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ABSTRACT

The multilocus conditional sampling distribution (CSD) describes the probability that an additionally
sampled DNA sequence is of a certain type, given that a collection of sequences has already been observed.
The CSD has a wide range of applications in both computational biology and population genomics analysis,
including phasing genotype data into haplotype data, imputing missing data, estimating recombination
rates, inferring local ancestry in admixed populations, and importance sampling of coalescent genealogies.
Unfortunately, the true CSD under the coalescent with recombination is not known, so approximations,
formulated as hidden Markov models, have been proposed in the past. These approximations have led to a
number of useful statistical tools, but it is important to recognize that they were not derived from, though
were certainly motivated by, principles underlying the coalescent process. The goal of this article is to
develop a principled approach to derive improved CSDs directly from the underlying population genetics
model. Our approach is based on the diffusion process approximation and the resulting mathematical
expressions admit intuitive genealogical interpretations, which we utilize to introduce further approx-
imations and make our method scalable in the number of loci. The general algorithm presented here
applies to an arbitrary number of loci and an arbitrary finite-alleles recurrent mutation model. Empirical
results are provided to demonstrate that our new CSDs are in general substantially more accurate than
previously proposed approximations.

THE probability of observing a sample of DNA
sequences under a given population genetics

model—which is referred to as the sampling probability
or likelihood—plays an important role in a wide range
of problems in a genetic variation study. When recom-
bination is involved, however, obtaining an analytic
formula for the sampling probability has hitherto re-
mained a challenging open problem (see Jenkins and
Song 2009, 2010 for recent progress on this problem).
As such, much research (Griffiths and Marjoram

1996; Kuhner et al. 2000; Nielsen 2000; Stephens and
Donnelly 2000; Fearnhead and Donnelly 2001; De

Iorio and Griffiths 2004a,b; Fearnhead and Smith

2005; Griffiths et al. 2008; Wang and Rannala 2008)
has focused on developing Monte Carlo methods on
the basis of the coalescent with recombination (Griffiths

1981; Kingman 1982a,b; Hudson 1983), a well-established
mathematical framework that models the genealogical
history of sample chromosomes. These Monte Carlo-based
full-likelihood methods mark an important develop-
ment in population genetics analysis, but a well-known
obstacle to their utility is that they tend to be com-
putationally intensive. For a whole-genome variation
study, approximations are often unavoidable, and it is

therefore important to think of ways to minimize the
trade-off between scalability and accuracy.

A popular likelihood-based approximation method
that has had a significant impact on population genetics
analysis is the following approach introduced by Li and
Stephens (2003): Given a set F of model parameters
(e.g., mutation rate, recombination rate, etc.), the joint
probability p(h1, . . . , hn jF) of observing a set {h1, . . . , hn}
of haplotypes sampled from a population can be decom-
posed as a product of conditional sampling distribu-
tions (CSDs), denoted by p,

pðh1; . . . ; hn jFÞ
¼ pðh1jFÞ3 pðh2 j h1;FÞ3 . . . 3 pðhn j h1; . . . ; hn�1;FÞ;

ð1Þ
where p(hk11 jh1, . . . , hk, F) is the probability of an
additionally sampled haplotype being of type hk11, given
a set of already observed haplotypes h1, . . . , hk. In the
presence of recombination, the true CSD p is unknown,
so Li and Stephens proposed using an approximate CSD
p̂ in place of p, thus obtaining the following approxi-
mation of the joint probability:

pðh1; . . . ; hn jFÞ
� p̂ðh1jFÞ3p̂ðh2 j h1;FÞ3 . . . 3 p̂ðhn j h1; . . . ; hn�1;FÞ:

ð2Þ
Li and Stephens referred to this approximation as the
product of approximate conditionals (PAC) model. In
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general, the closer p̂ is to the true CSD p, the more
accurate the PAC model becomes. Notable applications
and extensions of this framework include estimating
crossover rates (Li and Stephens 2003; Crawford et al.
2004) and gene conversion parameters (Gay et al. 2007;
Yin et al. 2009), phasing genotype data into haplotype
data (Stephens and Scheet 2005; Scheet and Stephens

2006), imputing missing data to improve power in as-
sociation mapping (Stephens and Scheet 2005; Li

and Abecasis 2006; Marchini et al. 2007; Howie et al.
2009), inferring local ancestry in admixed populations
(Price et al. 2009), inferring human colonization his-
tory (Hellenthal et al. 2008), inferring demography
(Davison et al. 2009), and so on.

Another problem in which the CSD plays a funda-
mental role is importance sampling of genealogies
under the coalescent process (Stephens and Donnelly

2000; Fearnhead and Donnelly 2001; De Iorio

and Griffiths 2004a,b; Fearnhead and Smith 2005;
Griffiths et al. 2008). In this context, the optimal
proposal distribution can be written in terms of the CSD
p (Stephens and Donnelly 2000), and as in the PAC
model, an approximate CSD p̂ may be used in place of
p. The performance of an importance sampling scheme
depends critically on the proposal distribution and there-
fore on the accuracy of the approximation p̂. Often
in conjunction with composite-likelihood frameworks
(Hudson 2001; Fearnhead and Donnelly 2002), im-
portance sampling has been used in estimating fine-scale
recombination rates (McVean et al. 2004; Fearnhead

and Smith 2005; Johnson and Slatkin 2009).
So far, a significant scope of intuition has gone into

choosing the approximate CSDs used in these problems
(Marjoram and Tavaré 2006). In the case of completely
linked loci, Stephens and Donnelly (2000) suggested
constructing an approximation p̂SDðhk11jh1; . . . ; hk ;FÞ
by assuming that the additional haplotype hk11 is an
imperfect copy of one of the first k haplotypes, with
copying errors corresponding to mutation. Fearnhead

and Donnelly (2001) generalized this construction to
include crossover recombination, assuming that the hap-
lotype hk11 is an imperfect mosaic of the first k haplotypes
(i.e., hk11 is obtained by copying segments from h1, . . . , hk,
where crossover recombination can change the haplo-
type from which copying is performed). The associated
CSD, which we denote by p̂FD, can be interpreted as a
hidden Markov model and so admits an efficient dy-
namic programming solution. Finally, Li and Stephens

(2003) proposed a modification to Fearnhead and
Donnelly’s model that limits the hidden state space,
thereby providing a computational simplification; we
denote the corresponding approximate CSD by p̂LS.

Although these approaches are computationally ap-
pealing, it is important to note that they are not derived
from, though are certainly motivated by, principles un-
derlying typical population genetics models, in particu-
lar the coalescent process (Griffiths 1981; Kingman

1982a,b; Hudson 1983). The main objective of this
article is to develop a principled technique to derive an
improved CSD directly from the underlying population
genetics model. Rather than relying on intuition, we base
our work on mathematical foundation. The theoretical
framework we employ is the diffusion process. De Iorio

and Griffiths (2004a,b) first introduced the diffusion-
generator approximation technique to obtain an ap-
proximate CSD in the case of a single locus (i.e., no
recombination). Griffiths et al. (2008) later extended
the approach to two loci to include crossover recombi-
nation, assuming a parent-independent mutation model
at each locus. In this article, we extend the framework to
develop a general algorithm that applies to an arbitrary
number of loci and an arbitrary finite-alleles recurrent
mutation model.

Our work can be summarized as follows. Using the
diffusion-generator approximation technique, we de-
rive a recursion relation satisfied by an approximate
CSD. This recursion can be used to construct a closed
system of coupled linear equations, in which the con-
ditional sampling probability of interest appears as one
of the unknown variables. The system of equations can
be solved using standard numerical analysis techniques.
However, the size of the system grows superexponen-
tially with the number of loci and, consequently, so does
the running time. To remedy this drawback, we intro-
duce additional approximations to make our approach
scalable in the number of loci. Specifically, the recursion
admits an intuitive genealogical interpretation, and, on
the basis of this interpretation, we propose modifica-
tions to the recursion, which then can be easily solved
using dynamic programming. The computational com-
plexity of the modified algorithm is polynomial in the
number of loci, and, importantly, the resulting CSD has
little loss of accuracy compared to that following from
the full recursion.

The accuracy of approximate CSDs has not been dis-
cussed much in the literature, except in the application-
specific context for which they are being employed. In
this article, we carry out an empirical study to explicitly
test the accuracy of various CSDs and demonstrate that
our new CSDs are in general substantially more accurate
than previously proposed approximations. We also
consider the PAC framework and show that our approx-
imations also produce more accurate PAC-likelihood
estimates. We note that for the maximum-likelihood
estimation of recombination rates, the actual value of
the likelihood may not be so important, as long as it is
maximized near the true recombination rate. However,
in many other applications—e.g., phasing genotype data
into haplotype data, imputing missing data, importance
sampling, and so on—the accuracy of the CSD and PAC-
likelihood function over a wide range of parameter
values may be important. Thus, we believe that the
theoretical work presented here will have several prac-
tical implications; our method can be applied in a wide
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range of statistical tools that use CSDs, improving their
accuracy.

