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ABSTRACT

The joint action of multiple genes is an important source of variation for complex traits and human
diseases. However, mapping genes with epistatic effects and gene–environment interactions is a difficult
problem because of relatively small sample sizes and very large parameter spaces for quantitative trait
locus models that include such interactions. Here we present a nonparametric Bayesian method to map
multiple quantitative trait loci (QTL) by considering epistatic and gene–environment interactions. The
proposed method is not restricted to pairwise interactions among genes, as is typically done in parametric
QTL analysis. Rather than modeling each main and interaction term explicitly, our nonparametric
Bayesian method measures the importance of each QTL, irrespective of whether it is mostly due to a main
effect or due to some interaction effect(s), via an unspecified function of the genotypes at all candidate
QTL. A Gaussian process prior is assigned to this unknown function. In addition to the candidate QTL,
nongenetic factors and covariates, such as age, gender, and environmental conditions, can also be
included in the unspecified function. The importance of each genetic factor (QTL) and each nongenetic
factor/covariate included in the function is estimated by a single hyperparameter, which enters the
covariance function and captures any main or interaction effect associated with a given factor/covariate.
An initial evaluation of the performance of the proposed method is obtained via analysis of simulated and
real data.

TRAITS showing continuous variation are called
quantitative traits and are typically controlled by

multiple genetic and nongenetic factors, which tend to
have relatively small effects individually. Crosses be-
tween inbred lines produce suitable populations for
quantitative trait locus (QTL) mapping and are avail-
able for agricultural plants and for animal (e.g., mouse)
models of human diseases. Such crosses are often used
to detect QTL. For these inbred line crosses, uniform
genetic backgrounds, controlled breeding schemes,
and controlled environment ensure that there is little
or no confounding of uncontrolled sources of variabil-
ity with genetic effects. The potential for such con-
founding complicates and limits the analysis and
interpretation of human data. Because of the homology
between humans and rodents, rodent models can be
extremely useful in advancing our understanding of
certain human diseases. In the past 2 decades, various
statistical approaches have been developed to identify
QTL in inbred line crosses (see, for example, Doerge

et al. 1997 for review). To perform QTL mapping

(identification), a large number of candidate positions
(candidate QTL) along the genome are selected. These
candidate QTL may all be located at genetic markers
(positions of sequence variants in the genome where
the genotypes of all individuals in a mapping pop-
ulation can be measured) or also in between markers if
the marker density is not high. QTL mapping may then
be performed by considering one candidate QTL at a
time or multiple candidate QTL simultaneously. For
inbred line crosses with low marker density and
considering a single candidate QTL at a time, the
interval-mapping method was proposed by Lander and
Botstein (1989). However, these authors showed that
interval mapping tends to identify a ‘‘ghost’’ QTL
located in between two actual linked QTL if two or
more closely linked QTL exist. This problem can be
reduced or eliminated in two ways: (1) by using
composite-interval mapping ( Jansen and Stam 1994;
Zeng 1994) which still performs a one-dimensional
QTL search but conditional on the genotypes at a pair
of markers flanking the marker interval containing the
current QTL, to absorb the effects of background
(nontarget QTL) outside of the target interval; or (2)
by performing multiple QTL mapping, where two or
more QTL are mapped simultaneously. Furthermore, if
several QTL affect a quantitative trait mostly through

Supporting information is available online at http://www.genetics.org/
cgi/content/full/genetics.109.113688/DC1.

1Corresponding author: Department of Biostatistics, University of North
Carolina, 4115D McGavran–Greenberg Hall, CB 7420, Chapel Hill, NC
27599. E-mail: fzou@bios.unc.edu

Genetics 186: 385–394 (September 2010)

http://www.genetics.org/cgi/content/full/genetics.109.113688/DC1
http://www.genetics.org/cgi/content/full/genetics.109.113688/DC1
http://www.genetics.org/cgi/content/full/genetics.109.113688/DC1
http://www.genetics.org/cgi/content/full/genetics.109.113688/DC1
http://www.genetics.org/cgi/content/full/genetics.109.113688/DC1


their interactions (epistasis) while having nonexistent or
weak main effects, then interval mapping or single-
marker analysis will fail to detect such QTL. QTL
interactions may not be limited to pairwise interactions.
Marchini et al. (2005) have shown by simulation that
searching for three loci jointly in the presence of a three-
way interaction is more powerful than searching for a
single or a pair of QTL. There are various different
implementations of multiple QTL mapping. Most
methods still perform only pairwise searches, with and
without epistasis. The most recent methods are based on
Bayesian variable selection and consider a group of
candidate QTL or all candidate QTL in the genome
simultaneously (e.g., Yi et al. 2007). These methods are
typically still limited to pairwise interactions among QTL
and do not consider gene–environment interactions.

