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Only a subset of patients with newly diagnosed glioblas-
toma (GBM) exhibit a response to standard therapy. To
date, a biomarker panel with predictive power to dis-
tinguish treatment sensitive from treatment refractory
GBM tumors does not exist. An analysis was performed
using GBM microarray data from 4 independent data
sets. An examination of the genes consistently associated
with patient outcome, revealed a consensus 38-gene sur-
vival set. Worse outcome was associated with increased
expression of genes associated with mesenchymal differ-
entiation and angiogenesis. Application to formalin
fixed-paraffin embedded (FFPE) samples using real-
time reverse-transcriptase polymerase chain reaction
assays resulted in a 9-gene subset which appeared
robust in these samples. This 9-gene set was then vali-
dated in an additional independent sample set.
Multivariate analysis confirmed that the 9-gene set was
an independent predictor of outcome after adjusting
for clinical factors and methylation of the methyl-
guanine methyltransferase promoter. The 9-gene
profile was also positively associated with markers of
glioma stem-like cells, including CD133 and nestin. In
sum, a multigene predictor of outcome in glioblastoma
was identified which appears applicable to routinely

processed FFPE samples. The profile has potential clini-
cal application both for optimization of therapy in GBM
and for the identification of novel therapies targeting
tumors refractory to standard therapy.
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Introduction

G
lioblastoma (GBM) is the most common primary
brain tumor in adults and is highly lethal.1

Despite increasing evidence that clinically relevant
distinct molecular subtypes of GBM exist,2–7 molecular
predictors currently play no role in treatment decisions.1

A recent phase III clinical trial for newly diagnosed GBM
showed that a regimen consisting of radiation with conco-
mitant/adjuvant temozolomide (TMZ) improved survival
compared with radiation alone.8 In this trial, methylation
of the MGMT promoter was a favorable prognostic factor,
especially in the TMZ-treated arm.5 While promising, it is
likely that additional biomarkers could complement
MGMT status as an outcome predictor. In addition,
identificationofprognostic genes could point tonew thera-
peutic approaches for tumors resistant to standard
therapy.

The large number of genes investigated in expression
microarray data gives rise to a multiple comparisons
problem, with a resulting high false-discovery rate in
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individual data sets.9,10 Generalizations regarding the
predictive power of genes identified from single microar-
ray data sets must therefore be made with caution.
Several studies have been published,3,7,11,12 but no con-
sensus gene expression profile in malignant glioma
reproducibly associated with patient outcome across
independent data sets has been identified to date.

Methods

Gene Expression Array Data Sets and Survival Analyses

The analysis was performed using 4 previously pub-
lished GBM microarray data sets.3,7,11,12 All cases
were newly diagnosed GBMs as defined by the World
Health Organization criteria. Clinical annotation con-
sisted of patient age, survival time, and confirmation of
no prior therapy. The median age was 54 years and
the median survival time was 62 weeks. The platform
for all 4 data sets was Affymetrix-based and used 2
different chip types: U95Av2 and U133A. Data
between these 2 chips were merged by mapping available
probe sequence data with 2 databases.13,14 Additional
details are shown in Supplementary Material, Table
S1. For the initial array analysis, cases were dichoto-
mized into typical (,2 years) vs long-term (�2 years)
survival groups (TS vs LTS, respectively). Several statisti-
cal approaches15,16 were investigated for survival ana-
lyses (see Supplementary Methods). Genes were ranked
according to degree of difference between TS and LTS
groups. Patients were followed until death or were cen-
sored at last known follow-up.

Quantitative Reverse Transcriptase-Polymerase Chain
Reaction and Immunohistochemistry

Quantitative measurement of expression of candidate
survival genes from formalin-fixed, paraffin-embedded
(FFPE) GBM samples was performed using TaqMan
quantitative reverse transcriptase-polymerase chain
reaction (qRT-PCR) assays (Supplementary Material,
Table S2). None of the samples used in the validation
sets were the same as those used in the microarray analy-
sis. Details of the qRT-PCR and quality assessment are
presented in Supplementary Methods. MGMT methyl-
ation was also tested by a qRT-PCR-based assay on
bisulfite-treated DNA as described previously.5,17

Details of this method as well as immunohistochemistry
for CD133 and nestin are presented in Supplementary
Methods.