The remainder of this article is organized as follows.
To provide intuition for the ensuing mathematics, we
first describe a genealogical process that gives rise to our
CSD. Using our genealogical interpretation, we con-
sider two additional approximations and relate these to
previously proposed CSDs. Then, in the following sec-
tion, we derive our CSD using the diffusion-generator
approach and provide mathematical statements for the
additional approximations; some interesting limiting
behavior is also described there. This section is self-
contained and may be skipped by the reader uninter-
ested in mathematical details. Finally, in the subsequent
section, we carry out a simulation study to compare the
accuracy of various approximate CSDs and demonstrate
that ours are generally the most accurate.

A GENEALOGICAL FORMULATION

Before delving into mathematical details, we first
describe a genealogical interpretation for our proposed
CSD. In addition to providing intuition about the
underlying mathematics (which is discussed in detail
in the following section), the genealogical interpreta-
tion suggests a tractable approximation of our CSD. We
discuss how some previously proposed CSDs may also be
viewed as approximations of our basic scheme.

Preliminary notation: As our basic stochastic process,
we consider a finite-sites, finite-alleles version of the
coalescent with recombination. In particular, denote
the set of loci by L ¼ {1, . . . , k}. The following general
notation is used hereafter to describe mutation and
recombination events in the coalescent:

Mutation: We use E‘ to denote the set of allele types at
locus ‘ 2 L. Mutation events at locus ‘ occur with rate
u‘/2. Going forward in time, given that there is a mu-
tation, a transition from allele a 2 E‘ to allele a9 2 E‘
occurs with probability P ð‘Þa;a9. By a parent-independent
mutation (PIM) model, we mean a model in which
P ð‘Þa;a9 ¼ P ð‘Þa9 for all a, a9, and ‘.

Recombination: The set of recombination breakpoints is
denoted by B ¼ {(1, 2), . . . , (k � 1, k)}. Given a
breakpoint b ¼ (‘, ‘ 1 1) 2 B, recombination events
between loci ‘ and ‘ 1 1 occur with rate rb/2.

We use H ¼ E1 3 . . . 3 Ek to denote the set of k-locus
haplotypes. A sample configuration of haplotypes is
specified by a vector n ¼ ðnhÞh2H, with nh being the
number of haplotypes of type h in the sample. The total
number of haplotypes in n is denoted by jnj ¼

P
h2Hnh.

Finally, we use eh to denote the singleton configuration
with a 1 for haplotype h and 0’s elsewhere.

Conditional sampling: Recall that a realization of the
coalescent with recombination is a random genealogy
comprising a series of events (i.e., mutation, recom-

bination, and coalescence), relating a collection of
haplotypes. This genealogy results from a continuous-
time Markov process, which moves backward through
time and takes collections of haplotypes as states; we refer
to a haplotype in the current state as a lineage. An event
then corresponds to a jump in the continuous-time
Markov process and makes a particular modification to
the current state. With the initial state being a set of n
unspecified haplotypes, the following approach may be
used to simulate a random genealogy from the process:

Mutation: Locus ‘ 2 L of each lineage mutates with rate
u‘/2.

Recombination: Each lineage undergoes recombination
about breakpoint b 2 B with rate rb/2.

Coalescence: Each pair of lineages coalesces with rate 1.

When a single most recent common ancestor (MRCA)
remains, the process terminates. The types of each lineage
in the genealogy are then determined by sampling the
MRCA haplotype from the stationary distribution of the
mutation process and propagating the information for-
ward along the sampled genealogy; the specifics of each
mutation event in the sampled genealogy are stochasti-
cally determined by the mutation transition matrix P. We
refer to the final genealogical history obtained in this way
as an ancestry and denote it byAn. Observe that associated
with a randomly sampled ancestry An is a sample con-
figuration n with jnj ¼ n specified haplotypes generated at
the leaves. See Figure 1a for an illustration.

Suppose we now wish to sample a collection of m
additional haplotypes conditioned on having already ob-
served a sample n and the true ancestry An that gen-
erated n. The above-mentioned sampling scheme can
be modified to sample a conditional ancestry Cm relating
a collection of m haplotypes to each other and to the
sample n. As illustrated in Figure 1b, the conditional
sampling scheme would comprise the usual genealog-
ical events (mutation, recombination, and coalescence)
involving the lineages in Cm , along with coalescence
events involving a lineage in Cm and a lineage ancestral
to n. We refer to the latter coalescence events as
‘‘absorption’’ events. Note that the ancestral lineages
of the sample n completely determine the type of each
lineage in Cm involved in absorption events, and a valid
conditional sample configuration m with jmj ¼ m is
generated at the leaves of Cm .

There are three sources of complication to the
approach just described: (1) The ancestryAn associated
with a sample n is usually unknown; (2) although the
genealogical process for Cm is Markov, it is time in-
homogeneous since the ancestry An is nonconstant in
time; and (3) if j lineages in Cm survive till the time to the
MRCA ofAn , then one needs to simulate farther back in
time with j 1 1 lineages, conditioned on one of the lin-
eages being the specified MRCA of An . A genealogical
approximation, resulting from the diffusion-generator
technique described in the subsequent section, avoids

Approximate Conditional Sampling Distributions 323



all of these difficulties. Assume thatAn ¼ An*, whereAn*
is the nonrandom trunk ancestry defined as follows:
Within An*, the lineages do not mutate, recombine, or
coalesce with one another, and instead form a ‘‘trunk’’
extending infinitely into the past. See Figure 2 for an
illustration. Note that An* is an improper ancestry, as
there is no MRCA; nonetheless, the above conditional
sampling procedure remains well defined. In particular,
events within the conditional genealogy Cm occur at the
following rates:

Mutation: Locus ‘2L of each lineage mutates with rate
u‘/2.

Recombination: Each lineage undergoes recombination
about breakpoint b2B with rate rb/2.

Coalescence: Each pair of lineages coalesces with rate 1.
Absorption: Each lineage is absorbed into each lineage of
An* with rate 1/2.

Conversely, given a new sample m and a previously
observed sample n, we may wish to compute the con-
ditional sampling probability (CSP), denoted p(m jn).
Although analytic computation of the CSP is impracti-
cable for all but the smallest problems, using our
genealogical approximation, namely that An ¼ An*, it
is possible to compute an approximate CSP p̂ðm jnÞ by
decomposing with respect to the unknown conditional
genealogy Cm. With pðCm j An*Þ denoting the probability
of conditional ancestry Cm, our approximation is

p̂ðm jnÞ ¼
X
Cm

pðm j CmÞpðCm j An*Þ;

where pðm j CmÞ ¼ 1 if m is the configuration of
haplotypes generated at the leaves of Cm and 0
otherwise. Because An* is invariant in time, Cm has a
time-homogeneous Markov structure, and the above
conditioning may be recast as a time-independent
recursion. The solution thus obtained is our primary
approximation, denoted p̂PS. We next examine some
computational aspects of p̂PS and consider two genea-
logical approximations.

Computation and approximation: There is no known
general analytic formula for the recursion obtained for
p̂PS. The procedure for exact computation of p̂PS,
therefore, is to repeatedly invoke the recursion equa-
tion; this yields a closed set of coupled linear equations,
which can be solved to provide the desired probability.
It is instructive to quantify the size of the linear system
that must be generated and solved. Suppose we are
interested in the CSP of a single haplotype (i.e., jmj ¼ 1);
for simplicity, also assume that jE‘j ¼ s for all ‘ 2 L. The
number Q k of equations produced for k loci is

Q k ¼
Xk

j¼1

 
k
j

!
Bjs

j ;

where Bj is the jth Bell number, the number of partitions
of a set of cardinality j into nonempty subsets. An
algebraic identity involving the Bell numbers implies
Q k $ Bk11 (with equality holding under a PIM model of
mutation). Hence, since Bk11 is superexponential in k,
exact computation of p̂PS is practicable only for k # 12
loci. For k . 12, further approximations (or statistical
techniques, which we do not further consider) are
required. We describe below two approximations that
together lead to an efficient algorithm. We later show
empirically that the resulting CSDs have little loss of
accuracy in comparison with p̂PS.