The identification of QTL can be viewed as a very
large variable selection problem: for p candidate QTL,
with p typically in the hundreds or thousands and
sample size in the low hundreds, there are 2p possible
main-effect models, 2

p

2

� �
possible two-way interactions,

and 2
p

k

� �
possible higher-order (k . 2) interactions. For

inbred line crosses, where multiple-QTL mapping
models can be represented as multiple linear regression
models, classical variable selection methods such as
forward and stepwise selection (Broman and Speed

2002) have been used in searching for main and two-way
interaction effects. Bayesian analysis implemented by
Markov chain Monte Carlo (MCMC) and based on the
composite model space framework (Godsill 2001,
2003) has been introduced to genetic mapping (Yi

2004). Well-known Bayesian variable selection methods
such as reversible jump MCMC (Green 1995) and
stochastic search variable selection (SSVS) (George

and McCulloch 1993) are special cases. SSVS and
similar methods employ mixture priors for the regres-
sion coefficients, which specify different distributions
for the coefficients under the null (effect negligible)
and alternative (effect nonnegligible) hypotheses. The
marginal posterior probabilities of the alternative hy-
potheses can be used to identify a subset of important
parameters on the basis of Bayesian multiple compari-
son rules, including the median probability model (with
a threshold of 0.5) and Bayesian false discovery rate
control (e.g., Müller et al. 2006).

An alternative to variable selection with mixture
priors is classical and Bayesian shrinkage- or penalty-
based inference. For the classical approach of penalized
regression, while an L2-based shrinkage method (ridge
regression) cannot perform variable selection, other
methods, in particular the L1-based lasso of Tibshirani

(1996) and later lasso extensions, are capable of
performing variable selection by reducing the effects
of unimportant variables effectively to zero. The lasso
has been applied to parametric, regression-based QTL
mapping (Yi and Xu 2008). The penalized regression
methods can be interpreted as Bayesian regression

models with particular sparsity priors imposed on the
regression coefficients (Park and Casella 2008).

Regression methods are also used for association
mapping in human populations. Recently, Kwee et al.
(2008) proposed a semiparametric regression-based
approach for candidate regions in human association
mapping, where a quantitative trait is regressed on a
nonparametric function of the tagSNP genotypes within
a region. They analyzed a (small) subset of the genome
and tested for the joint significance of the subset. Their
method potentially can be used to model interactions
among SNPs and covariates. However, Kwee et al. (2008)
fit their model using least-squares kernel machines, a
dimension-reducing technique that is identical to an
analysis based on a specific linear mixed model. Model
selection for different types of kernels and different sets
of variables is performed using criteria such as Akaike’s
information criteria (Akaike 1974) and Bayesian in-
formation criteria (Schwarz 1978), which may not be
appropriate or feasible in large-scale, sparse variable
selection situations.

We (Huang et al. 2010) recently developed a
Bayesian semiparametric QTL mapping method,
where nongenetic covariate effects are modeled non-
parametrically. This method was implemented via
MCMC, and a Gaussian process prior (O’Hagan

1978; Neal 1996, 1997) was placed on the unknown
covariate function. The Gaussian process is particularly
well suited for curve estimation due to its flexible
sample path shapes. This method allows one or more
nongenetic covariates to have an arbitrary (nonlinear)
relationship with the phenotype. Another strong ad-
vantage of the Gaussian process is its ability to deal with
high-dimensional data compared to other nonpara-
metric techniques such as spline regression (Wahba

1984; Heckman 1986; Chen 1988; Speckman 1988;
Cuzick 1992; Hastie and Loader 1993). There has
been a growing interest in using Gaussian processes
as a unifying framework for studying multivariate
regression (Rasmussen 1996), pattern classification
(Williams and Barber 1998), and hierarchical mod-
eling (Menzefricke 2000). In this article, we build
on this work and propose a nonparametric Bayesian
method for multiple QTL mapping by including not
only nongenetic covariates but also all candidate QTL
in the unknown function. A Gaussian process prior
(GPP) is again placed on the unknown function, and
a variable selection approach is implemented for the
hyperparameters of the GPP (one for each QTL and
nongenetic covariate). Here, we rely on mixture priors
and MCMC implementation, and we focus on linkage
mapping in inbred line crosses, while in ongoing and
future work we are considering shrinkage priors,
deterministic algorithms, and association mapping.
Our application of the GPP differs from ‘‘standard’’
applications in that the QTL covariates included in the
unknown function are discrete, not continuous, with a
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small number (two or three) of possible values (the
genotype codes). The goal of using a GPP here is not
curve or response surface modeling but rather high-
dimensional variable selection (QTL and nongenetic
covariates) with a method requiring only a single
parameter for each variable while accounting for any
multiway interactions among the candidate variables.

To improve current methods for linkage mapping in
inbred line crosses and for association analysis of
human populations, we need to be able to detect QTL
irrespective of whether they act mostly through main
effects, interactions with other QTL, or interactions
with environment. Fitting a parametric model including
all these potential effects for a genome-wide search
would substantially increase the multiple-testing prob-
lem, in addition to being computationally extremely
demanding. Here we offer an alternative. We show that
our nonparametric Bayesian method can identify QTL
irrespective of whether they act through main effects,
through interactions with other QTL, or with environ-
mental factors. This method cannot identify the sour-
ce(s) of a QTL’s importance (main or interaction effects
involving this QTL). Therefore, once a small number of
important QTL have been identified in a genome-wide
scan, then these QTL can be further analyzed with
detailed parametric models to determine the source(s)
of their importance.