Results

Statistical Method and Concordance of Survival
Association across Data Sets

Supplementary Material Fig. S1 shows the overall
approach utilized for the identification of robust
survival-associated genes in GBM. It is not well

established which test statistic is optimal for identifying
consensus genes that are significantly associated with
patient outcome across independent microarray data
sets.18 We reasoned that the most robust survival genes
should overlap in all 4 data sets. The largest overlap
was observed when the fold-change was used to rank
order the genes. Other methods, such as significance
analysis of microarrays (SAM),15 RankProduct,16 and
Cox model, produced less overlap. As shown in
Supplementary Material Fig. S2, plots of average gene
rank vs standard deviation of the ranks demonstrate
that ranking of genes by the ratio of the mean gene
expression between TS and LTS (fold-change method)
was much more stable across independent data sets
than if genes were ranked by a 2-class SAM analysis.
Furthermore, the standard deviation of rankings by fold-
change rises rapidly beyond the top 200 genes,
approaching that expected from random ranks. These
findings are consistent with results from the
Microarray Quality Control (MAQC) Project, which
also found that gene rankings based on P-values or
SAM did not generate more reproducible results com-
pared to fold-change.18 Importantly, an examination
of each consensus gene identified by the fold-change
method using outcome as either a categorical variable
or continuous variable showed statistical significance
in all cases (not shown). The fold-change method was
therefore utilized for subsequent analyses. Cross-vali-
dation approaches demonstrated that the top 200
survival genes selected using fold-change in a subset of
the microarray data could predict outcome in the
remaining data (Supplementary Material, Methods and
Fig. S3).

Identification of a Consensus Multigene Predictor
Across Independent Data Sets

Figure 1 shows a Venn diagram of consensus genes
among the top 200 genes across all institutions. There
were 38 genes (Fig. 1A and Table 1) that were ranked
in the top 200 in all 4 institutions, and an additional
57 genes (Fig. 1A and Supplementary Material, Table
S3) that were ranked in the top 200 in 3 out of 4 insti-
tutions. Of this initial set of 38 genes, the expression
of 31 were found to be associated with poor survival
(higher in the TS group compared with the LTS
group), while the remaining 7 were associated with
favorable outcome (higher expression in LTS group
compared with the TS group). The false discovery rate
using the intersection of all 4 data sets was extremely
low and estimated as a 0.3% chance to find 1 common
gene among the 4 lists by chance, and a 99.7% chance
that 0 genes would be common to the 4 lists by chance
(Fig. 1B).

To determine the association of this multigene set
with patient outcome, the gene expression values for
the 38-gene profile for each sample was condensed into
a single value for each tumor, termed a metagene
score, as previously described for clinical application in
breast cancer.19 Each tumor was then ranked according

Colman et al.: Molecular prediction of outcome in GBM

50 NEURO-ONCOLOGY † J A N U A R Y 2 0 1 0



to this metagene score. Recursive partitioning analysis
using survival as a continuous variable was then used
to determine the best cutoff for metagene score from
these data. Use of all of the data for the recursive
portioning led to 2 groups with a cutoff of approxi-
mately 75% high/unfavorable metagene scores vs
the remaining 25% with low/favorable metagene
scores. Patients dichotomized using this cutoff
method for Kaplan–Meier analysis, not unexpectedly,
showed a significant association with survival
(Fig. 1C). For consistency and comparison, the identi-
cal metagene score cutoff was used in all subsequent
survival analyses.

Since our prior studies indicated that favorable-
prognosis GBMs have an expression profile similar to
lower grade gliomas,12 we reasoned that a robust set
of survival-associated genes in GBM should overlap
with genes found to be differentially expressed
between GBM and lower grade gliomas. We tested this
hypothesis in an independent published data set of 153
glioma tumor samples of different grades20 using the
data analysis tool from Oncomine. Comparing the top
2% of genes overexpressed in GBM vs lower grade
gliomas in that data set with our 38-gene set, we found
that 26 of our 31 poor-prognosis genes were concordant.
Additionally, the results from The Cancer Genome
Atlas21 (TCGA) were made available after our study
was completed. To assess reproducibility of the 38
gene set, we tested whether the expression of this signa-
ture was associated with survival in the newly diagnosed

GBMs from the TCGA data. Using 136 cases known to
be non-recurrent, we found a significant association of
the 38 gene set with survival (P , .05) in that data set.
These results provided independent confirmation that
our consensus gene list is likely to be a robust predictor
of outcome in GBM.