Approximation 1 (disallowing coalescence): Recall that a
conditional genealogy Cm is composed of mutation,
recombination, coalescence, and absorption events.
Importantly, within this framework, it is only coales-
cence events that can couple two lineages of Cm into one
(moving backward in time); mutation, recombination,
and absorption events have the noncoupling effect of
modifying, splitting, and removing lineages, respec-
tively. Intuitively, then, by disallowing coalescence, sep-
arate lineages should behave independently; more
precisely, given m ¼ ðeh1

1 . . . 1 ehm
Þ, and defining

p̂PS;1 to be the CSP obtained from the genealogical
process disallowing coalescence, we expect that

Figure 1.—Illustrations of a genealogy
and conditional genealogy for a two-locus
(k ¼ 2), two-allele model. The two loci of
a haplotype are each represented by a cir-
cle, with the shading (light or dark) indi-
cating the allelic type at that locus.
Mutation events, along with the locus
and resulting haplotype, are indicated by
small arrows. Recombination events (al-
ways taking the left loci from the left side
and the right locus from the right side),
along with the resulting haplotype, are in-
dicated by dotted circles. (a) A genealogy

An with n ¼ 4. It is easy to verify that, starting with the MRCA and following the genealogy forward in time, the sample config-
uration n shown at the leaves is obtained. (b) An ‘‘observed’’ genealogy An with n ¼ 3 and a conditional genealogy Cm with m ¼ 1.
Absorption events are indicated by dotted arrows into An . Following the combined genealogy forward in time, it is easy to check
that the conditional sample m shown at the leaf of Cm is obtained.
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p̂PS;1ðm jnÞ ¼ p̂PS;1ðeh1 1 . . . 1 ehm
jnÞ

¼
Ym
i¼1

p̂PS;1ðehi
jnÞ: ð3Þ

This is indeed the case, as we prove in the next section. It
is worth noting here that disallowing coalescence is not
as unreasonable as it first may seem; unlike a normal
genealogy, a conditional genealogy does not rely on
coalescence events to terminate (absorption events play
the analogous role). Although we shall further discuss
the merit of this approximation in light of empirical
results, for now, it suffices to say that (3) significantly
simplifies computation of p̂PS;1. Assuming a PIM model,
a dynamic programming formulation of p̂PS;1 exists with
asymptotic running time O(2kk2) (for jmj ¼ 1). Although
still exponential in k, this represents a substantial
improvement over p̂PS, for which constructing and
solving a system of equations superexponential in k is
required.

Approximation 2 (limiting mutations): We further ex-
amine p̂PS;1, with the objective of finding a sensible
polynomial time approximation. Even disallowing co-
alescence, it is necessary to consider every mutational
configuration of the k loci. In a PIM model, there are
O(2k) such configurations, thereby accounting for the
exponential running time given above. By artificially
limiting the number of mutational configurations, it is
again possible to substantially reduce the computational
complexity.

In our final approximation p̂PS;2, we limit the set of
mutational configurations to those that are a single
mutation away from the original haplotype. Genealog-
ically, this corresponds to disallowing explicit mutation
on any lineage that has already mutated; for small
values of u, we expect genealogies that do not conform
to this restriction to be relatively unlikely. We shall
further discuss the approximation p̂PS;2 in light of
empirical results; for now, it suffices to remark that in

a PIM model of mutation, p̂PS;2 is limited to k 1 1
mutational states, enabling a modification to the dy-
namic program with asymptotic running time O(k3) (for
jmj ¼ 1). In principle, this allows the CSP to be com-
puted for a number of loci k on the order of several
hundred.

Relation to other approximate CSDs: Several pre-
viously proposed approximate CSDs p̂SD (Stephens and
Donnelly 2000), p̂FD (Fearnhead and Donnelly

2001), and p̂LS (Li and Stephens 2003) are all naturally
described as ‘‘copying’’ models, in which a new haplo-
type is conditionally sampled by making an imperfect
copy of one or more haplotypes in an observed sample
n. We now describe these copying models and show that
each also has a genealogical interpretation; moreover,
these interpretations can reasonably be described as
approximations of our basic CSD, p̂PS.

The copying model for p̂SD, applicable when the loci
are assumed completely linked (i.e., r¼ 0), is as follows:
Select a random ‘‘source’’ haplotype h from n with prob-
ability nh/n and a random copying time t from the
exponential distribution with rate n/2; having done so,
mutate each locus ‘ 2 L of h a random number m‘ of
times, with m‘ drawn from a Poisson distribution with
mean u‘t/2. The resulting haplotype is the conditional
sample.

This copying model for p̂SD can be restated as a gene-
alogical process. In particular, set r ¼ 0 and suppose we
wish to conditionally sample a single haplotype. Both p̂PS

and p̂PS;1 are associated with a conditional genealogical
process composed of the following events: mutation at
locus ‘2 L with rate u‘/2 and absorption into a haplotype
lineage of n with rate 1/2. By the independence of the
mutation and absorption events, this genealogical pro-
cess coincides with the copying model for p̂SD, suggesting
that, when r ¼ 0, p̂SD ¼ p̂PS ¼ p̂PS;1. This is indeed the
case, as we prove in the next section.

The approximate CSD p̂FD extends p̂SD to partially
linked loci (i.e., r . 0). In this case, a new haplotype is
sampled in two phases: First, an unspecified haplotype is
randomly broken into unspecified fragments under the
assumption that a break occurs at each b 2 B indepen-
dently and with probability rb/(n 1 rb); and second,
each fragment is ‘‘copied’’ independently using the p̂SD

copying model, restricted to the appropriate set of loci.
The specified fragments are then reassembled into a
complete haplotype, completing the conditional sam-
ple. This copying model is often recast as a hidden
Markov model (HMM), with observed states corre-
sponding to the allele at each locus of the sampled
haplotype, and hidden states corresponding to the
source haplotype in n and copying time (as in the
description of p̂SD); the probability of a transition in the
hidden states is rb/(n 1 rb).

As in the case of p̂SD, the copying model for p̂FD can
be restated as a genealogical process. In particular,
consider the conditional genealogical process associ-

Figure 2.—Illustration of a conditional genealogy using
the approximation An ¼ An*. Absorption events are indicated
by dotted arrows into the ‘‘trunk’’ ancestry An*. Comparing
with Figure 1b, observe that An* is time invariant and extends
infinitely into the past.
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ated with p̂PS;1, artificially divided into an initial ‘‘re-
combination phase,’’ wherein an unspecified haplotype
is randomly broken into fragments, and a ‘‘non-
recombination phase,’’ wherein these fragments are
subject to the normal genealogical events, conditioned
on no additional recombinations occurring. In the
recombination phase, each breakpoint is used indepen-
dently, and with probability rb/(n 1 rb), corresponding
to the marginal probability of the breakpoint being used
in the usual genealogical process for p̂PS;1. In the
nonrecombination phase, each fragment maintains
independence by virtue of p̂PS;1 disallowing coales-
cence. This two-phase genealogical process coincides
with the copying model for p̂FD. We conclude that the
approximate CSD p̂FD can be considered an approxi-
mation of p̂PS;1.

Finally, the approximate CSD p̂LS is a computational
simplification of p̂FD in which the copying process for
each fragment is assumed to have t ¼ 2/n, rather than
t drawn from an exponential distribution. This corre-
sponds, in the associated genealogical process for p̂FD,
to the assumption that each fragment absorbed into
some haplotype of n in time t ¼ 2/n. We do not say
anything further about p̂LS since it is closely related to
p̂FD.

A MATHEMATICAL FORMULATION

In this section, we provide a mathematical derivation
of our conditional sampling distribution. Rather than for-
malizing the genealogical interpretation/approximation
discussed in the previous section, we extend the
diffusion-generator approximation technique (De

Iorio and Griffiths 2004a,b; Griffiths et al. 2008)
and demonstrate equivalence. We also prove several
useful limiting results and provide concrete mathemat-
ical statements for the approximations (disallowing
coalescence and limiting mutations) mentioned in the
previous section.

Notation: To describe our mathematical formulation
for an arbitrary number of loci, we need to introduce
more notation. In what follows, we build on the nota-
tion defined in the previous section. Given a haplotype
h 2 H and a locus ‘ 2 L ¼ {1, . . . , k}, we use h[‘] 2 E‘
to denote the allele at locus ‘ of h. Given any two
haplotypes h; h9 2 H, we define the following
operations:

Substitute: Given a locus ‘ 2 L and an allele a 2 E‘, define
Sa
‘ ðhÞ 2 H as the haplotype derived from h by sub-

stituting the allele at locus ‘ with a.
Recombine: Given a breakpoint b ¼ (‘, ‘ 1 1) 2 B, define
Rbðh; h9Þ 2 H as the mosaic haplotype derived by
concatenating h[1], . . . , h[‘] and h9[‘1 1], . . . , h9[k].

We also require partially specified haplotypes, in
which the alleles at some loci are unspecified. Denote

such an unspecified allele by d and define the space of
partially specified haplotypes as G ¼ ðE1 [ fdgÞ3 . . . 3

ðEk [ fdgÞ. For g 2 G, let L(g) denote the set of loci
at which g has specified (i.e., not d) alleles. Then,
for g ; g 9 2 G, we say that g and g9 are compatible and write
g t g 9, if g[‘] ¼ g 9[‘] for all ‘ 2 L(g)\L(g 9). We define
an operation for combining two compatible partially
specified haplotypes:

Coalesce : If g t g9, define Cðg ; g 9Þ as the haplotype
constructed as follows: For ‘ 2 L, Cðg ; g 9Þ½‘� ¼ g ½‘� if
g9[‘]¼ d, Cðg ; g 9Þ½‘� ¼ g 9½‘� if g[‘]¼ d, and Cðg ; g 9Þ½‘� ¼
g ½‘� ¼ g 9½‘� otherwise.