The remainder of the article is organized as follows.
We first present the nonparametric multiple-QTL
model and outline the MCMC sampler in the next
section. Simulation results and the analysis of a real data
set are presented in the section following that. And we
end the article with a discussion and conclusions.

NONPARAMETRIC REGRESSION WITH
GAUSSIAN PROCESS

Model and prior: For the ith individual, we observe
(i) the genotype codes x i ¼ fxikgp

k¼1 at p markers, where
xik is the genotype code at the kth marker; (ii) q
nongenetic covariates or factors ti ¼ ftijgq

j¼1, where tij
is the value of nongenetic covariate j; and (iii) the
phenotype or trait value yi. The primary goal of the
analysis is to map QTL (also loosely referred to as
‘‘genes’’) associated with the phenotype. Assuming for
simplicity of presentation that the set of candidate
QTL is the set of markers, the problem reduces to
identifying which markers influence the phenotype
through their genotypes. We considered the following
semiparametric QTL mapping model in Huang et al.
(2010),

yi ¼
Xp

k¼1

xikbk 1 hðti1; . . . ; tiqÞ1 ei ; i ¼ 1; . . . ;n; ð1Þ

where h is an unknown function of nongenetic cova-
riates that we modeled via a Gaussian process prior; bk is

the partial regression coefficient associated with the
kth marker; and ei is a random error with distribution
N(0, s2

e ). Model (1) considers only main QTL effects,
which of course can be extended to pairwise interac-
tions by including the terms

P
j 6¼k xij xikbjk , into (1) and

similarly to higher-order interactions. The explicit mod-
eling of interactions among genes causes an increase in
the number of parameters in (1) which is exponential in
the order of the interactions considered. Consequences
are computational difficulties and poor inferences due
to small sample sizes. To overcome this problem, we can
alternatively consider the following model:

yi ¼ hðxi1; . . . ; xip ; ti1; . . . ; tiqÞ1 ei ; i ¼ 1; . . . ;n: ð2Þ

This model is flexible and considers all interactions
among genes and gene–environment interactions
nonexplicitly. For example, if the unknown function
h(xi1, . . . , xip, tt1, . . . , ttq)¼ xi1xi2 1 xi3ti1, then Equation 2
nonexplicitly models the two-way interaction between
genes 1 and 2 and the gene–environmental interaction
between gene 3 and environmental covariate 1. Let hi¼
h(xi1, . . . , xip, ti1, . . . , tiq) and define h ¼ fhig

n
i¼1.

To estimate h, we again assume that h has a Gaussian
process prior (as in Huang et al. 2010) with mean 0 and
with a covariance matrix S whose element ii9 (i 6¼ i9)
associated with individuals i and i9 is

Sii9 ¼ Cov½hi ;hi9� ¼ jexp �
Xp

k¼1

r2
xkðxik � xi9kÞ2 �

Xq

j¼1

r2
tj ðtij � ti9j Þ2

 !
;

ð3Þ
where j, the r2

xk’s, and the r2
tj ’s are hyperparameters.

This is the most commonly employed stationary co-
variance function for a Gaussian process (a detailed
presentation of Gaussian processes with many valid
covariance functions is in Abrahamsen 1997; see also
MacKay 1998). Hyperparameter j defines the vertical
scale of variations, i.e., controls the magnitude of the
exponential part. Hyperparameters r2

xk and r2
tj are

related to length scales that characterize the distance
in that particular direction over which y is expected to
vary significantly. When for example, r2

xk ¼ 0, then h is
expected to be essentially a constant function of variable
(gene) xk, which is therefore deemed irrelevant
(MacKay 1998). When r2

xk is large, then the resulting
function has a short characteristic length and will vary
rapidly along the corresponding axis of xk, indicating
that variable xk is of high importance. Similarly, r2

tj

indicates the importance of nongenetic covariate j in
combination with the genetic factors and other non-
genetic covariates.

The original articles on the Gaussian process (Neal

1997; MacKay 1998) did not view this method as an
approach for variable selection and imposed an inverse
Gamma prior on the r2 parameters. Though r2

xk does
provide information about the relevance of any QTL k
with values near zero indicating an irrelevant QTL
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[similar to the parameters bk in the parametric linear
QTL model (1)], determining which r2

xk’s are signifi-
cantly nonzero is challenging. It is convenient to
represent the hyperparameters r2

xk in terms of their
reciprocals, defined to be txk¼ 1/r2

xk and ttj ¼ 1=r2
tj . We

perform Bayesian variable selection by imposing
Gamma mixture priors on the parameters txk and ttj.
We introduce the latent variables gxk (gxk ¼ 0 or 1) and
gtj (gtj¼ 0 or 1). Then the Gamma mixture priors for the
QTL associated parameters are represented as

pxk � Beðpxk j axg; bxgÞ;
Pðgxk ¼ 1Þ ¼ 1� Pðgxk ¼ 0Þ ¼ pxk ;

txk � ð1� gxkÞGa txk

����ax0

2
;

ax0

2mx0

� �
1 gxkGa txk

����ax1

2
;

ax1

2mx1

� �
:

