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The efficacy of small-molecule kinase inhibitors has
recently changed standard clinical practice for several
solid cancers. Glioblastoma is a solid cancer that univer-
sally recurs and unrelentingly results in death despite
maximal surgery and radiotherapy with concomitant
and adjuvant temozolomide. Several clinical studies
using kinase inhibitors in glioblastoma have been
reported. The present study systematically reviews the
efficacy, toxicity, and tissue analysis of small-molecule
kinase inhibitors in adult patients with glioblastoma as
reported in published clinical studies and determines
which kinases have been targeted by the inhibitors
used in these studies. Publications were retrieved using
a MEDLINE search and by screening meeting abstracts.
A total of 60 studies qualified for inclusion, of which
25 were original reports. A total of 2385 glioblastoma
patients receiving kinase inhibitors could be evaluated.
The study designs included 2 phase III studies and 37
phase II studies. Extracted data included radiological
response, progression-free survival, overall survival, tox-
icity, and biomarker analysis. The main findings were
that (i) efficacy of small-molecule kinase inhibitors in
clinical studies with glioblastoma patients does not yet
warrant a change in standard clinical practice and (ii)
6 main kinase targets for inhibitors have been evaluated
in these studies: EGFR, mTOR, KDR, FLT1, PKCb, and
PDGFR.
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S
mall-molecule compounds that inhibit the kinase
domain of specific kinase targets have recently
changed clinical practice for several advanced

solid cancers, such as lapatinib, which inhibits HER2
and EGFR in HER2-positive metastatic breast cancer;1

sunitinib, which inhibits VEGFR and PDGFR in meta-
static renal-cell carcinoma;2 and sorafenib, which
inhibits RAF, PDGFR, VEGFR, and KIT in advanced
hepatocellular carcinoma3 and also in advanced renal-
cell carcinoma.4 These advances followed the seminal
contribution to cancer therapy by gefitinib for chronic
myeloid leukemia by inhibiting the ABL/CBR fusion
protein5 and for gastrointestinal stroma tumor by
inhibition of the activating KIT mutation.6

Glioblastoma is one of the most aggressive solid
cancers and the most common primary brain tumor.
Because this tumor is inherently resistant to conventional
therapy, the median patient survival is approximately 14
months. Although standard treatment with surgery,
irradiation, and temozolomide postpones progression
and extends survival to some extent, these tumors univer-
sally recur and unrelentingly result in death.7 Therefore,
improvement of treatment options for patients with glio-
blastoma is imperative. For this purpose, inhibition of
kinase targets that drive glioblastoma growth seems a
reasonable treatment strategy to be further explored.

Several clinical studies have reported the efficacy of
kinase inhibitors in glioblastoma. The outcome of
these clinical studies has not been systematically
reviewed, although a number of reviews highlight in
their discussions a selection of studies using kinase
inhibitors for glioblastoma.8–15 The aim of the present
study was to review the efficacy of small-molecule
kinase inhibitors in adult patients with glioblastoma
based on published clinical study results and to deter-
mine which kinases are targeted by the inhibitors used
in these clinical studies.
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Search Strategy and Data Extraction

Results of clinical studies were obtained from 2 sources.
A systematic search was performed in PubMed
MEDLINE with the MeSH term “glioma” limited by
publication type “clinical trial” and “adults”, with pub-
lication after January 1, 2002. Furthermore, the
abstracts of the annual meetings of the American
Society for Clinical Oncology from 2002 to 2008, of
the European Association of Neuro-Oncology from
2005 to 2008, of the Society for Neuro-Oncology from
2003 to 2008, and of the World Federation of
Neuro-Oncology in 2001 and 2005 were systematically
searched for preliminary outcome data of clinical
studies.

To compare the data obtained from studies without
control patient groups, the results from published
studies in patients with newly diagnosed and progressive
glioblastoma receiving conventional therapy were
included as historical controls.

The data extracted from these sources were the total
number of patients in the study, the number of evaluated
patients in the population used for data extraction,
histopathological diagnosis, study design, type of
inhibitor and dosage, inhibitor target, percentage of
radiologically complete responses and partial responses,
median progression-free survival (mPFS), PFS at 6
months (PFS6), median overall survival (mOS), OS at
12 months (OS12), the number of adverse events of
grade 3, 4, or 5 according to the National Cancer
Institute Common Toxicity Criteria, and the tissue
analysis in relation to response. Data on the effect of
kinase inhibitors on the functional status of patients
were unavailable from the vast majority of evaluable
studies. As far as possible, the data were extracted for
the glioblastoma subgroup. When exact percentages
and survival times were not provided, these were esti-
mated from the time to progression and survival curves.

Publications and abstracts were screened for efficacy
data. Audiovisual material at the ASCO website (http://
www.asco.org/ASCOv2/Meetings/Abstracts) was
available for some of the meeting presentations and
was scanned for additional data not included in the
meeting abstract. If no outcome data (ie, radiological
response, PFS, or OS) were provided, the publication
or abstract was excluded from the analysis.

Meta-analysis of the efficacy data was not performed
because of the small sample sizes and the highly selected
populations with inhomogeneity of inclusion criteria,
histopathological diagnosis, stages of disease, drug sche-
dules, and definitions of outcome and efficacy.
Therefore, analysis of data is descriptive and qualitative.

Results

A total of 60 studies qualified for inclusion, of which 25
were published as original reports in peer-reviewed jour-
nals and 35 as meeting abstracts. Study designs included
2 phase III studies, 1 randomized phase II study, 28
single-arm phase II studies, 8 single-arm phase I/II

studies, 16 phase I studies, 4 retrospective observational
series, and 1 pharmacodynamic study. The sum of eval-
uated patients receiving kinase inhibitors was 2385. The
average number of evaluable patients per study was 40,
ranging from 6 to 178.

The efficacy, toxicity, and tissue analysis results are
listed in Table 1.

Radiological Response

Radiological response rates (ORs) were evaluable in 51
studies.

The reported objective radiological ORs were
approximately double the baseline rates after inhibition
of EGFR using erlotinib or gefitinib in 6 of 12 evaluable
single-inhibitor studies, in 2 of 7 studies combining inhi-
bition of EGFR and mTOR, and in none of 4 evaluable
studies combining EGFR inhibition with conventional
therapy. In 1 study combining EGFR inhibition by erlo-
tinib with VEGF inhibition by bevacizumab, an OR of
48% was observed,16 which was comparable with the
results for pan-VEGFR inhibition with cediranib.17

The ORs after inhibition of mTOR were comparable
with the baseline results in 4 single-agent studies.
Inhibition of PKCb by enzastaurin increased the OR
compared with baseline in 1 of 3 studies. Two of 6
single-agent studies using PDGFR/KIT/ABL inhibition
by imatinib and 3 of 5 combination therapy studies
with imatinib and hydroxyurea showed an increased
OR. The combination of imatinib, hydroxyurea, and
KDR inhibition by vatalanib resulted in increased ORs
in 2 of 2 studies.

Progression-Free Survival

The PFS was evaluable as mPFS in 36 studies and as
PFS6 in 34 studies.

The mPFS approximately doubled in progressive glio-
blastoma compared with baseline in 1 of 8 evaluable
studies with EGFR inhibition by gefitinib or erlotinib18

and in 1 of 6 evaluable studies with combined EGFR
and mTOR inhibition using gefitinib at high dose.19

Seven evaluable studies combining EGFR inhibition
with conventional therapy had PFS comparable with
baseline values. The mPFS was comparable with base-
line in 3 evaluable studies with single-agent mTOR inhi-
bition. The remarkable OR of VEGFR inhibition by
cediranib was substantiated by a slightly increased
mPFS of 4 months.17 The mPFS was increased in 2 of
4 evaluable studies with imatinib as single-agent
therapy, although a relevant number of anaplastic
gliomas were included in these 2 studies.20,21 One of 3
evaluable studies using combined imatinib and hydro-
xyurea showed a small increase in mPFS of 3.6 months
compared with baseline.22

The PFS6 was comparable with baseline in all 8 eva-
luable studies with EGFR inhibitors as single-agent
therapy, was possibly increased in 2 of 5 evaluable
studies with combined EGFR and mTOR inhibition
including 1 study with a number of anaplastic
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Table 1. A summary of efficacy, toxicity, and tissue analysis in clinical studies with small molecule kinase inhibitors in adult patients with newly diagnosed and progressive glioblastoma.