Given a partially specified haplotype g 2 G, we use
B(g) to denote the set of breakpoints between the
leftmost and the rightmost loci in L(g) and define the
following operation for breaking up g into parts:

Break: Given a breakpoint b ¼ (‘, ‘ 1 1) 2 B(g), we use
R�b ðg Þ ¼ ðg ½1�; . . . ; g ½‘�; d; . . . ; dÞ to denote the haplo-
type obtained from g by replacing g[j] with d for all
j $ ‘ 1 1 and R1

b ðg Þ ¼ ðd; . . . ; d; g ½‘1 1�; . . . ; g ½k�Þ to
denote the haplotype obtained from g by replacing
g[j] with d for all j # ‘.

To illustrate the above definitions, consider a three-
locus model, setting E‘ ¼ {0, 1} for each locus ‘ 2 L ¼
{1,2,3}. Supposeg1¼ (d, d, 1),g2¼ (0, d, 1), andg3¼ (1,1, d).
The loci with specified alleles are L(g1) ¼ {3}, L(g2) ¼
{1, 3}, and L(g3) ¼ {1, 2}, and the valid breakpoints are
B(g1)¼ {Ø}, B(g2)¼ {(1, 2), (2, 3)}, and B(g3)¼ {(1, 2)}.
Furthermore, g1 t g2 with Cðg1; g2Þ ¼ ð0; d,1) and g1 t g3

with Cðg1; g3Þ ¼ ð1; 1; 1Þ.
A general strategy for computing p̂: We begin by

briefly reviewing the neutral multilocus diffusion pro-
cess. Within this framework, we formally state the
problem and outline the general strategy we use to
solve it.

The neutral multilocus diffusion process: Dual to the
coalescent is a forward-in-time diffusion process. The
state space of the multilocus diffusion process is

D ¼ x ¼ ðxhÞh2H j xh $ 0 for all h 2 H and
X
h2H

xh ¼ 1

( )
;

where xh corresponds to the population-wide frequency
of haplotype h. Being continuous in both time and
space, diffusion processes possess many useful mathe-
matical properties. In particular, associated with a dif-
fusion process is a fundamental differential operator L,
called the generator, with the following property: For any
bounded, twice-differentiable function f with continuous
second derivatives, the generator satisfies E[Lf(X)] ¼ 0,
where E denotes expectation with respect to the
stationary distribution of the diffusion process. The
diffusion generator for the neutral model with crossover
recombination is L¼

P
h2HLh(@/@xh), where
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Lh ¼
1

2

�
xh

X
h92H
ðdh;h9� xh9Þ

@

@xh9

1
X
‘2L

u‘
X
a2E‘

xSa
‘
ðhÞ
�
P
ð‘Þ
a;h½‘� � dh;Sa

‘
ðhÞ
�

1
X
b2B

rb

X
h92H
½xRb ðh;h9ÞxRb ðh9;hÞ � xh �

�
;

with dh,h9 denoting the Kronecker delta symbol. Denote
by q(n) the probability of obtaining an ordered sample
with configuration n ¼ ðnhÞh2H. Making reference to
the diffusion process, q(n)¼ E(q(n j X)), where q(n j X)
is the conditional probability of obtaining n given the
population frequencies X ¼ ðXhÞh2H; more precisely,
qðn jXÞ ¼

Q
h2H Xnh

h .
Now let m ¼ ðmhÞh2H with jmj ¼m. Denote by p(m j n)

the conditional probability that, having already ob-
served sample configuration n, the next m sampled
haplotypes have configuration m. By the definition of
conditional probability, the distributions p and q satisfy
the following key identity:

pðm jnÞ ¼ qðm 1 nÞ
qðnÞ : ð4Þ

The diffusion-generator formulation: It is our objective to
use the diffusion characterization of q(n) along with the
above conditioning identity (4) to find a distribution p̂

approximating p. Shown below is an outline of the
diffusion-generator approximation technique for com-
puting p̂:

1. At stationarity, instead of E[Lf(X)] ¼ 0, assume that
a distribution exists with expectation operator Ê such
that the vanishing condition holds componentwise;
i.e., for each h 2 H,

Lh

@

@Xh

fðXÞ� ¼ 0:

�
ð5Þ

2. Define the approximate sampling distribution q̂ðnÞ ¼
ðqðn jXÞÞ and, motivated by the conditioning iden-

tity (4), define the approximate CSD p̂ðm jnÞ ¼
q̂ðm 1 nÞ=q̂ðnÞ.

3. Use an appropriate set of functions f(X) and hap-
lotypes h 2 H in (5) to derive a recursion for p̂ that
does not include q̂ terms.

Applying this general strategy, De Iorio and
Griffiths (2004a,b) were able to reproduce formally the
widely used one-locus CSD introduced by Stephens and
Donnelly (2000); in a similar vein, Griffiths et al.
(2008) were able to devise an approximate CSD in the
case of two loci with a restricted mutation model. Our
present goal is to apply this diffusion-generator formula-
tion yet again to derive a recursion for an arbitrary
number of loci and an arbitrary finite-alleles mutation
model. This will be our approximate CSD, which we

denote p̂PS. After deriving the recursion for p̂PS, we show
that it coincides with the genealogical formulation of the
previous section and provide some intuition for the
above approximation.

The main recursion: Using the diffusion-generator
approximation formulation described above, we ob-
tain the following theorem, which is proved in the
appendix:

Theorem 1. Let m ¼ ðmhÞh2H with jmj ¼ m and n ¼
ðnhÞh2H with jnj ¼ n. Then the approximate conditional
sampling distribution p̂PSðm jnÞ satisfies the following
recursion:

m ðn 1 m � 1Þ1
X
‘2L

u‘ 1
X
b2B

rb

" #
p̂PSðm jnÞ

¼
X
h2H

mh ðnh 1 ðmh � 1ÞÞp̂PSðm� eh jnÞ
"

1
X
‘2L

u‘
X
a2E‘

P
ð‘Þ
a;h½‘�p̂PSðm� eh 1 eSa

‘
ðhÞ j nÞ

1
X
b2B

rb

X
h92H

p̂PSðm� eh 1 eRb ðh;h9Þ1 eRb ðh9;hÞ jnÞ
#
:

ð6Þ

Although we consider the recursion stated in Theo-
rem 1 to be our primary result, explicit evaluation is
not possible since the number of states that must be
explored is infinite. To establish a practicable formu-
lation, we extend this result to partially specified
haplotypes.

Suppose that n ¼ ðng Þg2G is a configuration allowing
unspecified alleles. Conditional on X, the sampling
probability becomes qðn jXÞ ¼

Q
g2G Y ng

g , where Yg ¼P
h2H:htg Xh is the total proportion of fully specified

haplotypes that subsume the partially specified haplo-
type g 2 G. With q̂ and p̂ defined as before with respect
to Ê and the above q(n jX), we obtain the following
corollary (its proof is deferred to the appendix):

Corollary 2. Let m ¼ ðmg Þg2G with jmj ¼ m and n ¼
ðnhÞh2H with jnj ¼ n. Then the approximate conditional
sampling distribution p̂PSðm jnÞ satisfies the following recursion:

X
g2G

mg ðn 1 m � 1Þ1
X
‘2Lðg Þ

u‘ 1
X

b2Bðg Þ
rb

2
4

3
5p̂PSðm j nÞ

¼
X
g2G

mg

X
h2H:htg

nh

 !
p̂PSðm� eg jnÞ

"

1
X

g 92G:g 9tg

ðmg 9 � dg ;g 9Þp̂PSðm� eg 1 eCðg ;g 9Þ j nÞ

1
X
‘2Lðg Þ

u‘
X
a2E‘

P
ð‘Þ
a;g ½‘�p̂PSðm� eg 1 eSa

‘
ðg Þ jnÞ

1
X

b2Bðg Þ
rbp̂PSðm� eg 1 eR�b ðg Þ1 eR1

b ðg Þ j nÞ

3
5:
ð7Þ
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Remark. Determining a simple recursion for p̂ðm jnÞ
in the general case, when n ¼ ðng Þg2G (i.e., haplotypes in
n may contain unspecified alleles), remains an impor-
tant open problem.

To see that explicit evaluation is possible, suppose m ¼
ðmg Þg2G and n 2 ðnhÞh2H and denote the total number of
specified loci in m by LðmÞ ¼

P
g2G mg jLðg Þj. Applying

(7) for p̂PSðm jnÞ, it is evident that each term on the right-
hand side is of form p̂PSðm9jnÞwith L(m9) # L(m). Thus,
by induction, only a finite number of states need be
explored, and so repeated application of (7) yields a
closed set of coupled linear equations, within which
p̂PSðm jnÞ is a variable. This system can be solved using
standard numerical techniques.