ð4Þ

Here Be(p j a, b) represents the Beta density pa�1(1 �
p)b�1/B(a, b), Ga(t j a, b) represents the Gamma density
ta�1exp(�bt)ba/G(a), with E(t) ¼ m and b ¼ a=2m, and
(ax0, mx0, ax1, mx1, axg, bxg) are hyperparameters to be
specified or inferred. Similarly, for the nongenetic
covariate associated parameters, we assume the mixture
priors

ptj � Beðptj jatg; btgÞ;
Pðgtj ¼ 1Þ ¼ 1� Pðgtj ¼ 0Þ ¼ ptj ;

ttj � ð1� gtjÞGa ttj

����at0

2
;

at0

2mt0

� �
1 gtjGa ttj

����at1

2
;

at1

2mt1

� �
:

ð5Þ

Note that here mx0, mx1, mt0, and mt1 are the means of the
two Gamma distributions in (4) and in (5), respectively.
Setting mx0 (as well as mt0) to a large value ensures that if
gxk ¼ 0, then rxk will take on very small values, and thus
the corresponding variable is irrelevant. In contrast,
setting mx1 (as well as mt1) to a smaller value ensures that
if gxk¼ 1, then a nonzero value of rxk will be included in
the model.

Define tj ¼ 1/j2, te ¼ 1=s2
e and let the prior distri-

butions of the two parameters be Gamma and given by

pðtjÞ ¼
ðaj=2mjÞaj=2

Gðaj=2Þ ðtjÞaj=2�1exp
�tjaj

2mj

 !
ð6Þ

pðteÞ ¼
ðae=2meÞae=2

Gðae=2Þ ðteÞae=2�1exp
�teae

2me

� �
: ð7Þ

Values for the parameters (aj, mj, ae, me) are chosen
prior to analysis.

The Gaussian process was originally proposed for
modeling curves with continuous covariates, where the
smoothness assumption on Gaussian process guaran-
tees the smoothness of the estimated curves. However,
in QTL mapping and other similar genetics analysis
(Kwee et al. 2008), the primary goal is to map genes. The

violation of the continuity assumption may be highly
influential on the QTL effect estimation, but since the
QTL effect estimation is only a secondary task in QTL
mapping, the discreteness of genetic variables is less of a
concern. As one extreme example, when only one gene
is included, the Gaussian process model is equivalent to
the random effect model where the genetic effect is
treated as random with a normal distribution.

MCMC algorithm for posterior computation: Infer-
ence is based on the joint posterior distribution of the
unknown parameters (tx1, . . . ,txp, tt1, . . . ,ttq, tj, te) and
the unknown function vector h, conditional on the
phenotype (y), covariate (t), and marker (x) data. One
potential problem in working with this joint posterior
arises due to the discrete nature of the marker data:
When the number of significant markers (i.e., markers
with distinctly nonzero rxk) is small, then the covariance
matrix of h, S, may become (nearly) singular, because
multiple individuals will share the same genotype
configuration at these few markers. In this case the
performance of the method deteriorates, and we
therefore prefer to work with the joint posterior of the
unknown parameters, or the joint posterior marginal-
ized with respect to h. Because of the normal prior on h,
this marginalization is equivalent to substituting the
likelihood function of y conditional on h by the
unconditional likelihood of y, or

y�N ð0;SyÞ; where Sy ¼ S 1 s2
e I; ð8Þ

where Sy is nonsingular even if S is singular. We
compared inferences based on the joint posterior of
the unknown parameters and h vs. the joint posterior of
the parameters (using the same simulated data as
presented below) and found the latter to provide clearly
superior results. Therefore, from here on we consider
only the marginalized posterior.

Most of the posterior computation is quite straightfor-
ward, and details can be found in supporting informa-
tion, File S1. Below we describe an efficient sampling
scheme, hybrid MCMC, that is essential for dealing with
the large-scale QTL mapping data.

Let y ¼ (log(tx1), . . . , log(txp), log(tt1), . . . , log(ttq),
log(tj), log(te)). Due to the complexity of the covari-
ance form (3), one cannot sample from the full
conditional posterior distributions of y directly. The
Metropolis–Hastings algorithm could be used with
some proposal distribution, but it would explore the
region of high probability by an inefficient random
walk. To overcome this problem, the hybrid Monte
Carlo method was proposed for sampling the hyper-
parameters in Gaussian process regression (Neal 1993,
1996; Rasmussen 1996; Barber and Williams 1997),
and we adopt this approach here. The hybrid Monte
Carlo method merges the Metropolis–Hastings algo-
rithm with sampling techniques based on dynamics
simulation.
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To sample the p 1 q 1 2 elements of vector y
from their posterior distribution p(y j y, u–y), we
consider a physical system including p 1 q 1 2 particles
with the coordinate of the ith particle being yi.
The potential energy of this system is defined in
such a way that eðyÞ ¼ �log pðy j y; u�yÞ. To allow the
use of the dynamic method, we introduce a ‘‘momen-
tum’’ variable, f, which has p 1 q 1 2 real-valued com-
ponents, fi, in one-to-one correspondence with the
components of y. The kinetic energy of this system
is defined as KðfÞ ¼ 1