Kinase target First author Year Reference(s) Total
no. of

patients
in the
study

No. of patients in
evaluated population

Study
design

Therapy CR
(%)

PR
(%)

OR
(%)

mPFS PFS6
(%)

mOS OS12
(%)

Toxicity
as no. of
grade 3,
4, or 5

events in
no. of

evaluable
patients

Tissue analysis to
predict responsee

Newly
diagnosed

Progressive

GB AG GB AG

Baseline studies

Stupp 2005 7 573 286 III rth — — — 5 9 12.1 51 — NA

Stupp 2005 7 573 287 III rth þ tmz — — — 6.9 27 14.6 61 75 in 284 NA

Athanassiou 2005 60 130 57 r II rth — — — 5.2 45 7.7 16 — NA

Athanassiou 2005 60 130 53 r II rth þ tmz — — — 10.8 67 13.4 56 6 in 110 NA

Brada 2001 61 138 138 II tmz 2 6 8 2.1 18 5.4 15 60 in 138 NA

Yung 2000 62 225 112 r II tmz 0 5 5 3 21 7.1 22 26 in 110 NA

Yung 2000 62 225 113 r II Procarbazine 0 5 5 2.1 8 5.6 18 26 in 110 NA

Wong 1999 63 375 225 d Various salvage treatments
without tmz,
without kinase inhibitors

— — 6 2.3 15 6.3 21 — NA

Single target small molecule inhibitors

EGFR

Van den Bent 2009 45,64,65 54 54 r II Erlotinib 150–500 mg pod vs
tmz or carmustine

0 4 4 1.8 11 7.7 22 13 in 54 ihc: EGFR EGFRvIII* PTEN
pAKT; fish: EGFR; mut: EGFR

Preusser 2008 44 21 14 7 RObs Erlotinib 100–150 mg pod or
Gefitinib 250 mg pod

0 14 14 3.1 19 5.1 5 1 in 21 ihc: EGFR EGFRvIII PTEN
pAKT

Franceschi 2007 42 16 16 II Gefitinib 250 mg pod 0 0 0 2.1 13 6.2 14 5 in 28 ihc: EGFR pAKT; fish: EGFR

Buie 2007 66 6 6 I Erlotinib 450–900 mg every 3
days

0 17 17 — — — — 0 in 6 None

Mellinghoff 2006 46 49 49 II Erlotinib 150–500 mg pod or
Gefitinib 250–1000 mg pod

0 18a 18 — — — — — ihc: EGFRvIII* PTEN*; fish:
EGFR; mut: EGFR, HER2,
PTEN; pcr: EGFR EGFRvIII

Haas-Kogan 2005 43 52 29 I Erlotinib dosage unavailable 0 17 17 — — — — — ihc: EGFR* EGFRvIII pAKT*;
fish: EGFR*; mut: EGFR PTEN

Cloughesy 2005 67,68 48 48 II Erlotinib 150–300 mg pod 2 6 8 — 17 — — — ihc: EGFR EGFRvIII PTEN;
fish: EGFR

Rich 2004 31,69 57 57 II Gefitinib 500–1000 mg pod 0 0 0 2 13 9.9 36 27 in 55 ihc: EGFR EHGRvIII; pcr:
EGFR

Uhm 2004 70 96 96 II Gefitinib 500–1000 mg pod — — — 6.8 62 12.8 54 21 in 63 ihc: EGFR EGFRvIII; fish:
EGFR

Raizer 2004 71 45 31 II Erlotinib 150 mg pod 0 0 0 2.3 0 — — — None

Lieberman 2004 72 65 38 I/II Gefitinib 250–1000 mg pod 0 13 13 2 9 — — — None

Vogelbaum 2004 18,73,74 31 16 II Erlotinib 150 mg pod 0 25 25 5.2 — — — — fish: EGFR

Peery 2003 75 57 52 II Gefitinib 500–1000 mg pod 0 2 2 — — — — 10 in 52 ihc: EGFR EGFRvIII; pcr: EGFR

mTOR

Cloughesy 2008 39 15 15 I Rapamycin 2–10 mg pod 0 7 7 3.6 — — — 7 in 15 ihc: pS6K pAKT pPRAS40*

Galanis 2005 27 65 65 II Temsirolimus 250 mg ivw 0 0 0 2.3 8 4.4 — 40 in 65 ihc: PTEN S6K pS6K* AKT
pAKT; fish: EGFR PTEN; act:
S6K
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Chang 2005 26,76 43 43 II Temsirolimus 170–250 mg
ivw

0 5 5 2.3 2 — — 49 in 43 None

Chang 2004 77 12 9 I Temsirolimus 250–330 mg
ivw

0 0 0 — — — — 4 in 12 None

VEGFR

FLT1/KDR Batchelor 2007 17 16 16 II Cediranib 45 mg pod 0 56 56 4 30 7.5 — 9 in 16 ihc: VEGFR1 VEGFR2
VEGFR3 PDGFRa PDGFRb;
plasma: VEGF PIGF*
sVEGFR2* bFGF* SDF1a*

KDR Conrad 2004 28,78–80 55 55 I/II Vatalanib 150–2000 mg pod 0 4 4 2.5 25 — — 10 in 45 None

PKCb

Kreisl 2009 81 26 17 9 I Enzastaurine 500–1000 mg
pod

4 4 8 1.4 — 5.7 — 9 in 22 Plasma: Pgsk3b

Fine 2008 34,82–84 266 174 III Enzastaurine 500 mg pod vs
lomustine

0 3 3 1.5 11 6.6 15 14 in 167 None

Fine 2005 85,86 85 57 II Enzastaurine 500 mg pod 0 18 18 — — — — 3 in 85 None

Multitarget small molecule inhibitors

PDGFR/KIT/ABL

Raymond 2008 87–89 112 51 II Imatinib 600–1000 mg pod 0 6 6 1.8 16 5.9 — 34 in 112 mut: KIT PDGFRa PDGFRb
ABCG2

Razis 2007 90 20 19 1 PD Imatinib 800 mg pod 0 0 0 — — 6.2 — — ihc: AKT MAPK p27 EGFR
PDGFR

Viola 2007 21 20 18 2 II Imatinib 800 mg pod 0 0 0 7.8 52 — — 0 in 20 ihc: PDGFRa PDGFRb

Wen 2006 41,91,92 55 34 I/II Imatinib 800 mg pod 0 6 6 — 3 — — 35 in 55 pcr: EGFR EGFRvIII; mut:
PTEN PDGFRa PDGFRb

Marosi 2006 20 34 23 11 II Imatinib 400 mg pod 0 18 18 9.5 33 12.3 45 0 in 34 ihc: PDGFRa PDGFRb KIT
ABL

Franceschi 2005 93 28 16 II Imatinib 250 mg pod 0 0 0 2 13 6.1 14 5 in 28 None

KIT/PDGFR/KDR/FLT3/RET

Chaskis 2008 94 12 7 5b II Sunitinib 37.5 mg pod 0 8 8 — — — — 5 in 12 None

EGFR/VEGFR

Kreisl 2008 95 32 32 II Vandetanib 300 mg pod 0 16 16 — — — — 11 in 32 None

KDR/FLT1/PDGFR/FLT3/RET/KIT

Reardon 2008 96 16 16 II Sorafenib 400 mg pod þ tmz 0 0 0 — — — — 7 in 16 None

Combination therapy

EGFR þ mTOR

Kreisl 2009 36 22 22 I/II Gefitinib 250 mg
pod þ everolimus 70 mg ivw

0 14 14 2.6 5 — — 21 in 22 ihc: EGFR PTEN pAKT pS6K
EGFRvIII

Friedman 2008 97 27 27 II Erlotinib 150–500 mg
pod þ Rapamycin 5–10 mg
pod

0 0 0 — — — — 6 in 27 None

Phuphanich 2008 19 18 18 I Gefitinib 250–1000 mg
pod þ rapamycin 2–6 mg
pod

0 0 0 5 — 9.4 — 6 in 18 None

Reardon 2006 24 34 29 5 I Gefitinib 500–750 mg
pod þ rapamycin 5–10 mg
pod

0 6 6 2.1 24 — — 36 in 32 ihc: pMAPK pS6K pAKT
PTEN EGFR; fish: EGFR PTEN

Continued
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Table 1. Continued