Connection to the genealogical formulation: Recall the
conditional genealogical process for constructing Cm

using the approximation An ¼ An* described in the
previous section. Employing this formulation, it is
possible to compute p̂ðm jnÞ by applying the law of
total probability with respect to the most recent event
(i.e., the usual ‘‘forward–backward’’ argument). We
leave it to the reader to verify that doing so will yield
the recursion (6) or (7), depending upon whether
nonancestral loci are explicitly considered. This estab-
lishes the equivalence between our genealogical and
mathematical formulations.

This equivalence may appear surprising given that
the componentwise vanishing assumption (5) does not
have an obvious genealogical interpretation. Griffiths

et al. (2008) provide some intuition, pointing out that
(5) is mathematically equivalent to assuming that,
conditioning on sample n, the probability that the most
recent event includes haplotype h 2 H is equal to nh/n.
This is precisely the prior probability (i.e., the probabil-
ity if the the haplotypes of n were unspecified) and
therefore furnishes a reasonable and internally consis-
tent approximation. Importantly, this assumption al-
lows us to genealogically restrict attention to a
particular haplotype h; we may thus restrict attention
to the subconfiguration m of m 1 n. In this way, a
genealogy that modifies only lineages associated with m
is constructed, precisely what occurs in our genealog-
ical formulation.

Analytic formulas: In the one-locus case (k ¼ 1) with
parent-independent mutation, (7) immediately yields a
conditional sampling formula that agrees with the exact
one-locus CSD p. More precisely, given an additional
allele a 2 E ¼ H and a previously observed sample n ¼
ðnhÞh2H with jnj ¼ n, we obtain

p̂PSðea jnÞ ¼ pðea jnÞ ¼
na 1 uPa

n 1 u
: ð8Þ

Both Stephens and Donnelly (2000) and Fearnhead

and Donnelly (2001) obtained the same result; as we
shall soon see, this is part of a more general result that
holds in the limit as r / 0.

In the two-locus case (k¼ 2) with parent-independent
mutation, it is possible to obtain an analytic formula.
Given an additional haplotype ða1; a 2Þ 2 E1 3 E 2 ¼ H
and a previously observed sample n ¼ ðnhÞh2H with jnj ¼
n, we obtain

p̂PSðeða1;a2Þ jnÞ ¼
1

N nða1;a2Þ1 u1P ð1Þa1
pðea2 jnÞ1 u2P ð2Þa2

pðea1 jnÞ
h

1 r � 2n 1 u1 1 u2

2ðn11Þ1 u11 u2
� pðea1 jnÞpðea2 jnÞ

�
;

where N ¼ n 1 u1 1 u2 1 r½ð2n 1 u1 1 u2Þ=ð2ðn 1 1Þ1
u1 1 u2Þ�, and p(ea j n) is the exact one-locus CSP (8),
with n appropriately marginalized. This form is quite
similar to that derived by Griffiths et al. (2008), with
the minor differences attributable to a different treat-
ment of ‘‘symmetry’’ conditions.

Although it is theoretically possible to obtain analytic
solutions for k . 2, little simplification is possible, and
solving them is tantamount to generating and solving
the coupled system of equations directly. We next show
that some algebraic simplification is possible in two
limiting cases.

Limiting distributions: For convenience, we set rb¼ r,
for all b 2 B, and consider the CSD in both the r/0 and
the r/‘ limits. We find that, in the r/0 limit, p̂PS

coincides with Stephens and Donnelly’s CSD p̂SD and,
by extension, Fearnhead and Donnelly’s p̂FD. In the
r/‘ limit, p̂PS coincides with p̂FD, with p̂PS ¼ p̂FD ¼ p

in the case of parent-independent mutation.
The r/0 limit: Set r ¼ 0, and let m ¼ eh9 for some

h9 2 H and n ¼ ðnhÞh2H. Then (6) yields the following
simplified recursion:

n 1
X
‘2L

u‘

 !
p̂PSðeh9 j nÞ ¼ nh9 1

X
‘2L

u‘
X
a2E‘

P
ð‘Þ
a;h9½‘�p̂PSðeSa

‘
ðh9Þ j nÞ:

ð9Þ

Recall that Stephens and Donnelly’s CSD p̂SD, applica-
ble when the loci are completely linked (i.e., r ¼ 0), is
formulated most naturally as a copying model, in which
a new haplotype is conditionally sampled by choosing a
previously sampled haplotype and stochastically mutat-
ing it according to a specified process (see the appendix

for details). Despite the disparity of the genealogical
description for p̂PS and the copying model description
for p̂SD, the following proposition (also proved in the
appendix) assures us that they are equivalent.

Proposition 3. Let m ¼ eh9 for some h 2 H and n ¼
ðnhÞh2H. Then if rb ¼ 0 for all b 2 B, p̂PSðeh9jnÞ ¼
p̂SDðeh9jnÞ.

In addition to providing a genealogical interpretation
for p̂SD, the above proposition indicates that, when r ¼
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0, p̂PS may be approximated using the Gaussian quad-
rature method proposed by Stephens and Donnelly

(2000); conversely it provides an exact method for
computing p̂SD, generalizing similar results to an arbi-
trary number of loci and mutation model. Finally, when
r¼ 0, Fearnhead and Donnelly’s CSD p̂FD coincides, by
construction, with p̂SD, and so p̂PS ¼ p̂FD ¼ p̂SD.

The r/‘ limit: Let n 2 ðng Þg2G and denote the one-
locus marginal configuration for ‘ 2 L by n½‘� ¼ ðnaÞa2E‘

,
where na ¼

P
g2G:g ½‘�¼a ng is the number of haplotypes of

n with allele a at locus ‘. In the appendix, we prove that
in the r / ‘ limit, p̂PS may be decomposed into a
product of one-locus likelihoods:

Proposition 4. Let m 2 ðmg Þg2G and n 2 ðnhÞh2H.
Then in the limit r / ‘,

p̂PSðm jnÞ ¼
Y
‘2L

p̂PSðm½‘� jn½‘�Þ: ð10Þ

Recall that Fearnhead and Donnelly’s CSD p̂FD enjoys
the same limiting decomposition, and the one-locus p̂FD

coincides with the one-locus p̂SD, which in turn agrees
with the one-locus p̂PS by Proposition 3. In conjunction
with Proposition 4, these facts imply that p̂PS ¼ p̂FD in
the limit r/‘. It is encouraging that the true CSD p

also exhibits this limiting decomposition (this follows
directly from the well-known limiting decomposition of
the sampling distribution q). Coupled with the fact that
the one-locus CSD (8) is exact for PIM models, we may
also conclude that for PIM models in the r / ‘ limit,
p̂PS ¼ p̂FD ¼ p.

Approximations to p̂PS: In the general case, when 0 ,

r , ‘, computing a CSP using p̂PS requires that a set of
coupled linear equations be constructed and solved.
In particular, for jmj ¼ 1 in the case of a PIM model,
the number of generated equations is the (k 1 1)th Bell
number Bk11, where k is the number of loci. Thus, the
number of equations is superexponential in k, indicating
that computation of p̂PS is intractable with increasing k.
We consider two approximations, motivated by the gene-
alogical formulation discussed in the previous section.

Approximation 1 (disallowing coalescence): Modifying (7)
by disallowing coalescence—corresponding to removing
the second term on the right-hand side and renormaliz-
ing the left-hand side—we obtain a recursion for a new
approximate CSD, which we denote p̂PS;1. Some genea-
logical justification for this approximation was provided
for this in the previous section, and empirical justif-
ication is provided in the next section. Here, we are
interested primarily in the computational aspects, which
rely on the following result (proved in the appendix):

Proposition 5. For m ¼ eg1
1 . . . 1 egm

, where
g1; . . . ; gm 2 G, and n ¼ ðnhÞh2H, the approximate CSD
p̂PS;1 satisfies

p̂PS;1ðm jnÞ ¼ p̂PS;1ðeg1 1 . . . 1 egm
jnÞ¼

Ym
i¼1

p̂PS;1ðegi
jnÞ:

ð11Þ

Resulting from Proposition 5 is a simplified recursion
for p̂PS;1: Letting g 2 G,

n 1
X
‘2Lðg Þ

u‘ 1
X

b2Bðg Þ
rb

2
4

3
5p̂PS;1ðeg jnÞ

¼
X

h2H:htg

nh

 !