2

Pp1q12
i¼1 f2

i . Therefore, sampl-
ing y from pðyÞ ¼ e�eðyÞ is equivalent to sampling
(y, f) from pðy; fÞ ¼ e�eðyÞ�KðfÞ by simply ignoring
the momentum f. The canonical distribution over
(y, f) is defined to be pðy; fÞ ¼ e�Hðy;fÞ, where
Hðy; fÞ ¼ eðyÞ1KðfÞ is the ‘‘Hamiltonian’’ function,
which gives the total energy of the system. It is
well known in physics that the evolutions of
such a canonical dynamical system through fictitious
time s are governed by the following differential
equations:

dyi

ds
¼ @H
@fi

¼ fi ;
dfi

ds
¼ � @H

@yi
¼ � @e

@yi
: ð9Þ

By simulating this dynamical system, the transitions of
the Markov chain in the hybrid Monte Carlo method
take place as follows:

a. Starting from the current state (y(s), f(s)), perform
L steps on the basis of the discretized Equation 9 with
step size e, resulting in the state (y*, f*) ¼ (y(s 1

Le), f(s 1 Le)). A single step from s to s 1 e can be
explicitly written as

fi s 1
e
2

� �
¼ fiðsÞ �

e
2

@e
@yi
ðyðsÞÞ; ð10Þ

yiðs 1 eÞ ¼ yiðsÞ1 efi

�
s 1

e
2

�
; ð11Þ

fiðs 1 eÞ ¼ fi s 1
e
2

� �
� e

2

@e
@yi
ðyðs 1 eÞÞ: ð12Þ

b. With probability minð1; exp½Hðy;fÞ � Hðy*;f*Þ�Þ,
accept the new state (y, f) ¼ (y*, f*); otherwise
reject the new state and retain the old state with
negated momentum (y, f) ¼ (y, �f).

c. Update the total energy of the system by perturbing
the momenta according to fi ¼ cfi 1 zi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

for
all i, where zi is drawn randomly from the standard
normal distribution. The momentum causes the
particle to continue in a consistent direction until a
region of high energy (low probability) is encoun-
tered. Following Rasmussen (1996), we set e ¼
0.5n�1/2 and c ¼ 0.95.

SIMULATION AND REAL DATA ANALYSIS

Simulation of multiple-QTL models with or without
higher-order interactions: We simulated a backcross
population with 200 individuals and a single chromo-
some with 151 evenly spaced markers at 5-cM intervals.
To investigate the ability of the nonparametric Bayesian
multiple-QTL analysis based on (2) to map higher-order
interacting QTL that have no main effects, we simulated
four interacting QTL without main effects and without
lower-order interactions. The four simulated QTL are
located at markers 9, 39, 69, and 99, respectively. The
simulated function h ¼ h(xi1, . . . ,xi151) ¼ xi9xi39xi69xi99,
where the xik, k¼ 9, 39, 69, 99, are the genotype codes (1
and �1) of the four simulated QTL of individual i and
s2

e ¼ 1. The total heritability of this model is 50%.
For the analysis, we set ax0 ¼ at0 ¼ ax1¼ at1¼ 1, aj¼

ae ¼ 0.5, C ¼ 100, and mj ¼ me ¼ 400. We also set axg ¼
atg ¼ 0.95 and bxg ¼ btg ¼ 0.05, so that the prior
probabilities that each variable (QTL or nongenetic
covariate) is relevant or irrelevant for the phenotype are
0.05 and 0.95, respectively. Figure 1a provides a plot of
the posterior mean estimate of the hyperparameter gxk

for each marker k vs. the marker position from the
general model (2). As we hoped, the estimates of the
hyperparameters associated with the true QTL markers
are much larger than the estimates of the hyperpara-
meters associated with the irrelevant markers, and all
four, purely interacting QTL were identified on the basis
of the marginal posterior probability of inclusion .0.5.
Selecting all variables with marginal posterior probabil-
ity of inclusion .0.5 produces the median probability
model that is known to frequently correspond to the
optimal predictive model while often differing from the
highest probability model.

For comparison, we also ran R/qtlbim (www.qtlbim.
org/), a popular software for Bayesian multiple-QTL
mapping developed by Yandell et al. (2007). R/qtlbim
is an extensible, interactive environment for parametric
Bayesian analysis of multiple interacting QTL models
for experimental crosses (limited to two-way interac-
tions). The results are summarized in Figure 1b. In the
R/qtlbim manual (Banerjee et al. 2008), the following
criteria are suggested for judging the significance of
QTL: weak support if the Bayes factor (BF) falls between
3 and 10, moderate support if the BF falls between 10
and 30, strong support if the BF . 30, and no support if
BF , 3. According to these criteria, R/qtlbim fails to
detect any QTL simulated.