Kinase target First author Year Reference(s) Total
no. of

patients
in the
study

No. of patients in
evaluated population

Study
design

Therapy CR
(%)

PR
(%)

OR
(%)

mPFS PFS6
(%)

mOS OS12
(%)

Toxicity
as no. of
grade 3,
4, or 5

events in
no. of

evaluable
patients

Tissue analysis to
predict responsee

Newly
diagnosed

Progressive

GB AG GB AG

Doherty 2006 23 28 22 RObs Gefitinib 500 mg
pod þ rapamycin 4 mg pod

0 18 18 3 25 — — 3 in 28 None

Badruddoja 2006 98 21 18 I/II Gefitinib 500–1500 mg
pod þ rapamycin 2 mg pod

0 0 0 3 17 — — 8 in 18 None

Nguyen 2006 99 19 19 I/II Gefitinib 250 mg
pod þ everolimus 30–70 mg
ivw

0 11 11 2.6 5 6.5 — — None

EGFR þ conventional therapy

Prados 2009 32,100 65 65 II Erlotinib 100–300 mg
pod þ tmz

— — — 8.2 72 19.3 68 48 in 65 ihc: EGFR EGFRvIII PTEN*;
fish: EGFR; pcr: MGMT*

Schwer 2009 25 15 11 4 I Gefitinib 250 mg
pod þ radiosurgery

— — — — 53 10 — — None

Brown 2008 101 97 97 II Erlotinib 150 mg podþ
tmz þ rth

— — — 7.2 — 15.3 61 — ihc: EGFR EGFRvIII PTEN
p53; fish: EGFR

De Groot 2008 37,102 44 43 II Erlotinib 150–200 mg
pod þ carboplatin

0 2 2 2 13 7.5 — 82 in 43 ihc: EGFR EGFRvIII pAKT
PTEN

Chakravarti 2006 103–106 178 178 I/II Gefitinib 500 mg pod þ rth — — — 5.1 — 11 — — ihc: EGFRvIII PTEN

Prados 2006 107,108 83 60 I Erlotinib 100–500 mg
pod þ tmz

0 8 8 2 7 — — 36 in 83 None

Krishnan 2006 109 19 19 I Erlotinib 100–200 mg
pod þ rth

0 0 0 6 — 13.8 — 5 in 20 None

Brewer 2006 33,38,110 28 28 II Erlotinib 50–150 mg
pod þ tmz þ rth

0 0 0 3.6 — — — 40 in 27 Fish: EGFR

PDGFR/KIT/ABL þ hydroxyurea

Shah 2007 33 16 11 5 RObs Imatinib 400–500 mg
pod þ hydroxyurea

0 21 21 — — 10 — 8 in 16 None

Dresemann 2008 111,112 240 120 III Imatinib 600 mg
pod þ hydroxyurea vs
hydroxyurea

0 2 2 1.6 5 — — — None

Dresemann 2008 35,113 30 30 II Imatinib 600 mg
pod þ hydroxyurea

0 13 13 — 60 — 67 4 in 30 None

Dresemann 2006 29 30 30 RObs Imatinib 400–600 mg
pod þ hydroxyurea

3 17 20 2.5 32 4.8 25 0 in 30 None

Reardon 2005 22,114–116 33 33 II Imatinib 400–500 mg
pod þ hydroxyurea

3 6 9 3.6 27 12.2 — 14 in 33 None
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Others

KDR þ PDGFR/KIT/
ABL

Kirkpatrick 2008 30 37 34 3 I Vatalanib 2000 mg
pod þ imatinib ’standard
dose’ þ hydroxyurea

0 22 22 — 27 — — — None

EGFR þ VEGF Sathornsumetee 2008 16,117,118 25 25 II Erlotinib 200–650 mg
pod þ bevacizumab

— — 48 — 24 — — — None

EGFR þ SRC Reardon 2008 119 15 13 2 I Erlotinib 150–450 mg
pod þ dasatinib 100 mg pod

0 0 0 — — — — 1 in 15 None

KIT/PDGFR/KDR/
FLT/RET

Wuthrick 2008 120 10 10 I Sunitinib 37.5 mg pod þ rth 0 10 10 — — — — 1 in 10 None

KDR þ PDGFR/KIT/
ABL

Sathornsumetee 2007 121 35 35 I Vatalanib 500–1000 mg
pod þ imatinib 400–500 mg
pod þ hydroxyurea

0 29 29 — — — — 4 in 35 None

KDR/FLT1/
PDGFR þ EGFR/
HER2

Reardon 2007 122 32 32 II Pazopanib 400 mg
pod þ lapatinib 1000 mg pod

0 0 0 — — — — 10 in 75 ihc: PTEN EGFRvIII

PDGFR/KIT/ABL Sathornsumetee 2006 123 56 46 10c I Imatinib unavailable
dose þ tmz

0 7 7 — — — — 5 in 56 None

PDGFR/KIT/
ABL þ mTOR

Desjardins 2006 124 28 28 I Imatinib 400 mg
pod þ hydroxyurea þ
everolimus 2.5 mg ivd

0 4 4 — — — — 1 in 5 None

KDR Reardon 2004 125,126 60 60 I/II Vatalanib 500–1500 mg
pod þ tmz or lomustine

0 7 7 3.5 15 — — 3 in 60 None

Abbreviations: rII, randomized phase II study; Robs, retrospective observational study; PD:, pharmacodynamic study; tmz, temozolomide 150–200 mg/m2 po 5 days/28 days; rth, radiotherapy;
pod, per os daily; ivw, intravenous weekly; ivd, intravenous daily; CR, complete response; PR, partial response; mPFS, median progression-free survival; PFS6: progression-free survival at 6
months; mOS, median overall survival; OS12, overall survival at 12 months; ihc, immunohistochemistry to determine protein expression; fish, fluorescence in situ hybridization to determine gene
amplification; mut, sequencing analysis to determine gene mutation; pcr, PCR to determine gene copy number or gene expression; act, kinase activity assay to determine protein activity; plasma,
plasma protein concentration analysis; na, not applicable. For comparison, baseline studies with conventional therapies are listed. Studies are categorized by single-target inhibitors, multitarget
inhibitors, and combination therapies; subcategorized by kinase drug target; and sorted by year of publication and number of patients.
aPartial response defined as . 25% decrease of bidirectional area.
bIncluding 4 progressive low-grade gliomas.
cIncluding 1 pleiomorph xanthoastrocytoma.
dPrognosis study with data from 8 phase II trials.
eTissue analysis results that are significantly correlated with efficacy are marked with an asterisk.
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gliomas,23,24 and was increased in 1 of 4 evaluable
studies with EGFR inhibition combined with conven-
tional therapy, which included a relevant number of ana-
plastic gliomas.25 When EGFR inhibition was combined
with VEGFR ligand binding by bevacuzimab, the PFS6
was 24%.16 The PFS6 was comparable with baseline
using both evaluable single-agent mTOR inhibitors.26,27

In both studies with single-agent VEGFR inhibitors, the
PFS6 was increased, including a PFS6 of 30% after cedir-
anib in concordance with the increased OR and
mPFS.17,28 The PFS6 was comparable with baseline in
1 evaluable study with PKCb inhibition. The same 2
studies with single-agent imatinib that had an increased
mPFS also had an increase in PFS6.20,21 Again, the
number of anaplastic gliomas included in the study
populations likely contributed to this finding. A slight
increase in PFS6 was observed in 2 of 4 evaluable
studies with combination therapy using imatinib and
hydroxyurea, while 1 of these 2 studies was a retrospec-
tive observational series.22,29 Furthermore, the study
with combined imatinib, hydroxyurea, and KDR inhi-
bition by vatalanib had a PFS6 of 27%, although a
number of anaplastic gliomas were included.30

Overall Survival

The OS was evaluable as mOS in 23 studies and as OS12
in 12 studies.

