distributions

Fig. 1. The effect of list lengths on POG, nPOG, POGR and nPOGR. The
x-axis represents list lengths ranging from 100 to 2000, and the y-axis
represents the average scores of 10 000 pairs of gene lists randomly selected
from the original datasets. Here, 0.1% FDR level is used for detecting
significant correlations. The legend for all the six subgraphs is the same
as shown within the last one.
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Fig. 2. The effect of FDR control levels on POG, nPOG, POGR and nPOGR.
The x-axis represents FDR cotnrol levels ranging from 0.01% to 5%. The
y-axis represents the average scores of 10 000 pairs of gene lists with a given
length (1000) randomly selected from the original datasets. The legend for
all the six subgraphs is the same as shown within the last one.

of all gene pairs, indicating that the expression correlations in these
datasets are largely limited to DEGs. Similar results are observed
in the two datasets for DMD. In this situation that most non-DEGs
are not significantly correlated, the nPOGR scores decrease slightly
from the POGR scores (Table 1).

3.3 Comparison between DEG lists from different
diseases

Finally, we analyze the consistence of DEG lists from datasets for
different diseases, using the larger dataset for each disease. The
DMD dataset shares a total of 9200 and 8495 genes with the prostate
and lung cancer datasets, respectively, and the two cancer datasets
have 6797 genes in common. Similarly to the above analysis, DEGs
are selected by SAM with 1% FDR control and the correlated gene
pairs are determined with 0.1% FDR control.

As shown in Table 2, the POGR and nPOGR scores of DEG list
pairs from different diseases are obviously much smaller than the
scores from the same disease. For example, the nPOGR score is 0
for the full DEG lists from prostate and DMD, while the nPOGR
score is 74% for the full DEG lists from two prostate cancer datasets
and 68% for the full DEG lists from two DMD datasets. For DEG
lists from a cancer dataset and a DMD dataset, most of the POG and
POGR scores are not much different from the scores for gene lists
randomly selected from the original datasets (P>1%). When using
looser FDR control levels for selecting correlated genes, the nPOGR

Fig. 3. The distributions of the PCC of expressions of gene pairs in three
pairs of datasets. The legend for all the six subgraphs is the same as shown
within the last one.

scores of DEG lists from DMD and cancer still fluctuate around zero
(Supplementary Table S2).

Notably, the nPOGR scores between the DEG lists from the two
cancers are higher than the scores between DMD and cancer (Table 2
and Supplementary Table S2), suggesting that the expression
patterns of the altered genes in different cancers may be more
consistent. For example, between the full DEG lists from prostate
and lung cancer, the nPOGR12 score is 15% and the corresponding
POGR12 score is 35%, which is significantly higher than the average
score of randomly selected lists.

As mentioned in ‘Methods’ section (Section 2.3), we can also
evaluate the reproducibility of DEG lists in a broad sense by just
counting the overlapped and correlated genes, without regulation
direction requirement. Calculated similarly as the approaches
described in ‘Methods’ section, for DEG lists selected from the
datasets for the same disease, all the scores are almost unchanged
(Supplementary Table S3 and Table S4), reflecting that DEGs
from the same disease are regulated in a similar way. However,
interestingly, for DEG lists from the cancer and DMD datasets,
some scores are unexpectedly high (Supplementary Table S5 and
Table S6), especially when using less stringent FDR control levels
for selecting correlated gene pairs. To understand these surprising
results, we find that the full DEG list from DMD are non-randomly
overlapped with the full DEG list from the prostate cancer data (POG
= 30%, P<1×10−4) as well as the full DEG list from the lung
cancer data (POG = 53%, P<1×10−4), indicating that many genes
(DEGs) disturbed in DMD are also differentially expressed in cancer.
Without the requirement for regulation direction, the overlapped
DEGs between DMD and cancer tend to be correlated with other
DEGs in each disease and thus will introduce higher POGR as well
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Table 2. Consistence scores between DEG lists for different diseases when using 0.1% FDR control for significant correlations

Datasets DEGs POG nPOG POGR nPOGR Maxa DEGs POG nPOG POGR nPOGR Maxa

From Prostate to DMDb From DMD to Prostateb

Prostate
vs.
DMD

Top 10 0.00 0.00 0.00 0.00 0.98 Top 10 0.00 0.00 0.00 0.00 0.98
Top 50 0.02 0.02 0.04 0.00 0.93 Top 50 0.02 0.02 0.04 0.00 0.93
Top100 0.01 0.00 0.05 0.00 0.89 Top100 0.01 0.00 0.06 0.00 0.89
1842 vs. 801 0.05 0.00 0.16 0.00 0.68 801 vs. 1842 0.11 0.01 0.37 0.00 0.52