To further test the method, we then simulated
data sets containing QTL that have only main effects
(h(xi1, . . . , xi151) ¼ 0.25(xi21 1 xi51 1 xi81 1 xi111)) or
main and two-way interaction effects (h(xi1, . . . , xi151)¼
0.25 � (xi21 1 xi81 1 xi21xi51 1 xi81xi111)). These are
situations that R/qtlbim was specifically designed for.
All other simulation parameters remained the same as
in the previous simulation. Both models have a total
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heritability of 20% (�5% heritability for each QTL). We
used the same priors as in the previous simulation for
the nonparametric method, and as before we used the
default priors of R/qtlbim. Figure 2 summarizes the
results for the additive model. Our nonparametric
method detects three of the four QTL on the basis of
the marginal posterior probability of inclusion (.0.5)
and misses one QTL. Similarly, R/qtlbim detects the
same three QTL with weak support (3 , BF , 10). For
the model with the two-way interactions, results were
very similar and are therefore not shown.

Our method and R/qtlbim use different criteria
(median inclusion probability vs. BF-based selection)
for the selection of a relevant subset of QTL. This
difference is confounded with the comparison between
the nonparametric and the linear parametric method in
terms of their ability to detect existing QTL correctly. To
overcome this problem, we varied the cutoffs imposed
on the inclusion probability and BF, respectively, for
declaring the significance of QTL, and we generated
receiver operating characteristic (ROC) curves. For
each scenario (four-way interaction, additive, and addi-
tive plus two-way interaction models as above), we ran
100 simulations. Instead of fixing the positions of the
four simulated QTL, we uniformly generated their
positions subject to the restriction that any pair of
QTL had to be at least 10 cM apart. We divided the
whole genome into nonoverlapping 10-cM-wide inter-
vals. For a given cutoff (on inclusion probability or BF),
a significant interval was defined as an interval that
contains at least one marker whose significance mea-
sure exceeds the cutoff. A significant interval is defined
as a true positive if it includes one of the simulated QTL.

Otherwise, it is called a false positive. We defined true
positive rate¼ (no. of significant, true intervals)/(no. of
significant intervals) and false positive rate ¼ (no. of
significant, false intervals)/(no. of significant intervals).
The ROC curves up to a false positive rate of 0.1 are
given in Figure 3 for all three models simulated. For the
four-way interaction model, our nonparametric method
performed much better than R/qtlbim, which essen-
tially failed to detect any QTL. It is interesting to see that
our method appears to perform essentially as well as R/
qtlbim for the model with both main and two-way
interactions. It is even more interesting to find that
our method is superior to R/qtlbim for the main effects
model. This is because we ran R/qtlbim by searching for
both main effects and two-way interactions simulta-
neously, even when analyzing the data generated under
the pure main effects (additive) model.

Real data analysis: In addition to the simulation, we
tested our method on a real mouse study on obesity, a
major risk factor for type II diabetes. To genetically
dissect a polygenic mouse model of obesity-driven type
II diabetes, Reifsnyder et al. (2000) outcrossed the
obese, diabetes-prone, New Zealand obese (NZO)/HlLt
strain to the relatively lean nonobese nondiabetic
(NON)/Lt strain and then reciprocally backcrossed
obese F1 mice to the lean NON/Lt parental strain. They
measured the body weights of 187 backcross males. In
addition, inguinal, gonadal, retroperitoneal, and mes-
enteric fat pad weights were also measured. Stylianou

et al. (2006) studied the fat pad weights using F2 progeny
between the SM/J and NZB/BINJ inbred mouse strains.
They identified several QTL associated with the gonadal
fat pad weight after adjusting for the total lean body

Figure 1.—Four-way in-
teraction model. (a) Aver-
age marginal posterior
probabilities of being in-
cluded in the model for
each marker. (b) Estimated
marginal Bayes factor for
each marker from R/
qtlbim. The dashed vertical
lines indicate the true QTL
positions. The dotted hori-
zontal line is the threshold
suggested by R/qtlbim for
weak support of signifi-
cance.
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weight (LBWT). Following Stylianou et al. (2006), we
first calculated the total fat pad weight as the mesenteric
fat pad weight plus twice the sum of the inguinal,
gonadal, and retroperitoneal fat pad weights. Then
the LBWT was obtained as the difference between the
total body weight and the total weight of the fat pads. We
applied our nonparametric Bayesian variable selection
method to the Reifsnyder et al. (2000) data. The results
are presented in Figure 4. Clearly, 2 among the 86
predictors (85 markers plus the continuous covariate
LBWT) are selected. The first ranked predictor is the
covariate LBWT, and the second ranked predictor is
marker D4Mit311 located on chromosome 4. Figure 4
strongly indicates a QTL on chromosome 4 while other
QTL in the genome are (much) less likely. Further
studies based on this observation can be done by
investigating the relationship between the phenotype
and these two variables in more detail. For each
genotype of the QTL identified on chromosome 4, we
estimated the weight curve function on LBWT, and the
results are reported in Figure 5. From the two estimated
curves, there is no clear evidence for an interaction
between the QTL and LBWT.