1
X
‘2Lðg Þ

u‘
X
a2E‘

P
ð‘Þ
a;g ½‘�p̂PS;1ðeSa

‘
ðg Þ jnÞ

1
X

b2Bðg Þ
rbp̂PS;1ðeR�b ðg ÞÞp̂PS;1ðeR1

b ðg ÞjnÞ: ð12Þ

Making use of this recursion, and assuming that jE‘j ¼ s
for all ‘ 2 L, a system of O(skk2) equations needs to be
generated and solved, far fewer than the superexponen-
tial number required for p̂PS. Moreover, assuming a PIM
model of mutation, there is an evident dynamic pro-
gramming formulation for p̂PS;1 that runs in O(2k�k2) time.

Approximation 2 (limiting mutations): Despite being
significantly faster to compute than p̂PS, the approxi-
mate CSD p̂PS;1 is still exponential in the number of loci.
This remains true even for r ¼ 0, indicating that the
complication is a result of mutation rather than re-
combination. In particular, looking at the form of (12),
it is clear that p̂PS;1 must be evaluated for every partially
specified haplotype g 2 G. As discussed in the previous
section and empirically justified in the next section,
when u is relatively small, a reasonable approximation to
p̂PS;1 may be obtained by artificially limiting the set of
accessible haplotypes.

In particular, denote by p̂PS;2 the approximate CSD
obtained by limiting the ‘‘explicitly computed’’ p̂PS;1

terms to those haplotypes that are within a single muta-
tional step of the haplotype g of interest. Then,

n 1
X
‘2Lðg Þ

u‘ 1
X

b2Bðg Þ
rb

2
4

3
5p̂PS;2ðeg jnÞ

¼
X

h2H:htg

nh

 !

1
X
‘2Lðg Þ

u‘
X
a2E‘

P
ð‘Þ
a;g ½‘�p̂AltðeSa

‘
ðg Þ jnÞ

1
X

b2Bðg Þ
rbp̂PS;2ðeR�b ðg ÞÞp̂PS;2ðeR1

b ðg Þ jnÞ; ð13Þ

where p̂Alt 6¼ p̂PS;2 is an alternative approximate CSD.
The ‘‘canonical’’ choice for p̂Alt is
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n 1
X

b2Bðg Þ
rb

2
4

3
5p̂0ðeg jnÞ

¼
X

h2H:htg

nh

 !
1
X

b2Bðg Þ
rbp̂0ðeR�b ðg ÞÞp̂0ðeR1

b ðg Þ jnÞ;

which is (13) with further mutation disallowed (i.e., u‘¼
0 for all ‘2 L). Using p̂Alt ¼ p̂0, and again assuming that
jE‘j ¼ s for all ‘2 L, a system of O(sk3) equations needs to
be generated and solved. Further assuming a PIM
model of mutation, a dynamic programming formula-
tion can be used, which runs in O(k3) time. We have
found that better results are obtained by using
p̂Alt ¼ p̂FD, which implicitly does allow for additional
mutation. This modification does not change the
asymptotic running time.

EMPIRICAL RESULTS

In this section, we evaluate the accuracy of our CSD
p̂PS, along with the approximations p̂PS;1 and p̂PS;2, and
compare it with the accuracy of the approximate CSDs
p̂FD and p̂LS, respectively proposed by Fearnhead and
Donnelly (2001) and by Li and Stephens (2003).
Analytically computing the true CSP is typically not
possible, so we rely on importance sampling to provide
reference values. Even within this Monte Carlo frame-
work, the size of problems that can be analyzed is
modest, thus limiting the scope of our study.

We find that p̂PS and the associated approximations
(p̂PS;1 and p̂PS;2) are more accurate than p̂FD and p̂LS in
a variety of circumstances. In addition, we consider the
PAC pseudolikelihood framework mentioned in the
Introduction and demonstrate that the improved accu-
racy of our CSDs has a positive impact on PAC-based
estimation, generally providing improved accuracy for
both likelihood and maximum-likelihood estimates.

Data simulation: For simplicity, we consider a two-

allele model and set PðlÞ ¼P¼
�

0
1

1
0

	
and u‘¼ u for all loci

‘ 2 L and rb ¼ r for all breakpoints b 2 B. Using a
coalescent with recombination simulator, with r ¼ r0

and u ¼ u0, we may sample a k-locus n-haplotype sample
configuration n. Given such a configuration, we may
subsample a k9-locus n9-haplotype configuration n9

(for k9 # k and n9 # n) by randomly selecting n9

haplotypes and restricting attention to a k9 subset of the
loci. In particular, the k9 subset is chosen as follows
(method, M):

M1. The central k9 loci, when u0 is large so that most or
all loci segregate.

M2. The central k9 segregating loci, when u0 is small so
that few loci segregate. This procedure corresponds
to the typical usage of p̂ on genomic data, in which
only segregating sites are considered.

Finally, given a k-locus n-haplotype configuration n, we
may subsample a k-locus n-haplotype conditional con-
figuration C ¼ (eh, n � eh) by withholding a single
haplotype h from n uniformly at random. For notational
simplicity, we define p on such a conditional configu-
ration in the natural way: pr(C) ¼ p(eh j n � eh, r).

CSD accuracy: We evaluate the accuracy of each
approximate CSD p̂ as a function of three parameter
values: the number of loci, k; the number of haplotypes
in the conditional configuration, n; and the recombi-
nation rate, r. More precisely, we approximate the
expected relative error as

CSDErrk;n;rðp̂Þ �
1

N

XN
i¼1

j p̂rðC ðiÞÞ � prðC ðiÞÞ j
prðC ðiÞÞ

; ð14Þ

where N denotes the number of simulated data sets and
C (i) is a k-locus n-haplotype conditional configuration
sampled as indicated above, with parameters u0 and r0.
To keep the requisite computation reasonable, we
consider three experiments, each time fixing two param-
eters and allowing the third one to vary. In all cases, u¼ u0

is used to evaluate p̂. The results for p̂PS;1 and p̂PS;2 are
very similar, so below we discuss only the latter.

We first consider the case in which u0 ¼ 1 and r0 ¼ 4.
Biologically u0 ¼ 1 corresponds to a relatively high mu-
tation rate, not so uncommon in retroviruses (McVean

et al. 2002). The specific parameter settings and results
are shown in Figure 3. Under these circumstances, the
CSDErr values of our approximations p̂PS and p̂PS;2 are
comparable and are smaller than those for both p̂FD and
p̂LS. We remark that these are averaged results and do
not imply that the CSP produced by p̂PS is always more
accurate than that produced by p̂FD or p̂LS.

All of the approximate CSDs become less accurate as
the number of loci increases (see Figure 3a). However,
there is significant variation in the rate that this loss
occurs, and p̂FD and p̂LS lose accuracy more quickly than
p̂PS and p̂PS;2; this result may have a significant conse-
quence at a genomic scale, in which hundreds of
segregating loci (or many more) are often considered.
In contrast, all of the approximate CSDs become more
accurate as the recombination rate increases (see Figure
3b). The correspondence between p̂PS and p̂FD at r ¼ 0
may be explained by the theoretical result in Pro-
position 3 and the surrounding discussion; similarly,
Proposition 4 ensures that p̂PS ¼ p̂PS;2 ¼ p̂FD ¼ p in the
r / ‘ limit, indicating that the values of CSDErr for p̂PS,
p̂PS;2, and p̂FD converge to 0. Finally, as the number of
haplotypes in the conditional configuration increases,
the values of CSDErr for the different CSDs appear to
converge (see Figure 3c). Interestingly, as the number n
of haplotypes decreases, p̂LS becomes less accurate,
while p̂PS becomes more accurate; this result may have
an effect on PAC computation, since small conditional
configurations are necessarily considered.
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We next consider the case in which u0¼ 0.01 and r0¼
0.1, corresponding biologically to moderate mutation
and recombination rates. The specific parameter set-
tings and results are presented in Figure 4. As in
the previous case, the approximations p̂PS and p̂PS;2

are generally more accurate than p̂FD and p̂LS. The
accuracy differences among the approximations, how-
ever, are less pronounced; the precise cause and degree
of this effect (as the parameters, including u0 and
r0, vary) require further theoretical and empirical
investigation.

As before, all of the CSDs become less accurate as the
number of loci increases (see Figure 4a) and more
accurate as the recombination rate increases (see Figure
4b). In contrast with the previous case, p̂PS;2 appears to be
somewhat more accurate than p̂PS; this result is surpris-
ing since p̂PS;2 makes more approximations than p̂PS. A
similar phenomenon appears in the context of PAC
accuracy and is explored in more detail below. Finally, as
the number of haplotypes in the conditional configura-
tion increases, the values of CSDErr for the different
CSDs appear to converge (see Figure 4c); as before, for
small numbers of haplotypes p̂LS is less accurate than p̂PS,
although the difference is less pronounced.