The mOS increased to 9.9 months in 1 of 5 evaluable
studies with single-agent EGFR inhibition.31 In the 1
evaluable study with combined EGFR and mTOR inhi-
bition, the mOS was also increased.19 The mOS was
remarkably increased to 19.3 months in 1 of 6 evaluable
studies with the combination of EGFR inhibition and
conventional therapy, erlotinib, and temozolomide in
this study with newly diagnosed glioblastomas.32

Another study with combination therapy using EGFR
inhibition by gefitinib and radiosurgery showed an
increased mOS; however, anaplastic gliomas were
included.25 The one evaluable study with single-agent
mTOR inhibition had an mOS comparable with base-
line. The 1 evaluable study with VEGFR inhibition by
cediranib, with encouraging OR, mPFS, and PFS6,
barely presented an increase in mOS.17 The mOS was
comparable with baseline in 2 evaluable studies with
PKCb inhibition by enzastaurin. In 1 of 4 evaluable
studies with imatinib as single-agent therapy, the mOS
was increased, although a substantial number of ana-
plastic gliomas were included.20 The mOS was increased
in 2 of 3 evaluable studies with imatinib in combination
with hydroxyurea; of these 2 studies, 1 included a
number of anaplastic gliomas33 and the other showed
an mOS of 12.2 months in progressive glioblastoma.22

The OS12 was increased to 36% in 1 of 5 evaluable
studies with EGFR inhibition.26 In 1 of 2 evaluable
studies with EGFR inhibition by erlotinib combined
with temozolomide, the OS12 was increased to 68%.32

In 1 evaluable study with PKCb inhibition by enzas-
taurin, the OS12 was comparable with baseline.34 The
OS12 was increased to 45% in 1 of 2 evaluable studies

with imatinib as single-agent therapy, which included a
large number of anaplastic gliomas. Combination
therapy using imatinib and hydroxyurea increased the
OS12 in both evaluable studies.29,35

Toxicity

Toxicity data were evaluable in 26 studies.
The toxicity increased to 27 events in 55 patients in 1

of 7 evaluable studies with EGFR inhibition by gefitinib
compared with baseline.31 The toxicity of therapy com-
bining EGFR and mTOR inhibition was increased up to
36 events in 32 patients in 2 of 6 evaluable studies.24,36

Toxic events associated with therapy combining EGFR
inhibition by erlotinib with conventional therapy, such
as temozolomide,32 carboplatin,37 or temozolomide,
and radiotherapy38 were considerably increased, with
48 events in 65 patients, 82 in 43 patients, and 40 in
27 patients, respectively. In 3 of 4 evaluable studies
with mTOR inhibition by rapamycin or temsirolimus,
toxicity was increased up to 49 events in 43
patients.26,27,39 The toxicity was increased in 1 of 2
studies with VEGFR inhibition by cediranib17 and was
not increased with PKCb inhibition. Imatinib was
associated with increased toxicity (35 events in 55
patients) in 1 of 5 evaluable studies.40 The combination
therapy of imatinib and hydroxyurea showed increased
toxicity (up to 8 events in 16 patients) in 2 of 4 evaluable
studies.22,41

Tissue Analysis

Patient tissue was analyzed in relation to response in 27
studies. The activation status of a substrate downstream
of the kinase target was verified in 4 studies after EGFR
inhibition42–45 and in 2 studies after mTOR inhi-
bition,27,39 of which 3 provided an indication of target
inactivation after kinase inhibition.27,39,43 Several mol-
ecular markers have been found to predict response,
sometimes with conflicting results.

An association between tissue analysis and response
to EGFR inhibition was identified in 3 of 10 studies
that analyzed tissue. In one of these studies, the presence
of the EGFRvIII mutant correlated with poor PFS after
erlotinib.45 In the second study, the presence of the
EGFRvIII mutant coinciding with PTEN protein
expression was associated with radiological response
after erlotinib or gefitinib.46 In the third study, high
EGFR protein expression, EGFR amplification, and
low phosphorylated AKT protein expression, as a down-
stream target of EGFR, each correlated with radiological
response, and in addition, high phosphorylated AKT
protein expression was associated with poor PFS.43

A response correlation was found in 2 studies describ-
ing tissue analysis after mTOR inhibition. In one study,
high protein expression of phosphorylated PRAS40, as a
downstream target of AKT, correlated with poor PFS
after rapamycin.39 In the other study, high protein
expression of phosphorylated S6K, as a downstream
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target of mTOR, was associated with radiological
response after temsirolimus.27

After VEGFR inhibition by cediranib, radiological
tumor progression was associated with a decrease in
the plasma protein level of PIGF and an increase in
plasma protein levels of sVEGFR2, bFGF, and SDF1a.17

A survival benefit was identified in patients with both
a methylated MGMT promotor status and positive
PTEN protein expression after combination therapy of
EGFR inhibition by erlotinib and temozolomide during
and after radiotherapy.32

Kinase Drug Targets

The targets of small-molecule kinase inhibitors in clini-
cal studies with glioblastoma patients have mainly
been 6 kinases: EGFR, mTOR, KDR, FLT1, PKCb,
and PDGFR. In addition, 3 evaluated multitargeted
agents also inactivate other kinase targets nonspecifi-
cally: imatinib also inhibits KIT and ABL, sunitinib
also inhibits FLT3 and RET, and lapatinib also inhibits
HER2.

Discussion

The main findings of the present study are that (i) the
efficacy of small-molecule kinase inhibitors in clinical
studies with adult glioblastoma patients does not yet
warrant a change in standard clinical practice, and (ii)
the main kinase targets of the inhibitors evaluated in
these studies are EGFR, mTOR, KDR, FLT1, PKCb,
and PDGFR.

The evaluated studies have several limitations that
should be considered in interpreting these results. First,
many of the studies were not designed to determine the
efficacy of therapy and consequently no control group
was included for comparison of results in the interven-
tion group. Included in this analysis were outcome
results from 4 retrospective observational, 1 pharmaco-
dynamic, 16 phase I, and 8 phase I/II studies. Control
group data were available from 1 randomized phase II
and 2 phase III studies. Second, sample sizes were
small. For instance, the average number of patients in
the phase II studies was 39 (range: 12–65). Third, the
study populations predominantly consisted of patients
with progressive glioblastoma or anaplastic glioma,
except for 9 studies of patients with newly diagnosed
glioblastoma. Fourth, drug activity was usually
unknown, as the inactivation of downstream targets
was seldom verified in tissue samples. Fifth, the classical
study endpoints of radiological response, PFS, and OS
were evaluated, each with their limitations. Beneficial
effects for individual patients, for instance in terms of
improved quality of life or alleviation of symptoms,
cannot be excluded by evaluation of these classical end-
points. As an example of the limitations of the classical
endpoints, the radiological response criteria rely on
enhancement due to blood-brain barrier disruption.
Causes other than tumor progression can induce
enhancement, such as postoperative gliosis, infection,

or radiation necrosis, and enhancement can be reduced
by stabilization of the blood-brain barrier rather than
by a decrease of the tumor burden. Furthermore, limit-
ations to the PFS as an endpoint are inherent to the
radiological definition of progression, its dependence
on timing of radiological follow-up, and the fact that
radiological progression is not necessarily equal to cessa-
tion of clinical benefit. Evaluation of the OS is hampered
by bias from subsequent salvage therapies after the
trial intervention and does not reflect the quality of the
prolonged lifetime.

The lack of efficacy in these clinical studies can have
several causes. First, results that have been obtained in
preclinical glioma models and that have motivated
further clinical evaluation may not adequately represent
the pathobiology of glioblastoma in patients. Second,
the inhibitor may have failed to inactivate the target in
glioblastoma cells, for instance due to low concen-
trations in tumor tissue or agent inactivation mechan-
isms. Third, the pursued kinase target may be active
only in a subpopulation of patients. The efficacy of
kinase inhibition in this subpopulation may have been
diluted by unselected glioblastoma patients. Fourth,
alternative kinase signaling pathways may be active in
parallel with the inhibited target, so that a single
target’s inactivation does not reduce downstream onco-
genic signaling. Fifth, beneficial effects from these kinase
inhibitors are perhaps not portrayed by the classical end-
points as evaluated.