Initial Validation and Further Optimization of
Multigene Predictor

To perform initial validation of the 38-gene predictor,
we utilized an independent retrospective set of FFPE
tumor samples of 68 newly diagnosed GBMs. The
expression of each of the 38 genes was quantified using
qRT-PCR (see Supplementary Methods) compared to
the average expression of 2 control genes. The resulting
fold-change difference (calculated from D2Ct of each
gene compared with the average Ct of the 2 control
genes) for each gene between survival groups is summar-
ized in Supplementary Material, Table S4. Survival
analysis demonstrated that the metagene score from
the entire 38-gene set, using the same cutoff as in
Fig. 1, was a significant predictor of progression-free
(PFS, Fig. 2A) and overall survival (OS, Fig. 2C), validat-
ing the overall 38-gene set as a survival predictor, as well
as a potential predictor of PFS.

Loss of fidelity for specific RNA species has been
reported when comparing gene expression from
frozen vs clinical FFPE samples, due to multiple factors

Fig. 1. Identification of robust outcome-associated genes from microarray data. (A) Overlap of survival genes among 4 microarray data sets.

The top 200 genes were identified for each data set individually and the overlap of the 4 lists is shown in a Venn diagram. (B) Estimation of

false discovery rate. The survival data were scrambled among the samples and a list of 200 genes was generated from each data set using the

scrambled survival data. (C) Survival according to metagene score. The 38 survival-associated genes common to all 4 data sets were used to

calculate a metagene score for each sample. The metagene score was calculated by subtracting the sum of the values of the good-prognosis

genes from the sum of the values of the poor-prognosis genes. The samples were ranked by metagene score and divided into 2 groups based

on results from recursive partitioning analysis. Survival according to metagene score is shown for the group with the lower ranking metagene

scores (red) vs samples with higher metagene scores (blue).
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including the deleterious effects of formalin fixation on
mRNA quality, and variation in times of formalin
exposure in clinical samples.22 To optimize the multi-
gene predictor for application in FFPE clinical samples,
the top 9 genes (Supplementary Material, Table S4)
were selected on the basis of strength/significance of sur-
vival association (fold change level) as well as technical
considerations (amplification consistency in FFPE
samples, using a mean Ct level among the samples
of � 32). Hazard ratios and P-values for the 9-gene set
selected using these criteria are shown in
Supplementary Material, Table S5. Survival prediction
based on metagene score calculated using the 9-gene
profile was similar or slightly better for PFS (Fig. 2B)

and OS (Fig. 2D) compared with the entire 38-gene set
(Fig. 2A and C, respectively).

Validation of 9-Gene Predictor and Comparison with
Known Prognostic Variables

To further validate the multigene profile, an additional
set of 101 FFPE tumor samples was identified from
patients whose initial therapy included radiation plus
concurrent and adjuvant TMZ, which is the current
standard of care for GBM.8 The 9-gene profile was
tested for prediction of outcome in this group.
Univariate analyses showed that each of the 9 genes
showed a significant or near-significant association

Table 1. Survival-associated genes (n ¼ 38) common to all 4 microarray data sets. The direction of the association to survival is shown.
The 9 genes denoted by an asterisk denote those which remained robust in subsequent testing in archival FFPE samples.