DISCUSSION

In this article, we have proposed a novel nonpara-
metric QTL mapping method where the genetic as
well as nongenetic factors are modeled via a function
h, whose form is unspecified. The advantage of our
approach is that it models all potential genetic and
nongenetic effects, including main effects and all in-
teraction effects of any order, nonexplicitly. It deter-
mines only which of the genetic and nongenetic factors

are important, on their own through main effects and/
or in combination with other factors. This was achieved
by combining the Gaussian process prior for the un-
known function with variable selection. Although in this
article we assumed that all putative QTL are located at
the marker positions, it is straightforward to extend the
method to consider any candidate QTL in between
marker positions as in Wang et al. (2005) and Huang

et al. (2010). A similar nonparametric variable selection
procedure has been proposed for computer experi-
ments by Linkletter et al. (2006). These authors
mainly focused on identifying active factors having
nonlinear relationships with the response variable.
However, mapping multiple interacting QTL is our
main purpose, and our article appears to be the first
one to propose modeling the joint action of multiple
QTL with an unknown function having a Gaussian
process prior, which accommodates any multiway inter-
actions. Moreover, Linkletter et al. (2006) consider
only a relatively small (,50) number of continuous
covariates while in our article and in QTL linkage and
association mapping in general, there are a large
number of discrete marker covariates (hundreds or
thousands) in addition to a small number of environ-
mental, continuous covariates or discrete factors. There-
fore, an efficient sampling scheme, such as the hybrid
MCMC described in this article, is essential for dealing
with these large-scale data sets.

While the linear parametric method in R/qtlbim may
have little or no power to detect QTL acting through
higher-order interactions, computationally it is fast, and
it can handle large numbers of individuals and markers.
We do not recommend replacing the linear parametric

Figure 2.—Additive (main
effects only) model. See Fig-
ure 1 for details.
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analysis with the nonparametric method, but rather
using it as an additional or preliminary tool to screen
the genome for QTL acting through higher-order
interactions, which existing QTL mapping methods fail
to detect. Once important factors have been identified
with the nonparametric method, they then can and
should be further analyzed with a detailed parametric
model to elucidate the mode of action of the identified
QTL (and environmental factors). Application of a
detailed parametric method on a genome-wide scale
to search for all possible main and interaction effects
would dramatically increase the multiple-testing prob-
lem, in addition to the computational burden, while the
nonparametric method can identify all these effects
with a single parameter per candidate QTL (and envi-
ronmental factor).

Our current research focuses on further improving
the computational feasibility of our nonparametric
method. Our current implementation of the Bayesian
Gaussian process prior method, with the mixture
priors on the variable selection parameters (r’s) and
using the hybrid Monte Carlo method, allows us to
analyze data sets with up to several hundred individuals
and several hundred markers, in hours rather than in
minutes as with R/qtlbim. A major reason for this
increase in computing time is the need to compute the

inverse of an n 3 n matrix in each MCMC cycle to
sample y. This is particularly a problem for genome-
wide association studies (GWAS), for which our non-
parametric method is also potentially useful. GWAS
typically require a larger sample size than linkage
studies (in the order of thousands or tens of thou-
sands) and several hundred thousand markers (tag
SNPs). Further, in this article, we propose a simple
Gibbs sampler for the latent binary variables that code
for inclusion of a marker in the covariance function.
For QTL mapping with only hundreds of markers, this
algorithm works well. For very large p, it is likely that
the algorithm may not properly mix over the huge
sample space, a legitimate concern when we apply the
method directly to GWAS data where hundreds of
thousands of SNPs are available. Berger and Molina

(2005) propose an approach to search for important
models through large model space without visiting
every model. Their approach provides a nice alterna-
tive, which deserves further investigation for GWAS
data. Besides alternative sampling schemes we are
currently investigating shrinkage priors to replace the
mixture priors and increase computational efficiency,
and we are exploring deterministic algorithms to re-
place MCMC sampling, in particular a conjugate gra-
dient optimization technique to compute the maximum

Figure 3.—ROC curves estimated for the three models simulated. The solid lines represent the nonparametric method and the
dotted lines the linear parametric method in R/qtlbim. (a) Additive (main effects) model; (b) main plus two-way interaction
effects model; (c) four-way interaction model.
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a posteriori estimates of the parameters (Rasmussen

1996). A genome-wide data set may first be analyzed
with the deterministic implementation to screen out
many variables (predictors) that are clearly irrelevant.
Then the selected, promising subset of predictors
(markers, genomic regions) may be reanalyzed by full
MCMC, which provides much more information than
a deterministic mode-finding algorithm. With an
initial implementation of shrinkage priors and the
conjugate gradient optimization technique we have
been able to analyze a data set in a candidate gene
association study with �900 participants and 2500 tag
SNPs.