Several strategies may help overcome these issues.
First, the best kinase drug targets need to be identified
for glioblastoma. Second, the preclinical efficacy from
inhibition of these drug targets needs to be rigorously ver-
ified in several glioblastoma models to complement each
single model’s limitations. Third, kinase inhibitors need
to be developed and optimized further, for instance by
directing toward downstream targets or toward multiple
kinase targets or by using a combination of inhibitors.
However, the toxicity of the evaluated kinase inhibitors
was significant, and hence improved safety of new inhibi-
tors remains important. Fourth, the inactivation of the
target and its downstream substrate should be verified
in early studies with glioblastoma tissue obtained from
patients. An elegant proof-of-concept of this biological
activity endpoint was recently demonstrated.39 Fifth,
the study populations need to be enriched by including
patients likely to respond, by determining the activation
status of the aimed drug target. Sixth, other clinical trial
endpoints, such as quality of life and cognitive status, can
be considered in addition to the classical trial end-
points.47,48 The radiological response is a useful surro-
gate endpoint for glioma therapy in general, because
objective results are provided shortly after therapy.
From the presented data, it is clear that reduction in
enhancement can also be observed after kinase inhi-
bition. The PFS6 suitably predicts OS and therefore is
considered a meaningful endpoint for evaluation of pro-
gressive glioblastoma. Perhaps the ideal endpoint for
assessment of clinical benefit by targeted therapy would
be a multidimensional construct of imaging, symptoms,
quality, progression, and survival.
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A more fundamental question is whether glioblastoma
is in fact a kinase-driven cancer. Undoubtedly, oncogenic
kinase signaling is involved in glioblastoma, but whether
kinases are crucial for the oncogenic signaling network of
glioblastoma and are thereby amenable to therapeutic
inhibition, remains to be determined. Kinase drug
targets that have changed clinical practice in the treat-
ment of solid cancers are dysregulated in 1 of 3 ways:
by mutation, gene overexpression, or protein fusion.49

All three relevant mechanisms of kinase dysregulation
have been identified in glioblastoma, for example,
mutation of PIK3CA lipid kinase,50 overexpression of
the AURKA gene,51 and fusion of FIG to ROS kinase.52

Details on kinase involvement in glioblastoma can be
found in dedicated reviews.9,10,14,53,54 The protein
kinase gene family consists of 518 members.55 The
status of the vast majority of these kinases remains to be
determined in glioblastoma, and it is unclear which
kinases are best for targeting with small molecule inhibi-
tors. Therefore, it may prove worthwhile to evaluate
kinase targets other than those currently utilized for
small molecule inhibition in glioblastoma.56

Another fundamental question, if glioblastoma turns
out to be kinase driven, is which strategy is best for
kinase inhibition. For example, one of the more favor-
able responses in the clinical studies reviewed here has
been observed using the FLT1/KDR inhibitor cedira-
nib.17 A strategy alternative for inhibition of kinase sig-
naling other than using a small-molecule inhibitor is

binding of the ligand of receptor tyrosine kinases with
monoclonal antibodies. This strategy has recently been
shown to hold promise as a cancer therapy for glioblas-
toma.57–59

In conclusion, this review of published clinical studies
demonstrates small-molecule kinase inhibitors for adult
patients with glioblastoma to be not effective enough yet
to warrant a change in clinical practice, whereas the
evaluated drug targets have been generally limited to
EGFR, mTOR, KDR, FLT1, PKCb, and PDGFR.

Acknowledgments

We would like to thank Prof. Dr W.P. Vandertop and
Prof. Dr C.J. Van Noorden, University of Amsterdam,
for their constructive discussion of an early version of
the manuscript.

Conflict of interest statement. None declared.

Funding

The support from an Accelerate Brain Cancer Cure
award and a grant from the Dutch Cancer Society are
greatly appreciated.

References

1. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for

HER2-positive advanced breast cancer. N Engl J Med.

2006;355:2733–2743.

2. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon

alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:

115–124.

3. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepato-

cellular carcinoma. N Engl J Med. 2008;359:378–390.

4. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell

renal-cell carcinoma. N Engl J Med. 2007;356:125–134.

5. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor

of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leu-

kemia and acute lymphoblastic leukemia with the Philadelphia chromo-

some. N Engl J Med. 2001;344:1038–1042.

6. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of

imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl

J Med. 2002;347:472–480.

7. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with con-

comitant and adjuvant temozolomide versus radiotherapy alone on sur-

vival in glioblastoma in a randomised phase III study: 5-year analysis of

the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466.

8. Chang SM, Lamborn KR, Kuhn JG, et al. Neurooncology clinical trial

design for targeted therapies: lessons learned from the North

American Brain Tumor Consortium. Neuro-Oncology.

2008;10:631–642.

9. Chi AS, Wen PY. Inhibiting kinases in malignant gliomas. Expert Opin

Ther Targets. 2007;11:473–496.

10. De Groot JF, Gilbert MR. New molecular targets in malignant gliomas.

Curr Opin Neurol. 2007;20:712–718.

11. Omuro AM. Exploring multi-targeting strategies for the treatment of

gliomas. Curr Opin Investig Drugs. 2008;9:1287–1295.

12. Omuro AM, Faivre S, Raymond E. Lessons learned in the development

of targeted therapy for malignant gliomas. Mol Cancer Ther.

2007;6:1909–1919.

13. Reardon DA, Wen PY. Therapeutic advances in the treatment of glio-

blastoma: rationale and potential role of targeted agents. Oncologist.

2006;11:152–164.

14. Sathornsumetee S, Reardon DA, Desjardins A, Quinn JA, Vredenburgh

JJ, Rich JN. Molecularly targeted therapy for malignant glioma. Cancer.

2007;110:13–24.

15. Wong ML, Kaye AH, Hovens CM. Targeting malignant glioma survival

signalling to improve clinical outcomes. J Clin Neurosci.

2007;14:301–308.

16. Sathornsumetee S, Vredenburgh JJ, Rich JN, et al. Phase II study of bev-

acizumab and erlotinib in patients with recurrent glioblastoma multi-

forme. J Clin Oncol. 2008;26(suppl):abstract 13008.

17. Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF

receptor tyrosine kinase inhibitor, normalizes tumor vasculature and

alleviates edema in glioblastoma patients. Cancer Cell. 2007;11:

83–95.

18. Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Brewer C. Phase

II trial of the EGFR tyrosine kinase inhibitor erlotinib for single agent

therapy of recurrent glioblastoma multiforme: interim results. J Clin

Oncol. 2004;22(suppl):abstract 1558.

De Witt Hamer: Kinase inhibitors in glioblastoma

312 NEURO-ONCOLOGY † M A R C H 2 0 1 0



19. Phuphanich S, Rudnick J, Chu R, Yu JS, Black KL. A phase I trial of gefi-

tinib and sirolimus in adults with recurrent glioblastoma multiforme

(GBM). J Clin Oncol. 2008;26(suppl):abstract 2088.

20. Marosi C, Vedadinejad M, Haberler C, et al. Imatinib mesylate in the

treatment of patients with recurrent high grade gliomas expressing

PDGF-R. J Clin Oncol. 2006;24(suppl):abstract 1526.

21. Viola FS, Katz A, Arantes A, et al. Phase II trial of high dose imatinib in

recurrent glioblastoma multiforme (GBM) with platelet derived growth

factor receptor (PDGFR) expression. J Clin Oncol. 2007;25(suppl):ab-

stract 2056.

22. Reardon DA, Egorin MJ, Quinn JA, et al. Phase II study of imatinib

mesylate plus hydroxyurea in adults with recurrent glioblastoma multi-

forme. J Clin Oncol. 2005;23:9359–9368.

23. Doherty L, Gigas DC, Kesari S, et al. Pilot study of the combination of

EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology.

2006;67:156–158.

24. Reardon DA, Quinn JA, Vredenburgh JJ, et al. Phase 1 trial of gefitinib

plus sirolimus in adults with recurrent malignant glioma. Clin Cancer

Res. 2006;12:860–868.