From Lung to DMDb From DMD to Lungb

Lung
vs.
DMD

Top 10 0.00 0.00 0.00 0.00 1.00 Top 10 0.00 0.00 0.00 0.00 1.00
Top 50 0.00 0.00 0.00 0.00 1.00 Top 50 0.00 0.00 0.00 0.00 1.00
Top100 0.00 0.00 0.00 0.00 0.99 Top100 0.00 0.00 0.00 0.00 0.99
3303 vs. 797 0.05 0.00 0.05 0.00 0.95 797 vs. 3303 0.21 0.02 0.21 0.02 0.81

From Prostate to Lungb From Lung to Prostateb

Prostate
vs.
lung

Top 10 0.00 0.00 0.00 0.00 1.00 Top 10 0.00 0.00 0.00 0.00 1.00
Top 50 0.02 0.02 0.02 0.02 1.00 Top 50 0.02 0.02 0.02 0.02 1.00
Top100 0.04 0.03 0.04 0.03 0.99 Top100 0.04 0.03 0.04 0.03 0.99
1353 vs. 2763 0.35 0.15 0.35 0.15 0.77 2763 vs. 1353 0.17 0.06 0.17 0.07 0.89

Indicated as in Table 1.

as nPOGR scores. However, when considering regulation directions
of genes, all the scores become rather low, suggesting that the
genes differentially expressed in different diseases may be regulated
in different ways. Thus, it is important to consider the regulation
directions of DEGs when evaluating their reproducibility.

4 DISCUSSION
Intuitively, a high POG score is expected for two studies for a
disease. Similarly, a high POGR score suggests apparently high
reproducibility of DEG lists in the sense that different studies have
actually detected similar results for a disease. Because both POG and
POGR scores are dependent on list lengths, they cannot be simply
used to compare the reproducibility of gene lists with different
lengths. Statistically, for each obtained POG or POGR score, we
can calculate the P-value of observing the score in random lists
from the original data, which may help interpret the intuitive score.

However, even a small P-value for a POG or POGR score cannot
guarantee a high percentage of shared genes between two lists. By
normalizing the effects of list length and correlation distribution in
datasets, the proposed nPOGR metric suggests a more appropriate
way for comparing the reproducibility of gene lists with different
lengths and from different studies.

As previously demonstrated by us (Zhang et al., 2008), though
DEG lists from current small-scaled microarray studies may only
capture a small fraction of DEGs in a disease and thus show low POG
scores, each separately determined list may comprise mostly true
DEGs. Usually, the global expression changes of genes in a disease
may introduce great uncertainty to the findings at the individual
genes level. Under such a situation, even if there are many ‘true’
DEGs in a disease, we may be only interested in analyzing the
most significant ones. The proposed POGR metric is especially
helpful for evaluating such short lists of interesting genes. It should

be noted that distinct methods for selecting DEGs, such as SAM
(Tusher et al., 2001), analysis of variance (ANOVA) (Hardeo and
Mohammed, 2000) and empirical Bayes with t-statistic (Efron et al.,
2001; Oshlack et al., 2007), may capture different statistical aspects
of expression changes and contribute to the observed inconsistency
between the derived DEGs (Jeffery et al., 2006; Qiu et al., 2006).
Thus, it warrants further investigation to study the reproducibility
of DEG lists found by different DEG selection approaches.

At the functional module level, the strikingly inconsistent gene
lists generated in different experiments for a disease could be rather
functionally consistent (Guo et al., 2006; Hosack et al., 2003;
Zhu et al., 2007). Specifically, we have demonstrated functional
modules related to a disease could be captured by only a small
fraction of DEGs in the disease (Yang et al., 2008). Therefore,
similarly to POGR metric, a metric considering gene overlaps from
the view of functional similarity will probably provide another way
for evaluating the reproducibility of the apparently inconsistent
discoveries in microarray studies, which deserves our future work.
Other metrics or views could be considered for observing different
discovery results for a disease. Notably, Mao et al (2009) showed
that the discriminating genes identified in a study may preserve
their disease discriminating ability in another study though these
genes might not be selected independently in the later dataset
because they might not be the optimum ones in both studies. Their
result implies high concordance of DNA microarrays by the signals
and classifier transferability of the discriminating genes, rather
than simply relying on counting gene overlaps. This concept is
somewhat similar to ours. However, our proposed metrics should
be more statistically interpretable and applicable in classical studies
on evaluating differential gene expressions in diseases.

Finally, we note that the irreproducibility problem of finding
disease markers also exists in other post-genomic areas such
as proteomics (Ransohoff, 2005), metabolismics (David I. and
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Douglas B., 2006) and large-scale screens for cancer mutations
(Chen et al., 2007; Frantz, 2005). The apparently inconsistent
discoveries generated in these post-genomic areas could also be
evaluated by considering correlated disease markers. Because this
problem is of fundamental importance in the field of systems
biology, it deserves our future researches.
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