PAC-likelihood accuracy: We evaluate the accuracy of
each approximate CSD p̂ in the context of the PAC

pseudolikelihood framework. Since the true CSD p pro-
vides the correct likelihood within this framework, we
expect that better approximations p̂ provide better
approximations of the true likelihood. Denote by
qp̂ðnÞ the ordered PAC likelihood obtained using CSD
p̂ and 100 random permutations of the haplotypes in n.
We approximate the mean relative error as

PACErrk;n;rðp̂Þ �
1

N

XN
i¼1

j qp̂;rðnðiÞÞ � qrðnðiÞÞ j
qrðnðiÞÞ

; ð15Þ

where N denotes the number of simulated data sets and
n(i) is a k-locus n-haplotype configuration sampled from
the coalescent with recombination, with parameters u0

and r0. We consider fixing k and n and allowing r to vary.
In all cases, u ¼ u0 is used to evaluate qp̂. The PAC-
likelihood accuracy results for p̂PS;1 and p̂PS;2 are very
similar, and so below we discuss only the latter.

We first consider the case in which u0 ¼ 1 and r0 ¼ 4.
The specific parameter settings and results are pre-
sented in Figure 5. Under these circumstances, the
approximations p̂PS and p̂PS;2 yield PAC likelihoods that
are more accurate than those produced using p̂FD or
p̂LS. Moreover, comparing Figure 5a and 5b for k ¼ 3
and k¼ 5 loci, respectively, it appears that as the number

Figure 3.—Relative error of CSDs for u0 ¼ 1 and r0 ¼ 4. See (14) for definition of CSDErrk;n;rðp̂Þ. With u0 ¼ 1 and r0 ¼ 4, we
used a coalescent simulator to generate 250 data sets, each with 25 haplotypes and 10 loci. Then, requisite k-locus, n-haplotype
conditional configurations {C(i)}i¼1, . . . , 250 were obtained using method M1 described in the text. (a) k 2 {2, 3, 4, 5, 6, 8, 10}, n ¼ 6,
and r ¼ r0. (b) k ¼ 4, n ¼ 6, and r 2 {0, 2, 4, 6, 8, 12, 16, 20}. (c) k ¼ 4, n 2 {2, 4, 6, 8, 10, 14, 20}, and r ¼ r0.
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of loci increases, the difference in PAC-likelihood accu-
racy increases; this result might be anticipated from
Figure 3a, which shows that the difference in CSD
accuracy increases in a similar fashion. Finally, for the
range of recombination rates shown, observe that
PACErr for p̂LS and p̂FD notably increases as r in-
creases; PACErr for p̂PS;2 also increases as r increases,
but only slightly. Contrast this with Figure 3b, which
shows that the CSD accuracy decreases as the recombi-
nation rate increases. This result is particularly surpris-
ing since PACErr / 0 for both p̂PS;2 and p̂FD (because
p̂PS;2 ¼ p̂FD ¼ p) in the r / ‘ limit.

We next consider the case in which u0¼ 0.01 and r0¼
0.1. The specific parameter settings and results are
presented in Figure 6. As before, the approximations
p̂PS and p̂PS;2 yield PAC likelihoods that are more
accurate than those produced using p̂FD and p̂LS, and
this effect appears to increase with the number of loci.
Comparing with CSDErr in Figure 4, there are two
interesting observations: First, in contrast to the similar
values of CSDErr for p̂PS and p̂FD, the PAC likelihoods
using p̂PS are significantly more accurate than those
using p̂FD; and second, in concordance with the smaller
values of CSDErr for p̂PS;2 than for p̂PS, the PAC

Figure 4.—Relative error of CSDs for u0¼ 0.01 and r0¼ 0.1. See (14) for definition of CSDErrk;n;rðp̂Þ. With u0¼ 0.01 and r0¼ 0.1,
we used a coalescent simulator to generate 250 data sets, each with 25 haplotypes and 500 loci. Then, requisite k-locus n-haplotype
conditional configurations {C(i)}i¼1, . . . , 250 were obtained using method M2 described in the text. (a) k 2 {2, 3, 4, 5, 6, 8, 10}, n¼ 6, and
r ¼ r0. (b) k ¼ 4, n ¼ 6, and r 2 {0, 4, 8, 12, 16, 20, 30, 40, 50} 3 10�2. (c) k ¼ 4, n 2 {2, 4, 6, 8, 10, 14, 20}, and r ¼ r0.

Figure 5.—Relative error of
PAC likelihoods for u0 ¼ 1 and
r0 ¼ 4. See (15) for definition
of PACErrk;n;rðp̂Þ. With u0 ¼ 1
and r0 ¼ 4, we used a coalescent
simulator to generate 250 data
sets, each with 25 haplotypes
and 10 loci. Then, requisite
k-locus n-haplotype configurations
{n(i)}i¼1, . . . , 250 were obtained using
method M1 described in the text.
(a) k ¼ 3, n ¼ 25, and r 2 {0, 2, 4,
6, 8, 12, 16, 20}. (b) k ¼ 5, n ¼ 25,
and r 2 {0, 2, 4, 6, 8, 12, 16, 20}.
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likelihoods using p̂PS;2 are more accurate than those
using p̂FD for much of the domain.

Thus motivated, we consider the signed PACErr, ob-
tained by removing the absolute value from (15); the
signed result corresponding to Figure 6b is presented in
Figure 7. Observe that the values of the signed PACErr
for both p̂PS;2 and p̂PS are initially positive, pass through
0 to become negative, and ultimately must return to 0 in
the r / ‘ limit; in contrast, values of the signed PACErr
for p̂FD make a more deliberate descent toward 0. We
might expect that such ‘‘transient’’ domains of near
unbiasedness demonstrated by p̂FD and p̂PS;2 affect the
accuracy of the associated PACErr.

Indeed, comparing with Figure 6b, there is a rough
correspondence between the domains in which values
of the signed PACErr for p̂PS;2 and p̂FD are very near 0
and the domains in which the PAC likelihoods using
p̂PS;2 and p̂FD have the highest accuracy. Within these
respective domains, p̂PS;2 produces a PAC likelihood
that is more accurate than p̂PS, but p̂FD does not, an
effect that may be due to an increased variance asso-
ciated with p̂FD. Finally, recall that p̂PS;2 is also more
accurate than p̂PS in terms of CSDErr (see Figure 4). A
comparable analysis of signed CSDErr (data not shown)
indicates that a similar effect may be at work, although
on a significantly larger scale; additional results would
need to be collected to make this claim decisively.

PAC–maximum-likelihood estimate accuracy: Finally,
we consider using the PAC pseudolikelihood framework
to obtain maximum-likelihood estimates (MLEs) for the
recombination rate r. Since the true CSD p would pro-
vide the true MLE within this framework, we expect that
better approximations p̂ will provide better MLEs.
Denote by rp̂ðnÞ the PAC–MLE obtained using a golden
section search on the PAC-likelihood surface associated
with the CSD p̂ and 100 random permutations of the
haplotypes in n.

Following Li and Stephens (2003), we compute the
per-n error Errp̂ðnÞ ¼ log2½rp̂ðnÞ=r0�, where r0 is the
recombination rate under which the n was generated.
Note that Errp̂ðnÞ ¼ 0 indicates that rp̂ðnÞ ¼ r0; al-
though this is ostensibly a good property, we note here
that the true MLE r̂MLðnÞ does not satisfy this property

in expectation and may not satisfy it in median. In
keeping with our previous empirical results, we believe
that a more important comparison is directly between
rp̂ðnÞ and r̂MLðnÞ. Unfortunately, such comparisons are
difficult for two reasons: First, r̂MLðnÞ can take the values 0
and ‘, making comparisons with rp̂ðnÞ difficult; and
second, r̂MLðnÞ is difficult to compute.

With this caveat in mind, we continue with Li and
Stephens’ formulation. Treating n as a random variable,
compute the sample median and interquartile range
(IQR) of the distribution associated with Errp̂ðnÞ. The
specific parameter settings used and results are pre-
sented in Table 1. Observe that, as the number of loci
increases, the IQR generally becomes smaller, indicat-
ing that the distribution is becoming more concen-
trated about the median. In the case that u0¼ 1 and r0¼
4, the results are promising; the approximations p̂PS,
p̂PS;1, and p̂PS;2 have medians significantly nearer to 0
than p̂FD and p̂LS. Moreover, this effect becomes more
pronounced as the number of loci increases. The results
are less clear in the u0¼ 0.01 and r0¼ 0.1 case. All of the
CSDs demonstrate comparable medians, none particu-
larly close to 0; as the number of loci increases, there
appears to be some trend toward a median of 0 for all
CSDs. Once again, we urge caution in interpreting these

Figure 6.—Relative error of
PAC likelihoods for u0 ¼ 0.01
and r0 ¼ 0.1. See (15) for defini-
tion of PACErrk;n;rðp̂Þ. With u0 ¼
0.01 and r0 ¼ 0.1, we used a coa-
lescent simulator to generate 250
data sets, each with 25 haplo-
types and 500 loci. Then, requisite
k-locus n-haplotype configurations
{n(i)}i¼1, . . . , 250 were obtained using
method M2 described in the text.
(a) k ¼ 3, n ¼ 25, and r 2 {0, 4,
8, 12, 16, 20, 30, 40, 50} 3 10�2.
(b) k ¼ 5, n ¼ 25, and r 2 {0, 4,
8, 12, 16, 20, 30, 40, 50} 3 10�2.