Selection of a subset of QTL can be performed on the
basis of the estimated marginal posterior probabilities
of inclusion with cutoff determined using the median

probability model or Bayesian false discovery rate. Alter-
natively, we may add pseudonull variable(s) into the
model and use the posterior distribution of their g’s to
guide the variable selection. Linkletter et al. (2006)
suggested adding a single pseudonull variable but run-
ning the analysis many times (say 100). For computa-
tional reasons, this approach works for their smaller size
problems but is computationally very demanding or
infeasible in the QTL mapping context. Furthermore,
adding a single pseudonull variable would not work
(well) for QTL mapping because marker (null) variables
are correlated due to linkage. Wu et al. (2007) proposed
a similar idea for variable selection in linear regres-
sion models using a set of pseudonull variables. Their
method requires no additional repeated analysis as in
Linkletter et al. (2006) and can also incorporate the
linkage structure of the observed markers into the gen-
eration of the pseudonull variables. We are planning to
extend the method of Wu et al. (2007) to our Gaussian
process-based QTL selection methodology.

Much work has been done recently on sparse signal
detection in (generalized) linear regression models,
where there are two groups of sparsity priors, shrinkage
or one-group priors, and mixture or two (multiple)
group priors. Here we have employed a mixture prior
for the parameters related to variable selection. Our
current and future work focuses on further studies and
modifications of this mixture prior and of alternative
shrinkage priors. The goal of our present article was to
convincingly demonstrate that the nonparametric Bayes-
ian analysis based on the Gaussian process prior is in-
deed able to detect QTL irrespectively of whether they
act on the trait of interest through main effects, any
order of interaction among QTL, or interactions of
QTL with environmental factors.

The authors thank the editor, the associate editor, and referees for
their helpful comments and suggestions, which led to a great
improvement of this article. This research was partially supported by
National Institutes of Health grant GM074175.

Figure 4.—Nonparametric Bayesian analysis of the back-
cross mesenteric fat pad data.

Figure 5.—Estimated h function separated for the QTL
genotypes of marker D4Mit311 on chromosome 4.
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Supplement

MCMC algorithm for posterior computation. Let θ be the vector of all unknown quantities
in the model, including the τxks, the τtjs, the γxks, the γtjs, τξ, τe and the latent variables, the
ηis. Furthermore, we define θ−z as the remaining sub-vector of θ after removing a parameter or
parameter subset z from θ. Below we present the MCMC algorithm for the posterior computation.

For given values of the hyperparameters, which include αx0,αt0,αx1,αt1, αξ,αe, C, µξ, µe, axγ, atγ,
bxγ and btγ, we first sample the τxks, the τtjs and τe from their prior distributions. Then we perform
the following updating steps many times:

Step 1. Sample η directly from its conditional distribution, which is the multivariate normal

η|y,θ−η ∼ Nn(µ∗,Σ∗), (1)

with the covariance matrix Σ∗ =
(

1
σ2

e
In + Σ−1

)−1

and mean vector µ∗ = 1
σ2

e
Σ∗y. For the posterior

distribution marginalized with respect to η we skip this step and directly go to Step 2.

Step 2: Sample the γxks and the γtjs directly from their conditional posterior distributions. The
conditional distribution of γxk does not depend on y but rather on ρxk and several hyper-parameters
and is of the form

p(γxk = 1|θ−γxk
) =

bxγ

(
αx1
2µx1

)αx1
2

ρ−αx1
xk e

− αx1
2µx1ρ2

xk

axγ

(
αx0
2µx0

)αx0
2

ρ−αx0
xk e

− αx0
2µx0ρ2

xk + bxγ

(
αx1
2µx1

)αx1
2

ρ−αx1
xk e

− αx1
2µx1ρ2

xk

, (2)

Similarly, we have

p(γtj = 1|θ−γtj) =
btγ

(
αt1
2µt1

)αt1
2

ρ−αt1
tj e

− αt1
2µt1ρ2

tj

atγ

(
αt0
2µt0

)αt0
2

ρ−αt0
tj e

− αt0
2µt0ρ2

tj + btγ

(
αt1
2µt1

)αt1
2

ρ−αt1
tj e

− αt1
2µt1ρ2

tj

. (3)

Step 3: Sample the τxks, the τtjs, τξ and τe from their posterior distribution, which is proportional
to

1

| Σ |1/2
exp{−1

2
η

′
Ση}

∏

k

p(τxk|γxk)
∏

j

p(τtj|γtj)p(τξ)[τ
n/2
e exp{−1

2
τe(y − η)

′
(y − η)}p(τe)]. (4)

See Section 2.2 for the implementation details.

For the posterior distribution marginalized with respect to η, Equation 4 is changed to

1

| Σ∗ |1/2
exp{−1

2
y

′
Σ∗−1y}

∏

k

p(τxk|γxk)
∏

j

p(τtj|γtj)p(τξ)p(τe). (5)

One iteration or cycle of our MCMC sampler consists of steps 1 to 3 for the joint posterior of
the parameters and η, or steps 2 and 3 for the marginal posterior of the parameters. When the
chain converges to its stationary distribution, the sampled values of all parameters are from their
joint posterior distribution. Likewise, the samples of any single parameter represent the marginal
posterior distribution of this parameter.
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