25. Schwer AL, Kavanagh BD, McCammon R, et al. Radiographic and his-

topathologic observations after combined EGFR inhibition and hypo-

fractionated stereotactic radiosurgery in patients with recurrent

malignant gliomas. Int J Radiat Oncol Biol Phys. 2009;73:1352–1357.

26. Chang S, Kuhn J, Wen P, et al. Phase II/pharmacokinetic study of

CCI-779 in recurrent glioblastoma multiforme (GM).

Neuro-Oncology. 2003;5:abstract TA-09.

27. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus

(CCI-779) in recurrent glioblastoma multiforme: a North Central

Cancer Treatment Group Study. J Clin Oncol. 2005;23:5294–5304.

28. Conrad C, Friedman H, Reardon DA, et al. A phase I/II trial of

single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis

inhibitor, in patients with recurrent glioblastoma multiforme (GBM).

J Clin Oncol. 2004;22(suppl):abstract 1512.

29. Dresemann G. Imatinib and hydroxyurea in pretreated progressive

glioblastoma multiforme: a patient series. Ann Oncol.

2005;16:1702–1708.

30. Kirkpatrick JP, Rich JN, Vredenburgh JJ, et al. Final report: phase I trial of

imatinib mesylate, hydroxyurea, and vatalanib for patients with recur-

rent malignant glioma (MG). J Clin Oncol. 2008;26(suppl):abstract

2057.

31. Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent

glioblastoma. J Clin Oncol. 2004;22:133–142.

32. Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib

plus temozolomide during and after radiation therapy in patients with

newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin

Oncol. 2009;27:579–584.

33. Brewer C, Suh JH, Stevens GH, et al. Phase II trial of erlotinib with temo-

zolomide and concurrent radiation therapy in patients with newlydiagnosed

glioblastoma multiforme. J Clin Oncol. 2005;23(suppl):abstract 1567.

34. Fine HA, Puduvalli VK, Chamberlain MC, et al. Enzastaurin (ENZ) versus

lomustine (CCNU) in the treatment of recurrent, intracranial glioblas-

toma multiforme (GBM): a phase III study. J Clin Oncol. 2005;26(sup-

pl):abstract 2005.

35. Dresemann G, Hosius C, Nikolova Z. Imatinib plus hydroxyurea as main-

tenance treatment in pre-treated non-progressive glioblastoma—a

single-center phase II study. Neuro-Oncology. 2008;10:abstract MA-24.

36. Kreisl TN, Lassman AB, Mischel PS, et al. A pilot study of everolimus and

gefitinib in the treatment of recurrent glioblastoma (GBM). J

Neurooncol. 2009;92:99–105.

37. De Groot JF, Gilbert M, Hess K, et al. Phase II study of combination car-

boplatin and erlotinib in patients with recurrent glioblastoma multi-

forme. J Clin Oncol. 2007;25(suppl):abstract 2024.

38. Peereboom D, Brewer C, Suh JH, et al. Phase II trial of erlotinib with

temozolomide and concurrent radiation therapy in patients with

newly diagnosed glioblastoma multiforme: final results.

Neuro-Oncology. 2006;8:abstract TA-41.

39. Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. Antitumor activity of

rapamycin in a phase I trial for patients with recurrent PTEN-deficient

glioblastoma. PLoS Med. 2008;5:e8.

40. Wen P, Yung WK, Hess K, et al. Phase I study of STI571 for patients

with recurrent malignant gliomas and meningiomas. Neuro-Oncology.

2001;3:abstract 407.

41. Shah GD, Silver JS, Rosenfeld SS, Gavrilovic IT, Abrey LE, Lassman AB.

Myelosuppression in patients benefiting from imatinib with hydro-

xyurea for recurrent malignant gliomas. J Neurooncol.

2007;85:217–222.

42. Franceschi E, Cavallo G, Lonardi S, et al. Gefitinib in patients with pro-

gressive high-grade gliomas: a multicentre phase II study by Gruppo

Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer.

2007;96:1047–1051.

43. Haas-Kogan DA, Prados MD, Tihan T, et al. Epidermal growth factor

receptor, protein kinase B/Akt, and glioma response to erlotinib. J

Natl Cancer Inst. 2005;97:880–887.

44. Preusser M, Gelpi E, Rottenfusser A, et al. Epithelial growth factor

receptor inhibitors for treatment of recurrent or progressive high

grade glioma: an exploratory study. J Neurooncol. 2008;89:

211–218.

45. Van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II

trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent

glioblastoma multiforme (GBM): EORTC 26034. Neuro-Oncology.

2007;9:abstract MA-27.

46. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of

the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med.

2005;353:2012–2024.

47. Mauer ME, Bottomley A, Taphoorn MJ. Evaluating health-related

quality of life and symptom burden in brain tumour patients: instru-

ments for use in experimental trials and clinical practice. Curr Opin

Neurol. 2008;21:745–753.

48. Taphoorn MJ, Klein M. Cognitive deficits in adult patients with brain

tumours. Lancet Neurol. 2004;3:159–168.

49. Krause DS, Van Etten RA. Tyrosine kinases as targets for cancer therapy.

N Engl J Med. 2005;353:172–187.

50. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the

PIK3CA gene in human cancers. Science. 2004;304:554.

51. Klein A, Reichardt W, Jung V, Zang KD, Meese E, Urbschat S.

Overexpression and amplification of STK15 in human gliomas. Int J

Oncol. 2004;25:1789–1794.

52. Charest A, Lane K, McMahon K, et al. Fusion of FIG to the receptor

tyrosine kinase ROS in a glioblastoma with an interstitial

del(6)(q21q21). Genes Chromosomes Cancer. 2003;37:58–71.

53. Newton HB. Molecular neuro-oncology and development of targeted

therapeutic strategies for brain tumors. Part 1: growth factor and Ras

signaling pathways. Expert Rev Anticancer Ther. 2003;3:595–614.

54. Newton HB. Molecular neuro-oncology and development of targeted

therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN,

mTOR, SHH/PTCH and angiogenesis. Expert Rev Anticancer Ther.

2004;4:105–128.

De Witt Hamer: Kinase inhibitors in glioblastoma

NEURO-ONCOLOGY † M A R C H 2 0 1 0 313



55. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The

protein kinase complement of the human genome. Science.

2002;298:1912–1934.

56. Vieth M, Sutherland JJ, Robertson DH, Campbell RM. Kinomics: char-

acterizing the therapeutically validated kinase space. Drug Discov

Today. 2005;10:839–846.

57. Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizu-

mab followed by bevacizumab plus irinotecan at tumor progression in

recurrent glioblastoma. J Clin Oncol. 2009;27:740–745.

58. Sathornsumetee S, Cao Y, Marcello JE, et al. Tumor angiogenic and

hypoxic profiles predict radiographic response and survival in malignant

astrocytoma patients treated with bevacizumab and irinotecan. J Clin

Oncol. 2008;26:271–278.

59. Vredenburgh JJ, Desjardins A, Herndon JE, 2nd, et al. Bevacizumab plus

irinotecan in recurrent glioblastoma multiforme. J Clin Oncol.

2007;25:4722–4729.

60. Athanassiou H, Synodinou M, Maragoudakis E, et al. Randomized

phase II study of temozolomide and radiotherapy compared with radio-

therapy alone in newly diagnosed glioblastoma multiforme. J Clin

Oncol. 2005;23:2372–2377.

61. Brada M, Hoang-Xuan K, Rampling R, et al. Multicenter phase II trial of

temozolomide in patients with glioblastoma multiforme at first relapse.

Ann Oncol. 2001;12:259–266.

62. Yung WK, Albright RE, Olson J, et al. A phase II study of temozolomide

vs. procarbazine in patients with glioblastoma multiforme at first

relapse. Br J Cancer. 2000;83:588–593.

63. Wong ET, Hess KR, Gleason MJ, et al. Outcomes and prognostic factors

in recurrent glioma patients enrolled onto phase II clinical trials. J Clin

Oncol. 1999;17:2572–2578.

64. Van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II

trial of erlotinib versus temozolomide or carmustine in recurrent glio-

blastoma: EORTC Brain Tumor Group Study 26034. J Clin Oncol.

2009;27:1268–1274.