Figure 7.—Approximate values of signed PACErrðp̂Þ for
u0 ¼ 0.01 and r0 ¼ 0.1, corresponding to Figure 6b. The cor-
respondence between the symbols and p̂’s is the same as in
previous figures.
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results, as the nature of the true distribution Errp(n)
remains unknown.

DISCUSSION

In this article, we generalized the diffusion-generator
approximation technique to derive a novel approximate
conditional sampling distribution, p̂PS, for an arbitrary
number of loci and an arbitrary finite-alleles recurrent
mutation model. Furthermore, we described a genea-
logical interpretation for p̂PS on the basis of the idea
of conditional genealogies. In addition to providing
intuition for the mathematical techniques used to
derive p̂PS, the genealogical interpretation motivated
us to introduce additional approximations that reduce
the asymptotic time complexity of our p̂PS from super-
exponential in k (the number of loci) to cubic in k.
We observed that the approximation of disallowing coa-
lescence in the conditional genealogy Cm works remark-
ably well, leading to little loss in accuracy compared with
p̂PS. We note that this is probably because the empirical
study we carried out is for the case in which the hap-
lotypes in the conditional sample configuration m have
pairwise disjoint sets of specified alleles. For a more
general sample m, we suspect that disallowing coales-
cence in Cm may not work as well. Incidentally, note that
disallowing coalescence between haplotypes with no
overlapping specified alleles is closely related to the
so-called sequentially Markov coalescent (McVean and
Cardin 2005; Marjoram and Wall 2006; Chen et al.
2009), an approximation to the full sequential coales-
cent formulation introduced by Wiuf and Hein (1999).

In our empirical study, we found that our CSD p̂PS and
the associated approximations (p̂PS;1 and p̂PS;2) are in
general more accurate than the previously proposed
CSDs. Importantly, this improvement in accuracy gets
amplified as the number of loci increases. Moreover, the
improvement in CSD accuracy carries over to the PAC
framework, for both PAC-likelihood estimation and, to a
lesser extent, PAC–MLE estimation. Interestingly, as the
mutation rate u decreases, some improvements in accu-
racy are attenuated, while others are not. We believe that

studying and understanding these effects is an impor-
tant future research direction.

Approximate CSDs have been fruitfully used in
Monte Carlo techniques (e.g., importance sampling)
and other approximation strategies (typically via the
PAC approximation). In principle, our new CSD may be
applied in many of the same situations, potentially
providing improved efficiency in the Monte Carlo
setting and improved accuracy in the approximation
setting. In practice, the details of many algorithms
explicitly depend on the CSD used, so we leave as future
research adapting such algorithms to the form of p̂PS.
We believe that the work discussed here will have several
useful applications in both computational biology and
population genetics analysis.

We thank Paul Jenkins for helpful discussions. This research is
supported in part by National Institutes of Health grant R00-
GM080099, an Alfred P. Sloan Research Fellowship, and a Packard
Fellowship for Science and Engineering.
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APPENDIX

Proof of Theorem 1. By the componentwise vanishing property (5), for any bounded, twice-differentiable function
f with continuous second derivatives,

X
h2H

mh � Lh
@

@xh
f ðXÞ

" #
¼
X
h2H

mh � Lh
@

@xh
f ðXÞ

� �
¼ 0:

Setting f(x) ¼ q(n j x) implies the following relation for q̂ :

m ðn � 1Þ1
X
‘2L

u‘ 1
X
b2B

rb

" #
q̂ðnÞ ¼

X
h2H

mh ðnh � 1Þq̂ðn� ehÞ
"

1
X
‘2L

u‘
X
a2E‘

P
ð‘Þ
a;h½‘�q̂ðn� eh 1 eSa

‘
ðhÞÞ

1
X
b2B

rb

X
h92H

q̂ðn� eh 1 eRbðh;h9Þ1 eRbðh9;hÞÞ
#
:

Substituting n/n 1 m and, recalling (4), dividing by q̂ðnÞ produces (6), thereby completing the proof. n

Proof of Corollary 2. This result follows from Theorem 1. Without loss of generality, let m ¼ eg1
1 . . .1 egm

for
g1; . . . ; gm 2 G and n ¼ ðnhÞh2H. Recalling (4) and the appropriate definitions,
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Substituting m9 ¼ eh1
1 . . .1 ehm

for h1; . . . ; hm 2 H into (6),
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Applying (A1) to the left-hand side of (A2) and doing some algebraic manipulation,
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3
5:

This result is equivalent to (7), completing the proof. n

Proof of Proposition 3. Let n ¼ ðnhÞh2H be an observed haplotype configuration. Stephens and Donnelly’s CSD p̂SD is
formulated by assuming that a new haplotype may be conditionally sampled by choosing a haplotype from n uniformly
at random and mutating the loci using a prescribed scheme dependent on u‘ and P(‘) ¼ (P ð‘Þa;a9) for each locus ‘ 2 L.
Letting h9 2 H,

p̂SDðeh9 jnÞ ¼
X
h2H

nh

n

X
s2Nm

 
s
s

!
F ðh; h9; sÞ; ðA3Þ

where s¼ (s1, . . . , sm) denotes the number of mutations at each locus, s ¼
Pm

i¼1 si ,
�

s
s

	
is the multinomial coefficient, and

F(h, h9, s) is the probability of h mutating to h9 with s‘ mutations at each locus ‘ 2 L,

F ðh; h9; sÞ ¼ n
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;
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where Q ¼
P

‘2L u‘. We show that p̂SDðeh9jnÞ obeys the same recursion as p̂PSðeh9jnÞ. By removing the summand with
s ¼ 0 2 Nm in Equation A3, we obtain

p̂SDðeh9 jnÞ ¼
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Additionally, we have that F(h, h9, 0) ¼ dh,h9/(n 1 Q), and

F ðh; h9; s 1 e‘Þ ¼
u‘

n 1 Q

X
a2E‘

P
ð‘Þ
a;h9½‘� � F ðh;Sa

‘ ðh9Þ; sÞ:

Substituting these identities into (A4) yields the recursion
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which is identical to the recursion (9) for p̂PSðh jnÞ, thereby proving the proposition. n

Proof of Proposition 4. Define BðmÞ ¼
P

g2G mg � jBðg Þj as the total number of valid breakpoints in m. Using (7) in the
limit that r/‘ and assuming B(m) . 0,
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Repeated application of this equation yields the key identity

p̂PSðm jnÞ ¼ p̂PSðm* jnÞ; ðA5Þ

where m* is derived from m by recombination at every possible breakpoint. More precisely, define u‘;a 2 G to be the
haplotype with allele a 2 E‘ at locus ‘ 2 L and � elsewhere. Then

m* ¼
X
‘2L
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X
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Observing that B(m*) ¼ 0, we may apply (A5) to (7) to obtain

X
‘2L

ðjm½‘� j � ðn 1 u‘ÞÞp̂PSðm* jnÞ

¼
X
‘2L

X
a2E‘

ðm½‘�Þa �
"
ððn½‘�Þa 1 ððm½‘�Þa � 1ÞÞp̂PS ðm‘*� eu‘;a Þ1

X
‘92L:‘9 6¼‘9

m‘9* jn
 !

1 u‘
X
a92E‘

P
ð‘Þ
a9;ap̂PS

 
ðm‘*� eu‘;a 1 eu‘;a9

Þ1
X

‘92L:‘9 6¼‘9
m‘9* jn

!#
: ðA6Þ

Observe that (A6) is a sum of independent recursions, each for a particular locus ‘2 L. It is thus easily verified that the
recursion has solution

p̂PSðm* jnÞ ¼
Y
‘2L

p̂PSðm‘* jnÞ ¼
Y
‘2L

p̂PSðm½‘� jn½‘�Þ:

In conjunction with (A5), this produces the desired result. n
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Proof of Proposition 5. As described, the p̂PS;1 is the approximate CSD obtained by removing the second
term on the right-hand side of (7) and renormalizing the left-hand side. Writing the resulting recursion for
m ¼ eg1
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,
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"

1
X
‘2LðgiÞ

u‘
X
a2E‘

P
ð‘Þ
a;gi ½‘�p̂PS;1ðm� egi

1 eSa
‘
ðgiÞ j nÞ

1
X

b2BðgiÞ
rbp̂PS;1ðm� egi

1 eR�b ðgiÞ1 eR1
b ðgiÞ j nÞ

3
5: ðA7Þ

Observe that (A7) is a sum of independent recursions, each for a particular haplotype gi 2 H. It is thus easily verified
that the recursion has solution

p̂PS;1ðm jnÞ ¼
Ym
i¼1

p̂PS;1ðegi
jnÞ;

which is our desired result. n
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