Gene Symbol Gene Name Expression Level in Typical vs Long-term Survivors

ACTN1 Actinin, alpha 1 Higher

AQP1* Aquaporin 1 Higher

CHI3L1* YKL-40 Higher

CLIC1 Chloride intracellular channel 1 Higher

COL1A2 Collagen, type 1, alpha 2 Higher

EMP3* Epithelial membrane protein 3 Higher

FABP5 Fatty acid binding protein 5 Higher

FN1 Fibronectin 1 Higher

GABBR1 Gamma-aminobutyric acid receptor 1 Lower

GPNMB* Glycoprotein Higher

GRIA2 Glutamate receptor, ionotropic, AMPA 2 Lower

IGFBP2* Insulin-like growth factor binding protein 3 Higher

IGFBP3 Insulin-like growth factor binding protein 3 Higher

KIAA0510 Hypothetical protein Lower

LDHA Lactate dehydrogenase A Higher

LGALS1 Galectin 1 Higher

LGALS3* Galectin 3 Higher

MAOB Monoamine oxidase B Higher

NNMT Nicotinamide N-methyltransferase Higher

OLIG2* Oligodendrocyte lineage transcription factor 2 Lower

OMG Oligodendrocyte myelin glycoprotein Lower

PDPN* Podoplanin Higher

PLP2 Proteolipid protein 2 Higher

RIS1 Ras-induced senescence 1 Higher

RTN1* Reticulon 1 Lower

S100A10 S100 calcium binding protein A10 Higher

SERPIN3 Alpha-1 antiproteinase Higher

SERPINE1 Plasminogen activator inhibitor type 1 Higher

SERPING1 C1 inhibitor Higher

TAGLN Transgelin Higher

TAGLN2 Transgelin 2 Higher

TCF12 Transcription factor 12 Lower

TCTE1L T-complex-associated-testis-expressed 1-like Higher

TGFBI Transforming growth factor, beta-induced, 68 kDa Higher

TIMP1 Tissue inhibitor of metalloproteinase 1 Higher

TMSB10 Thymosin, beta 10 Higher

TNC Tenascin C Higher

VEGF Vascular endothelial growth factor Higher
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toward overall survival when analyzed individually
(Supplementary Material, Table S6). Determination of
MGMT promoter methylation status, previously
shown a predictor of outcome in patients treated with
this regimen,5 was performed and showed an association
with PFS (Fig. 3A) and OS (Fig. 3C). The 9-gene profile
compared favorably to MGMT status as an outcome
predictor (Fig. 3B and D). Multivariate analysis
showed that the 9-gene profile was an independent pre-
dictor after adjustment for MGMT status and showed
larger hazard ratios and smaller P-values for both PFS
and OS compared with MGMT (Fig. 3E).

To test whether the 9-gene profile was an independent
predictor after adjusting for clinical factors, multivariate
analysis was performed, which included data from all
169 samples on which the qRT-PCR analysis was per-
formed. Models that included patient age, performance
status as well as molecular profile show that the molecu-
lar profile was a significant predictor of both PFS and
OS. Such a model implies equal weighting of each of
the genes in the multigene model, which may underesti-
mate its predictive ability. The genes in the molecular
profile were weighted according to the strength of associ-
ation of survival (see Supplementary Methods). To
evaluate clinical predictors, a good outcome group was
defined based on patients who were both younger than
the median age (57) and had a Karnofsky Performance

Status (KPS) of 70 or higher. As expected, this group
had favorable PFS (Fig. 4A) and OS (Fig. 4C) compared
with patients older than the median age, or with KPS ,

70. Kaplan–Meier curves for the optimized molecular
predictor exhibited a significant association with PFS
(Fig. 4B) and OS (Fig. 4D), and are shown for compari-
son. As was shown for the multigene set using equal
weighting, the weighted multigene profile was an inde-
pendent predictor of outcome in a multivariate analysis
after adjusting for age and KPS (Fig. 4E). To further
determine the additive predictive power of the
9-gene profile after accounting for all variables in
TMZ-XRT–treated patients, Cox proportional
hazards analysis was performed using MGMT methyl-
ation status, age, and performance status in the 101
patient cohort, which demonstrated that the 9-gene
panel remained a significant predictor (HR ¼ 2.39,
P ¼ .042) after accounting for relevant molecular and
clinical variables in this subset of patients.