65. Van den Bent MJ, Brandes AA, Rampling R, et al. Randomized phase II

trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent

glioblastoma multiforme (GBM): EORTC 26034. J Clin Oncol.

2007;25(suppl):abstract 2005.

66. Buie LW, Lindley C, Shih T, et al. Plasma pharmacokinetics and cerebrosp-

inal fluid concentrations of erlotinib in high-grade gliomas: a novel, phase

I, dose escalation study. J Clin Oncol. 2007;25(suppl):abstract 2054.

67. Cloughesy T, Yung WK, Vredenburgh JJ, et al. Phase II study of erlotinib

in recurrent GBM: molecular predictors of outcome. J Clin Oncol.

2005;23(suppl):abstract 1507.

68. Yung WK, Vredenburgh JJ, Cloughesy T, et al. Erlotinib HCl for glioblas-

toma multiforme in first relapse, a phase II trial. J Clin Oncol.

2004;22(suppl):abstract 1555.

69. Rich JN, Peery T, Reardon DA, et al. Phase I/II trial of the epidermal

growth factor receptor small molecule inhibitor ZD1839 (gefitinib) in

patients with first relapse glioblastoma. Neuro-Oncology.

2003;5:abstract TA-34.

70. Uhm JH, Ballman K, Giannini C, et al. Phase II study of ZD1839 in

patients with newly diagnosed grade 4 astrocytoma. J Clin Oncol.

2004;22(suppl):abstract 1505.

71. Raizer J, Abrey LE, Wen P, et al. A phase II trial of erlotinib (OSI-774) in

patients (pts) with recurrent malignant gliomas (MG) not on EIAEDs. J

Clin Oncol. 2004;22(suppl):abstract 1502.

72. Lieberman FS, Cloughesy T, Fine HA, et al. NABTC phase I/II trial of

ZD-1839 for recurrent malignant gliomas and unresectable meningio-

mas. J Clin Oncol. 2004;22(suppl):abstract 1510.

73. Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Brewer C.

Response rate to single agent therapy with the EGFR tyrosine kinase

inhibitor erlotinib in recurrent glioblastoma multiforme: results of a

phase II study. Neuro-Oncology. 2004;6:abstract TA-59.

74. Vogelbaum MA, Peereboom D, Stevens G, Barnett G, Sakala P, Brewer

C. Initial experience with the EGFR tyrosine kinase inhibitor Tarceva

(OSI-774) for single-agent therapy of recurrent/progressive glioblas-

toma multiforme. Neuro-Oncology. 2003;5:abstract TA-37.

75. Peery T, Reardon DA, Quinn JA, et al. Phase II trial of ZD1839 for

patients with first relapse glioblastoma. Proc Am Soc Clin Oncol.

2003;22:abstract 396.

76. Chang SM, Wen P, Cloughesy T, et al. Phase II study of CCI-779 in

patients with recurrent glioblastoma multiforme. Invest New Drugs.

2005;23:357–361.

77. Chang SM, Kuhn J, Wen P, et al. Phase I/pharmacokinetic study

of CCI-779 in patients with recurrent malignant glioma on

enzyme-inducing antiepileptic drugs. Invest New Drugs.

2004;22:427–435.

78. Reardon DA, Friedman H, Yung WK, et al. Preliminary phase I trial

results: PTK787/ZK 222584 (PTK/ZK), an oral VEGF tyrosine kinase

inhibitor, in combination with either temozolomide or lomustine for

patients with recurrent glioblastoma multiforme (GBM).

Neuro-Oncology. 2003;5:abstract TA-33.

79. Yung WK, Friedman H, Conrad C, et al. A phase I trial of single-agent

PTK 787/ZK 222584 (PTK/ZK), an oral VEGFR tyrosine kinase inhibitor,

in patients with recurrent glioblastoma multiforme. Proc Am Soc Clin

Oncol. 2003;22:abstract 395.

80. Yung WK, Friedman HS, Jackson E, et al. A phase I trial of PTK787/ZK

222584 (PTK/ZK), a novel oral VEGF-R TK inhibitor in patients with

recurrent GBM. Neuro-Oncology. 2001;3:abstract 409.

81. Kreisl TN, Kim L, Moore K, et al. A phase I trial of enzastaurin in patients

with recurrent gliomas. Clin Cancer Res. 2009;15:3617–3623.

82. Puduvalli VK, Wick W, Chamberlain MC, et al. Enzastaurin versus

lomustine in the treatment of recurrent, intracranial glioblastoma: a

phase III study. Neuro-Oncology. 2008;10:abstract MA-35.

83. Thornton D, Graff J. Enzastaurin: an introduction to a new, targeted

agent for the treatment of glioblastoma multiforme. Neuro-Oncology.

2006;8:abstract P142.

84. Wick W, Puduvalli VK, Chamberlain MC, et al. Enzastaurin (ENZ) versus

lomustine (CCNU) in the treatment of recurrent, intracranial glioblastoma

(GBM): a phase III study. Neuro-Oncology. 2008;10:abstract O22.

85. Fine HA, Kim L, Royce C, et al. Results from phase II trial of enzastaurin

(LY317615) in patients with recurrent high grade gliomas. J Clin Oncol.

2005;23(suppl):abstract 1504.

86. Fine HA, Kim L, Royce C, et al. A phase II trial of LY317615 in patients

with recurrent high grade gliomas. J Clin Oncol. 2004;22(suppl):

abstract 1511.

87. Raymond E, Brandes AA, Dittrich C, et al. Phase II study of imatinib in

patients with recurrent gliomas of various histologies: a European

Organisation for Research and Treatment of Cancer Brain Tumor

Group Study. J Clin Oncol. 2008;26:4659–4665.

88. Raymond E, Brandes AA, Van Oosterom A, et al. Multicentre phase II

study of imatinib mesylate in patients with recurrent glioblastoma: an

EORTC: NDDG/BTG Intergroup Study. J Clin Oncol. 2004;22

(suppl):abstract 1501.

89. Van den Bent MJ, Brandes AA, Van Oosterom A, et al. Multicentre

phase II study of imatinib mesylate (Gleevec) in patients with recurrent

glioblastoma: an EORTC NDDG/BTG Intergroup Study.

Neuro-Oncology. 2004;6:abtrsact TA-57.

De Witt Hamer: Kinase inhibitors in glioblastoma

314 NEURO-ONCOLOGY † M A R C H 2 0 1 0



90. Razis E, Selviaridis P, Fletcher JA, et al. Biochemical evidence of tumor

response and measurable levels of the drug in glioblastoma tissue

from patients treated with imatinib. J Clin Oncol. 2007;25(suppl):

abstract 2023.

91. Wen P, Yung WK, Lamborn KR, et al. Phase I/II study of imatinib mesy-

late (STI571) for patients with recurrent malignant gliomas (NABTC

99-08). Neuro-Oncology. 2004;6:abstract TA-63.

92. Wen PY, Yung WK, Lamborn KR, et al. Phase I/II study of imatinib

mesylate for recurrent malignant gliomas: North American Brain

Tumor Consortium Study 99-08. Clin Cancer Res.

2006;12:4899–4907.

93. Franceschi E, Lonardi S, Tosoni A, et al. ZD1839 (Iressa) treatment for

adult patients with progressive high-grade gliomas (HGG): an open

label, single-arm, phase II study of the Gruppo Italiano Cooperativo di

Neuro-Oncologia (GICNO). J Clin Oncol. 2005;23(suppl):abstract

1564.

94. Chaskis C, Sadones J, Michotte A, Dujardin M, Everaert H, Neyns B. A

phase II trial of sunitinib in patients with recurrent high-grade glioma.

J Clin Oncol. 2008;26(suppl):abstract 13001.

95. Kreisl TN, Butman JA, Albert PS, Kim L, Moore K, Fine HA. A phase II

trial of vandetanib for patients with recurrent glioblastoma multiforme.

Neuro-Oncology. 2008;10:abstract MA-40.

96. Reardon DA, Desjardins A, Vredenburgh JJ, et al. A phase II trial of sor-

afenib (Nexavar) and protracted temozolomide for patients with recur-

rent glioblastoma. Neuro-Oncology. 2008;10:abstract MA-82.