Association of Molecular Profile with
Mesenchymal-Angiogenic Phenotype and
Glioma Stem Cell Markers

In epithelial tumors, mesenchymal transition is associ-
ated with clinical aggressiveness.23,24 In addition,
mesenchymal transition has been shown to generate

Fig. 2. Validation of multigene predictor for overall survival in an independent sample set. A set of 68 formalin-fixed, paraffin-embedded

glioblastoma samples was subject to qRT-PCR for the 38 gene set identified in Fig. 1. A metagene score was calculated as in Fig. 1 and

the samples were ranked by metagene score. Patients were dichotomized into 2 groups based on metagene score using proportions

identical to those in Fig. 1. Survival is shown for the lower metagene scores (red) vs the higher metagene scores (blue). Analyses were

performed for the entire 38-gene set as well as a smaller 9-gene profile composed of those genes that had the highest individual

survival association in the tumors and showed high technical feasibility in paraffin tissues. (A) and (B) Progression-free survival (PFS)

according to the entire 38-gene set (A) as well as the 9 gene-profile (B). (C) and (D) Overall survival (OS) according to the 38-gene set

(C) and 9-gene set (D). NR, median not reached.
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cells with stem-like properties.25 Stem-like cells with
tumor-initiating capacity have been identified in GBM
and have been associated with treatment resistance,26,27

and stem cell–related gene expression signatures have
been found to correlate with treatment resistance in
GBM.28 We therefore investigated whether there was
an association between metagene score and stem cell
markers. The expression of the stem cell genes CD133
and nestin protein was assessed semi-quantitatively in
54 and 52 tumor samples, respectively, and compared
with the metagene score using the 9-gene profile
(Supplementary Material, Table S7 and Fig. S4).
Overexpression of CD133 and nestin were found to be
highly associated with an unfavorable metagene score
(both P , .01, Spearman rank), suggesting a link
between markers of stem-like cells and a predictor of

therapeutic resistance in GBM that identifies tumors
with a mesenchymal-angiogenic phenotype.

Discussion

Identification of markers predictive of survival in GBM
could optimize and individualize therapy by prospec-
tively identifying those patients who will benefit most
from standard therapy, and identifying novel therapeutic
targets based on the molecular profiles of those patients
refractory to standard therapy. To discover such
markers, 4 independent microarray data sets were
queried to identify a multigene set predictive of
outcome. This multigene panel was subsequently opti-
mized and validated in additional independent cohorts

Fig. 3. Validation of 9-gene profile in temozolomide (TMZ)-treated GBM and comparison with MGMT status. Glioblastoma samples from

temozolomide-treated patients (n ¼ 101) were tested for MGMT methylation as well as the 9-gene predictor. For all Kaplan–Meier curves,

red indicates low score and blue indicates high score. Tumors were ranked by metagene score and divided into distinct metagene groups

using the same cutoffs as in Fig. 1. Progression-free survival (PFS) according to the entire MGMT status (A) as well as the 9-gene

profile. (C) and (D) Overall survival (OS) according to MGMT status (C) and 9-gene set (D). (E) Cox proportional hazards multivariate

analysis showing that the 9-gene profile is an independent predictor of outcome in TMZ-treated patients after adjusting for MGMT

status. NR, median not reached.
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to identify the subset of genes with the most robust sur-
vival association using FFPE tissues.

While the quality of nucleic acid derived from FFPE
tissue is suboptimal, FFPE samples were utilized in the
validation sets to increase the feasibility of the develop-
ment of a clinical test applicable to routinely available
specimens. We noted that a number of the genes ident-
ified in the initial microarray analysis did not have
strong survival correlations when tested in FFPE
samples. This finding was not surprising based on tech-
nical considerations, given the relatively low quality of
mRNA derived from FFPE tissues.22 The 9-gene profile
was therefore selected based on both survival correlation
and technical feasibility in FFPE tissue. This profile was
then validated in a second set of patients, where all 9
remained individually predictive.