97. Friedman HS, Desjardins A, Vredenburgh JJ, et al. Phase II trial of erlo-

tinib plus sirolimus for recurrent glioblastoma multiforme (GBM). J Clin

Oncol. 2008;26(suppl):abstract 2062.

98. Badruddoja MA, Das RM, Gabyan E, et al. Gefitinib and rapamycin for

adult patients with recurrent glioblastoma multiforme.

Neuro-Oncology. 2006;8:abstract TA-02.

99. Nguyen TD, Lassman AB, Lis E, et al. A pilot study to assess the toler-

ability and efficacy of RAD-001 (everolimus) with gefitinib in patients

with recurrent glioblastoma multiforme (GBM). Neuro-Oncology.

2006;8:abstract TA-39.

100. Prados M, DeBoer R, Chang S, et al. Phase II study of Tarceva plus

Temodar during and following radiotherapy in patients newly diag-

nosed with glioblastoma or gliosarcoma. Neuro-Oncology.

2007;9:abstract MA-50.

101. Brown PD, Krishnan S, Sarkaria J, et al. A phase II trial (N0177) of erlo-

tinib and temozolomide (TMZ) combined with radiation therapy (RT) in

glioblastoma multiforme (GBM). J Clin Oncol. 2008;26(suppl):abstract

2016.

102. De Groot JF, Gilbert MR, Aldape K, et al. Phase II study of carboplatin

and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma.

J Neurooncol. 2008;90:89–97.

103. Chakravarti A, Berkey B, Robins HI, et al. An update of phase II results

from RTOG 0211: a phase I /II study of gefitinib with radiotherapy in

newly diagnosed glioblastoma multiforme. Neuro-Oncology.

2006;8:abstract TA-08.

104. Chakravarti A, Berkey B, Robins HI, et al. An update of phase II results

from RTOG 0211: a phase I/II study of gefitinib with radiotherapy in

newly diagnosed glioblastoma. J Clin Oncol. 2006;24(suppl):abstract

1527.

105. Chakravarti A, Seiferheld W, Robbins HI, et al. An update of phase I

data from RTOG 0211: a phase I/II clinical study of gefitinib þ radiation

for newly-diagnosed glioblastoma (GBM) patients. J Clin Oncol.

2004;22(suppl):abstract 1571.

106. Chakravarti A, Seiferheld W, Robins HI, et al. An update of phase I data

from RTOG 0211: a phase I/II clinical study of ZD 1839 (gefitinib) þ

radiation for newly diagnosed glioblastoma (GBM) patients.

Neuro-Oncology. 2004;6:abstract TA-12.

107. Prados M, Chang S, Burton E, et al. Phase I study of OSI-774 alone or

with temozolomide in patients with malignant glioma. Proc Am Soc

Clin Oncol. 2003;22:abstract 394.

108. Prados MD, Lamborn KR, Chang S, et al. Phase 1 study of erlotinib HCl

alone and combined with temozolomide in patients with stable or recur-

rent malignant glioma. Neuro-Oncology. 2006;8:67–78.

109. Krishnan S, Brown PD, Ballman KV, et al. Phase I trial of erlotinib with

radiation therapy in patients with glioblastoma multiforme: results of

North Central Cancer Treatment Group protocol N0177. Int J Radiat

Oncol Biol Phys. 2006;65:1192–1199.

110. Peereboom D, Brewer C, Stevens G, et al. Phase II trial of erlotinib with

temozolomide and concurrent radiation therapy post-operatively in

patients with newly diagnosed glioblastoma multiforme.

Neuro-Oncology. 2004;6:abstract TA-41.

111. Dresemann G, Rosenthal M, Hoffken K, et al. Imatinib plus hydroxyurea

versus hydroxyurea monotherapy in progressive glioblastoma

(GBM)-an international open label randomised phase III study

(AMBROSIA-study). Neuro-Oncology. 2007;9:abstract MA-17.

112. Dresemann G, Weller M, Bogdahn U, et al. Imatinib plus hydroxyurea

versus hydroxyurea monotherapy in progressive glioblastoma-an inter-

national multicenter, open-label, randomized phase III study

(AMBROSIA-study). Neuro-Oncology. 2008;10:abstract MA-19.

113. Dresemann G, Hosius C, Nikolova Z, Letvak L. Single center phase II

trial analysing the role of imatinib/hydroxyurea in patients (pts) with

pretreated non-progressive glioblastoma (GBM) as maintenance treat-

ment. J Clin Oncol. 2007;25(suppl):abstract 2055.

114. Friedman HS, Quinn JA, Rich JN, et al. Imatinib mesylate (Gleevec) plus

hydroxyurea is an effective regimen in the treatment of recurrent malig-

nant glioma. Phase 2 study results. J Clin Oncol. 2005;23(suppl):

abstract 1515.

115. Reardon DA, Friedman AH, Herndon JE, 2nd, et al. Phase II trial of ima-

tinib mesylate plus hydroxyurea in the treatment of patients with malig-

nant glioma. Neuro-Oncology. 2004;6:abstract TA-47.

116. Reardon DA, Quinn JA, Rich JN, et al. Imatinib mesylate (Gleevec) plus

hydroxyurea: an effective regimen in the treatment of recurrent malig-

nant glioma: phase 2 study results. Neuro-Oncology. 2005;7:abstract

35.

117. Sathornsumetee S, Desjardins A, Vredenburgh JJ, et al. Safety and effi-

cacy of bevacizumab and erlotinib for recurrent glioblastoma

patients in a phase II study. Neuro-Oncology. 2008;10:abstract

MA-41.

118. Sathornsumetee S, Vredenburgh JJ, Rich JN, et al. Phase II trial of bev-

acizumab and erlotinib in recurrent glioblastoma multiforme (GBM).

Neuro-Oncology. 2007;9:abstract MA-06.

119. Reardon DA, Desjardins A, Vredenburgh JJ, et al. A phase I trial of dasa-

tinib (Sprycel) and erlotinib (Tarceva) for patients with recurrent malig-

nant glioma. Neuro-Oncology. 2008;10:abstract MA-85.

120. Wuthrick E, Curran W, Lin A, et al. A phase I trial of hypofractionated

stereotactic radiation therapy with sunitinib in recurrent high-grade

glioma. Neuro-Oncology. 2008;10:abstract RO-14.

121. Sathornsumetee S, Rich JN, Vredenburgh JJ, et al. Phase I trial of ima-

tinib mesylate, hydroxyurea and vatalanib for patients with recurrent

glioblastoma multiforme (GBM). J Clin Oncol. 2007;25(suppl):abstract

2027.

De Witt Hamer: Kinase inhibitors in glioblastoma

NEURO-ONCOLOGY † M A R C H 2 0 1 0 315



122. Reardon DA, Groves MD, Wen P, et al. A phase II trial of lapatinib and

pazopanib for patients with recurrent glioblastoma multiforme (GBM).

Neuro-Oncology. 2007;9:abstract MA-07.

123. Sathornsumetee S, Rich JN, Vredenburgh JJ, et al. Phase I trial of temo-

zolomide plus dose-escalating imatinib mesylate for patients with malig-

nant glioma. Neuro-Oncology. 2006;8:abstract TA-50.

124. Desjardins A, Quinn JA, Rich JN, et al. A phase I trial of imatinib

(Gleevec), hydroxyurea and RAD001 for patients with recurrent malig-

nant glioma. Neuro-Oncology. 2006;8:abstract TA-14.

125. Reardon DA, Friedman H, Yung WK, et al. A phase I/II trial of PTK787/ZK

222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with

either temozolomide or lomustine for patients with recurrent glioblastoma

multiforme (GBM). J Clin Oncol. 2004;22(suppl):abstract 1513.

126. Reardon DA, Friedman HS, Brada M, et al. A phase I/II trial of PTK787/

ZK 222584 (PTK/ZK), a multi-vegf receptor tyrosine kinase inhibitor, in

combination with either temozolomide or lomustine for patients with

recurrent glioblastoma multiforme (GBM). Neuro-Oncology.

2004;6:abstract TA-48.

De Witt Hamer: Kinase inhibitors in glioblastoma

316 NEURO-ONCOLOGY † M A R C H 2 0 1 0