In total, the multigene panel was selected based on
reproducibility in 6 independent data sets comprising a
total of 279 samples. To have significant clinical
utility, a biomarker or panel of biomarkers should add
predictive and/or prognostic value to known clinical
or molecular variables. In patients with GBM, patient
age and performance status are established powerful
prognostic factors. In addition, MGMT methylation
status, especially in the setting of TMZ therapy, has
been shown to be a predictor of outcome.5 The 9-gene
profile was thus compared with both MGMT methyl-
ation status in TMZ-treated patients (Fig. 3) and clinical
factors in all patients (Fig. 4) and was shown to be a sig-
nificant independent predictor of outcome in multi-
variate analyses. These data indicate that the 9-gene
profile could serve as the basis for a robust clinical test

Fig. 4. Comparison of 9-gene molecular profile with clinical variables. Cases were stratified into favorable vs unfavorable clinical groups as

descrbed in the text. (A) and (B) Progression-free survival (PFS) according to clinical factors (A), as well as the 9 gene-profile. Median PFS is

as shown. (C) and (D) Overall survival (OS) according to MGMT status (C) and 9-gene set (D). Median OS is as shown. (E) Cox proportional

hazards multivariate analyses on all (n ¼ 169) validation cases. To generate comparable hazard ratios, patient age was coded as above/

below the median and KPS was coded as 70 or above vs ,70.
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(amenable to paraffin tissue) which, along with the exist-
ing clinical and other molecular markers, could be used
to optimize therapeutic choices for individual patients,
analogous to the predictive test developed for optimiz-
ation of patient therapy in breast cancer.29

The primary role of the 9-gene panel for optimization
of therapy would be to prospectively identify GBM
patients most likely to have a durable survival to standard
therapy. However, the identification of specific genes with
robust association with outcome can also provide insights
into tumor biology that could help to identify therapies for
patients resistant to standard therapy.

Examination of the known functions of the 38-gene
and 9-gene sets demonstrated that better prognosis is
associated with higher expression of genes associated
with normal neural development (the proneural group),
while poor survival is associated with increased
expression of genes associated with mesenchymal tissues,
angiogenesis, and extracellular matrix (the mesenchy-
mal-angiogenic group). Immunohistochemical analyses
have demonstrated that a number of these mesenchymal
and angiogenic genes including YKL-40,7,30 galectin-3,31

tenascin,32 and VEGF33 are indeed expressed by GBM
tumor cells. Prior unsupervised analyses by our group
and others3,12 have emphasized the potential importance
of this mesenchymal-angiogenic molecular phenotype in
GBM. In the current study, using different methodology
optimized for the identification of robust outcome-based
biomarkers across multiple datasets, we find that genes
characteristic of the previously defined mesenchymal and
proneural represent robust biomarkers of outcome.
Taken together, these data suggest that a clinically relevant
mesenchymal transition occurs in GBM that is associated
with increased angiogenesis and poor outcome in GBM,
and is analogous to the epithelial-to-mesenchymal tran-
sition that has been described in carcinomas.34 These
findings suggest that drugs targeting angiogenesis or
mesenchymal transition may be promising therapies for
patients with the poor prognosis molecular profile.

Recent observations demonstrate that the mesenchy-
mal transition associated with worse outcome in breast

cancer also results in tumor cells with stem-like proper-
ties.25 In GBM, stem-like cells with tumor-initiating
capacity have been identified and have been implicated
as a source of treatment resistance.26,27 Furthermore, a
stem cell-related gene expression signature has been
found to correlate with worse outcome in GBM patients
receiving standard therapy.28 The association that we
observed between the multigene predictor and
expression of GBM stem cell markers, including
CD133,27 supports the concept that the
mesenchymal-angiogenic phenotype in GBM is also
associated with a stem-like phenotype, and highlights
the potential importance of developing therapeutic strat-
egies that target these cells.35,36 Recent studies have
demonstrated clinical activity of antiangiogenic drugs
in recurrent GBM.37,38 Our data suggest that patients
with the poor prognosis molecular profile may be a
subset that would derive particular benefit from these
therapies. Future studies will test this hypothesis and
examine whether the molecular profile of GBM tumors
can be used both to prospectively identify patients who
will or will not respond to conventional therapy and to
prospectively select a subgroup that will specifically
benefit from additional agents, such as those targeting
angiogenesis or tumor stem cells.

Supplementary Material

Supplementary material is available at Neuro-Oncology
online (http://www.neuonc.oxfordjournals.org).
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